JPS63170210A - Production of chlorosilane - Google Patents

Production of chlorosilane

Info

Publication number
JPS63170210A
JPS63170210A JP269787A JP269787A JPS63170210A JP S63170210 A JPS63170210 A JP S63170210A JP 269787 A JP269787 A JP 269787A JP 269787 A JP269787 A JP 269787A JP S63170210 A JPS63170210 A JP S63170210A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
reaction
metallic
trichlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP269787A
Other languages
Japanese (ja)
Other versions
JPH0764536B2 (en
Inventor
Hisato Yamada
山田 悠人
Hideaki Ogawa
小川 英章
Toshihiro Hosokawa
細川 俊裕
Mamoru Tachikawa
守 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP269787A priority Critical patent/JPH0764536B2/en
Publication of JPS63170210A publication Critical patent/JPS63170210A/en
Publication of JPH0764536B2 publication Critical patent/JPH0764536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce trichlorosilane in high yield, by allowing metallic Si powder to react with gaseous hydrogen chloride contg. non-oxidizing gas in a fluidized bed under a special condition. CONSTITUTION:The metallic Si powder having 80-150mum mean particle size is packed into a fluidized bed reaction tube 1 and the tube is heated to 250-300 deg.C with the heater 2a, 2b. Then a gaseous mixture, which is obtained by mixing the hydrogen chloride with the non-oxidizing gas of 0.1-1.0 in the molar ratio to the hydrogen chloride amt., is fed into the reaction tube 1 at the linear velocity of 4-10 times of the velocity at which the metallic Si powder starts to fluidize and then is brought into contact with the metallic Si at the pressure of 1-4atm for 2-25sec. Thereafter the trichlorosilane and CCl4 are recovered with a trap 5 for product by separating the metallic Si entrained with the reaction gas. On the other hand, non-reacted gaseous hydrogen is introduced into a trap 6 and neutralized.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、クロルシランの製造方法に関し、ざらに詳し
くはトリクロルシランを高選択率で製造しうるクロルシ
ランの製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing chlorosilane, and more particularly to a method for producing chlorosilane that can produce trichlorosilane with high selectivity.

発明の技術的背景ならびにその問題点 近年、クロルシランは半導体の分野および有機シラン化
学の原料としてその需要が増大している。
Technical background of the invention and its problems In recent years, demand for chlorosilane has increased in the field of semiconductors and as a raw material for organic silane chemistry.

特に、トリクロルシラン(SiトICI 3>は半導体
用高純度シリコンおよびシラン系カンプリング剤の製造
原料として、また四塩化ケイ素(Si C14>は合成
石英製造用原料として使用される。
In particular, trichlorosilane (Si Cl 3>) is used as a raw material for producing high-purity silicon for semiconductors and silane-based camping agents, and silicon tetrachloride (Si C14>) is used as a raw material for producing synthetic quartz.

ところで、従来、金属ケイ素と塩化水素とを流vJ層中
で反応させることによりトリクロルシランおよび四塩化
ケイ素を製造する方法は知られている。しかしながら、
従来の流動層反応方法においては、反応に際して流動層
中に局所高温域(ホットスポット)が生じやすくなるな
どの問題点があった。
Incidentally, a method for producing trichlorosilane and silicon tetrachloride by reacting metallic silicon and hydrogen chloride in a flowing vJ layer is conventionally known. however,
Conventional fluidized bed reaction methods have problems such as the tendency for local high temperature areas (hot spots) to occur in the fluidized bed during the reaction.

このようなホットスポットの発生を防止するために、従
来、流動層中に不活性ガスを導入する方法が提案されて
いる。しかし、この不活性ガス導入法は、流動層中に気
泡を形成して反応を不完全にしたり、ケイ素粉末原料を
流動層から系外へ搬出するなど反応工程において新たな
問題点を惹き起こす原因となるため、今日有効な方法と
は考えられてはいない。
In order to prevent the occurrence of such hot spots, a method of introducing an inert gas into a fluidized bed has been proposed. However, this inert gas introduction method causes new problems in the reaction process, such as forming bubbles in the fluidized bed, making the reaction incomplete, and carrying the silicon powder raw material out of the fluidized bed. Therefore, it is not considered an effective method today.

また、特定の金属触媒を用いることにより、反応温度を
最適状態にする試みも各種提案されている(たとえば、
特公昭37−18703号公報、特開昭61−4768
M公報等参照)が、これら従来の方法は、製造工程の簡
易化、経済性、目的生成物の収率の点で必ずしも充分満
足のいくものではない。
Various attempts have also been made to optimize the reaction temperature by using specific metal catalysts (for example,
Japanese Patent Publication No. 37-18703, Japanese Patent Publication No. 61-4768
However, these conventional methods are not necessarily fully satisfactory in terms of simplification of the manufacturing process, economic efficiency, and yield of the desired product.

及団五旦珀 本発明は、上記のような従来技術に伴なう問題点に鑑み
てなされたものであって、比較的簡易な反応制御手段に
より、トリクロルシランを高収率で得るための方法を提
供することを目的としている。
The present invention has been made in view of the problems associated with the prior art as described above, and is a method for obtaining trichlorosilane in high yield by relatively simple reaction control means. The purpose is to provide a method.

及男二且1 本発明者らは、前述した流動層反応方法のうち、従来、
製造上数々の不利を伴うとされていた不活性ガス導入法
を再度見なおし、種々の研究を重ねた結果、不活性ガス
の混合比ならびに導入反応ガスの線速度を制御すること
によってホットスポットの発生を防止するとともに流動
層内の温度条件、温度分布を最適状態に制御することが
可能であり、これによってトリクロルシランを選択率良
く生成させることができることを見出した。
Oioji and 1 The present inventors have discovered that among the above-mentioned fluidized bed reaction methods, conventional
After reconsidering the inert gas introduction method, which was thought to have many disadvantages in manufacturing, and after conducting various research, we succeeded in eliminating hot spots by controlling the mixture ratio of inert gas and the linear velocity of the introduced reactant gas. It has been found that it is possible to prevent the generation of trichlorosilane and to control the temperature conditions and temperature distribution within the fluidized bed to an optimal state, thereby allowing trichlorosilane to be produced with good selectivity.

本発明は上記知見に基いてなされたものであり、より詳
しくは、金属ケイ素粉末と塩化水素ガスとを流動層中で
反応させることによりトリクロルシランと四塩化ケイ素
との混合物を生成させるに際し、導入する塩化水素ガス
に対してモル比0.1〜1.0の非酸化性ガスを混合す
るとともに、該混合ガスを、金属ケイ素粉末の流動化開
始速度の4〜20倍の線速度で流動層に導入し、流動層
での反応温度を250〜350℃に制御することを生成
させることを特徴としている。
The present invention has been made based on the above-mentioned findings, and more specifically, when producing a mixture of trichlorosilane and silicon tetrachloride by reacting metal silicon powder and hydrogen chloride gas in a fluidized bed, A non-oxidizing gas is mixed at a molar ratio of 0.1 to 1.0 to hydrogen chloride gas, and the mixed gas is passed through a fluidized bed at a linear velocity of 4 to 20 times the fluidization start speed of the metal silicon powder. It is characterized in that the reaction temperature in the fluidized bed is controlled at 250 to 350°C.

及」五且狭煎旦」 以下、本発明に係るクロルシランの製造方法を実施例を
も含めて具体的に説明する。
Hereinafter, the method for producing chlorosilane according to the present invention will be explained in detail, including examples.

本発明の方法においては、金属ケイ素粉末を流動層反応
器に充填したのち、塩化水素(HCI)ガスを導入する
が、このとき稀釈ガスとして非酸化性ガスを混合する。
In the method of the present invention, after filling a fluidized bed reactor with metal silicon powder, hydrogen chloride (HCI) gas is introduced, and at this time, a non-oxidizing gas is mixed as a diluent gas.

このときに使用する金属ケイ素粉末の平均粒径は80〜
150μmであり、より好ましくは90〜120μmで
ある。ケイ素中の付随的不純物はなるべく少ない方が望
ましい。
The average particle size of the metal silicon powder used at this time is 80~
It is 150 μm, more preferably 90 to 120 μm. It is desirable that the amount of incidental impurities in silicon be as small as possible.

混合する非酸化性ガスは、N2 、He、Ar等の不活
性ガス、H2等の還元性ガスが単独または複合的に用い
られるが、この中でも、N2が好ましく用いられる。H
CIガスに対する非酸化性ガ−スの混合比は、モル比(
非酸化性ガス/HCI)で0.1〜1.0が好ましく、
更に好ましくは0.2〜0.8である。混合比が0.1
未満では、流動層内の温度分布が均一とならず、局所高
温域(ホットスポット)が発生しやすくなってトリクロ
ルシランの選択生成率が低下するので好ましくない。一
方、混合比が1.0を越えると非酸化性ガスならびに反
応で生じたト12ガス中にエントレインする生成りロル
シランの量が多くなり、非酸化性ガスとクロルシラン類
との分離ならびに精製に要するエネルギーがいきおい増
大し、工程も繁雑するので好ましくない。
As the non-oxidizing gas to be mixed, inert gases such as N2, He, Ar, etc., and reducing gases such as H2 are used singly or in combination, and among these, N2 is preferably used. H
The mixing ratio of non-oxidizing gas to CI gas is the molar ratio (
Non-oxidizing gas/HCI) is preferably 0.1 to 1.0,
More preferably, it is 0.2 to 0.8. Mixing ratio is 0.1
If it is less than this, the temperature distribution within the fluidized bed will not be uniform, and local high temperature areas (hot spots) will likely occur, resulting in a decrease in the selective production rate of trichlorosilane, which is not preferable. On the other hand, when the mixing ratio exceeds 1.0, the amount of product chlorosilane entrained in the non-oxidizing gas and the chlorosilane gas produced by the reaction increases, making it difficult to separate and purify the non-oxidizing gas and chlorosilanes. This is not preferable because the energy required increases significantly and the process becomes complicated.

塩化水素ガスと非酸化性ガスとの混合ガスの流動層中で
の線速度は、該混合ガスの導入によって金属ケイ素粉末
の流動化が開始する速度の4〜20倍、更に好ましくは
5〜15倍になるように制御することが肝要で必る。こ
の金属ケイ素粉末の流動化開始速度は、一般に以下の様
にして求めることができる。
The linear velocity of the mixed gas of hydrogen chloride gas and non-oxidizing gas in the fluidized bed is 4 to 20 times, more preferably 5 to 15 times the speed at which the metal silicon powder starts to be fluidized by the introduction of the mixed gas. It is important and necessary to control it so that it doubles. The fluidization start speed of this metal silicon powder can generally be determined as follows.

肚!艮主盃方迭 Umf :流動化開始速度 [cm/sec ]D  
=粒子の直径   [Cm] P  :流体の密度   C9/cm3]π εmf:最疎充屓空隙率 [−] 目視による方法 層に導入するガス空筒速度[cm/sec ]に対し、
層の圧力損失[g/ cra ]をププロトし、その圧
力損失が層内にある固体粒子の全重量と釣合う一定値を
示す最小のガス空筒速度を読みとる。
Belly! Umf: Fluidization start speed [cm/sec]D
= Particle diameter [Cm] P: Fluid density C9/cm3] π εmf: Loosest filling porosity [-] Visual observation method: With respect to the gas cylinder velocity [cm/sec] introduced into the layer,
The pressure drop in the bed [g/cra] is plotted and the minimum gas cylinder velocity is read for which the pressure drop is a constant value that balances the total weight of solid particles in the bed.

混合ガス(流動化ガス)の線速度を、金属ケイ素の流動
化開始速度の4倍〜20倍に制限する理由は、この範囲
において良好な流動層が形成され、従って流動層内の温
度分布が最適状態に保持され ゛るからである。線速度
が20倍を越えると、金属ケイ素粉末の反応系外へのエ
ントレインmが増大するとともにクロルシラン類と非酸
化性ガスとの分離ならびに精製に要するエネルギーが増
大し工程の繁雑化をもたらすので好ましくない。
The reason why the linear velocity of the mixed gas (fluidizing gas) is limited to 4 to 20 times the fluidization starting velocity of metal silicon is that a good fluidized bed is formed within this range, and therefore the temperature distribution within the fluidized bed is This is because it is maintained in an optimal state. If the linear velocity exceeds 20 times, the entrainment m of the metal silicon powder to the outside of the reaction system will increase, and the energy required for separation and purification of chlorosilanes and non-oxidizing gas will increase, resulting in a complicated process. Undesirable.

上記混合ガスの線速度は、絶対値に換痺すると、平均粒
径約100μmの金属ケイ素粉末に対して、通常、2〜
’l0cm/秒であり、更に好ましくは2.5〜7.5
cm/秒であり、最も好ましくは3〜5cm/秒である
The linear velocity of the above-mentioned mixed gas, when expressed in absolute value, is usually 2 to
'l0cm/sec, more preferably 2.5 to 7.5
cm/sec, most preferably 3-5 cm/sec.

流動層における反応温度は、250〜350’C1更に
好ましくは270〜330℃最も好ましくは行なうため
に特定の金属触媒が必須となる。
The reaction temperature in the fluidized bed is preferably 250 to 350'C1, more preferably 270 to 330C, and a specific metal catalyst is essential.

一方、反応温度が350’Cを越えると、より有用なト
リクロルシランの選択率が低下し、四塩化ケイ素の選択
生成率が増加するため経済的に不利となるので好ましく
ない。
On the other hand, if the reaction temperature exceeds 350'C, the selectivity of trichlorosilane, which is more useful, will decrease and the selective production rate of silicon tetrachloride will increase, which is undesirable because it is economically disadvantageous.

また、流動層における反応圧力は、1〜4 atmが好
ましく、更に好ましくは1〜3 atmでおる。
Further, the reaction pressure in the fluidized bed is preferably 1 to 4 atm, more preferably 1 to 3 atm.

流動層におけるケイ素と混合ガスとの接触時間は、2〜
25秒の範囲で充分であり、更に好ましくは3〜10秒
である。
The contact time between silicon and mixed gas in the fluidized bed is 2 to
A range of 25 seconds is sufficient, and more preferably 3 to 10 seconds.

なお、本発明の方法においては、触媒を用いなくとも充
分良好な結果が得られるが、所望により塩化第−銅粉末
等の触媒を用いてもよい。
In the method of the present invention, sufficiently good results can be obtained without using a catalyst, but a catalyst such as cupric chloride powder may be used if desired.

上記本発明の反応条件によれば、従来法のように特定の
触媒を用いなくとも、高い選択生成率でトリクロルシラ
ンを得ることができる。なお、塩化水素の変換率は、接
触時間3秒以上で95モル%以上となる。
According to the reaction conditions of the present invention described above, trichlorosilane can be obtained at a high selective production rate without using a specific catalyst unlike conventional methods. Note that the conversion rate of hydrogen chloride is 95 mol % or more when the contact time is 3 seconds or more.

以下、本発明を実施例に基いて更に具体的に説明するが
、本発明はこれら実施例によって制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited by these Examples.

実施例1 第1図は、実施例で用いた反応装置の概略図である。パ
イレックスガラス製の反応部(30#径、高さ700m
>およびガス減速部(50m径、高さ300m>を有す
る反応管1を用いてヒドロクロル化反応を実施した。ガ
ス分散板としては、シンタードグラス(G−3)製のも
のを用い、反応管の底部より300mの位置にこれを設
置した。
Example 1 FIG. 1 is a schematic diagram of a reaction apparatus used in Examples. Pyrex glass reaction section (30# diameter, 700m height)
A hydrochlorination reaction was carried out using a reaction tube 1 having a gas deceleration section (50 m diameter, 300 m height).The gas dispersion plate was made of sintered glass (G-3), and the reaction tube was This was installed at a position 300 m from the bottom.

温度制御は、反応管1の外壁に設けたヒーター2a、2
bで行なった。流動層の温度は、温度計3により三ケ所
(分散板の直上、分散板より1 cm上、分散板より1
0cm上)で計測した。なお、外部冷却は行なってはい
ない。
Temperature control is performed using heaters 2a and 2 provided on the outer wall of the reaction tube 1.
It was done in b. The temperature of the fluidized bed was measured using thermometer 3 at three points (directly above the dispersion plate, 1 cm above the dispersion plate, and 1 cm above the dispersion plate).
0 cm above). Note that no external cooling was performed.

一方、導入ガス(HCI 、 N2.町)は、夫々、質
量流量計(ロータメータ)4で流量測定。
On the other hand, the flow rates of the introduced gases (HCI, N2. Town) were measured using mass flowmeters (rotameters) 4, respectively.

流量制御を行ない、反応管へ供給した。流動化ガス(反
応ガス)に飛沫同伴した金属ケイ素はセパレータで分離
し、生成物であるトリクロルシランと四塩化ケイ素は、
水冷後、プロダクトトラップ5にてドライアイス−メタ
ノール温度で回収した。
The flow rate was controlled and supplied to the reaction tube. Metallic silicon entrained in the fluidizing gas (reactant gas) is separated by a separator, and the products trichlorosilane and silicon tetrachloride are
After cooling with water, the product was collected in a product trap 5 at a dry ice-methanol temperature.

また、未反応HCIガスは、生成物を回収したのち、濃
度既知のNa OH溶液を入れたH CI トラップ6
に導入し、中和反応を行なうことによりHCIガスの排
出量を求め、これを金属ケイ素の排出量により反応収率
を算出した。
In addition, unreacted HCI gas is removed from the HCI trap 6 containing a NaOH solution of known concentration after collecting the product.
The amount of HCI gas discharged was determined by introducing the gas into the reactor and performing a neutralization reaction, and the reaction yield was calculated from the amount of discharged metal silicon.

まず、下記の粒度分布、含有組成比の金属ケイ素粉末を
用意した。
First, metal silicon powder having the following particle size distribution and composition ratio was prepared.

25μm 以下  :12% 25〜50μTrL  :16% 50〜100μTrL  :20% 100〜15C1m   :18% 150〜200μTrL  =11% 200〜300μTrL  :12% 3ooμm  以上  =11% Si >98.3% Fe <0.46% AI <0.13% Ca <0.22% 上記金属ケイ素130gを反応管に充填した。25 μm or less: 12% 25-50 μTrL: 16% 50-100μTrL: 20% 100-15C1m: 18% 150-200μTrL = 11% 200-300μTrL: 12% 3ooμm or more = 11% Si>98.3% Fe<0.46% AI <0.13% Ca <0.22% A reaction tube was filled with 130 g of the above metal silicon.

このときの充填高さく静止層)は、180mであった。The filling height (static layer) at this time was 180 m.

次に、反応管を予め300℃に加熱し、N2ガスを15
.6NN/時間、HCIガスを22.8Nρ/時間の速
度で反応管に供給した。このときのN2ガスのHClガ
スに対する導入モル比は、0.68であり、混合ガスの
反応管中での線速度は、3.1cm/秒(反応温度31
5℃)であった。
Next, the reaction tube was preheated to 300°C, and N2 gas was added at 15°C.
.. 6NN/hour and HCI gas were supplied to the reaction tube at a rate of 22.8Nρ/hour. At this time, the introduced molar ratio of N2 gas to HCl gas was 0.68, and the linear velocity of the mixed gas in the reaction tube was 3.1 cm/sec (reaction temperature 31
5°C).

混合ガスの導入に伴ない、層は201mの充填高さに膨
張し、発熱反応により流動層の温度は上昇するが、この
とき外部温度を制御することにより315±2℃に流動
層温度を制御した。
As the mixed gas is introduced, the bed expands to a filling height of 201 m, and the temperature of the fluidized bed rises due to an exothermic reaction. At this time, the temperature of the fluidized bed is controlled to 315 ± 2 °C by controlling the external temperature. did.

この温度に維持したまま、6.5時間反応を継続し、毎
時46.4gの速度で生成物を得た。生成物のガスクロ
マトグラフィー分析により、85モル%のトリクロルシ
ランと15モル%の四塩化ケイ素が1qられたことがわ
かった。また、反応収率は、導入したHCIおよび消費
された金属ケイ素に対して99%であった。    −
6,5時間後には、流動層の高さは201mより111
#l111に減少した。従ってトI CI/N 2混合
ガスと金属ケイ素の接触時間は、6.5秒から3.6秒
に変化したことになる。
The reaction was continued for 6.5 hours while maintaining this temperature, yielding product at a rate of 46.4 g/hour. Gas chromatographic analysis of the product showed 1q of 85 mol% trichlorosilane and 15 mol% silicon tetrachloride. Moreover, the reaction yield was 99% based on the introduced HCI and the consumed metal silicon. −
After 6.5 hours, the height of the fluidized bed increased from 201 m to 111 m.
It decreased to #l111. Therefore, the contact time between the CI/N 2 mixed gas and metal silicon changed from 6.5 seconds to 3.6 seconds.

なお、エントレインした金属ケイ素は、5.1g/6.
5時間で゛あった。
In addition, the entrained metal silicon was 5.1g/6.
It took 5 hours.

反応条件その他を、下記表1にまとめる。The reaction conditions and other conditions are summarized in Table 1 below.

−施例2および比較例1〜3 実施例1と同様の装置を用い、反応条件を変えた場合の
実施例ならびに比較例について、金属ケイ素のヒドロク
ロル化反応を行なった。結果を下記表1にまとめる。
- Example 2 and Comparative Examples 1 to 3 Using the same apparatus as in Example 1, a hydrochlorination reaction of metallic silicon was carried out in Examples and Comparative Examples in which the reaction conditions were changed. The results are summarized in Table 1 below.

実施例3 まず実施例1と同じ粒度分布および含有組成比の金属ケ
イ素粉末を用意し、この金属ケイ素粉末130と、市販
の銅粉末(銅含有量99%以上)7.8gとをよく混合
して、実施例1と同様の反応管に充填した。このときの
充填高ざ(静止層)は、190Ml11であった。
Example 3 First, a metal silicon powder having the same particle size distribution and content composition as in Example 1 was prepared, and this metal silicon powder 130 and 7.8 g of commercially available copper powder (copper content of 99% or more) were thoroughly mixed. Then, the same reaction tube as in Example 1 was filled. The filling height difference (stationary layer) at this time was 190 Ml11.

次に反応管を予じめ240℃に加熱し、N2ガスを19
.2Nj!/時間、HCIガスを19.2Nj/時間の
速度で反応管に供給した。N2ガスのHCIガスに対す
る導入モル比は1.0であり、混合ガスの反応管中での
線速度は2.7cm/秒であった。
Next, the reaction tube was preheated to 240°C, and N2 gas was added at 19°C.
.. 2Nj! /h, and HCI gas was supplied to the reaction tube at a rate of 19.2 Nj/h. The introduced molar ratio of N2 gas to HCI gas was 1.0, and the linear velocity of the mixed gas in the reaction tube was 2.7 cm/sec.

混合ガスの導入に伴ない、層は212m充填高さに膨張
し、発熱反応により流動層温度は上昇するが、外部温度
制御により250±2℃に流動層温度を制御した。
As the mixed gas was introduced, the bed expanded to a filling height of 212 m, and the fluidized bed temperature rose due to an exothermic reaction, but the fluidized bed temperature was controlled at 250±2° C. by external temperature control.

この温度に維持したまま、6.5時間ヒドロクロル化反
応を継続し、毎時35.5g速度で生成物を得た。生成
物のガスクロマトグラフィー分析により、87モル%の
トリクロロシランと13モル%の四塩化ケイ素が得られ
たことがわかった。
The hydrochlorination reaction was continued for 6.5 hours while maintaining this temperature, yielding product at a rate of 35.5 g/hour. Gas chromatographic analysis of the product showed that 87 mole % trichlorosilane and 13 mole % silicon tetrachloride were obtained.

また反応収率は、導入したHCIおよび消毒された金属
ケイ素に対して97%であった。
The reaction yield was 97% based on the introduced HCI and disinfected metal silicon.

6.5時間後には、流動層の高さは212mより133
mに減少した。従って1−1c l /N2混合ガスと
金属ケイ素/銅粉末の接触時間は7.8秒より4.9秒
に変化した。なおエントレインした金属ケイ素/銅粉末
混合物は、4.89/6.5時間であった。
After 6.5 hours, the height of the fluidized bed increased from 212 m to 133 m.
decreased to m. Therefore, the contact time between the 1-1 cl/N2 mixed gas and the metallic silicon/copper powder changed from 7.8 seconds to 4.9 seconds. Note that the entrainment time of the metal silicon/copper powder mixture was 4.89/6.5 hours.

なお、上記表において、温度分布の評価は、以下のよう
にして行なった。
In addition, in the above table, the evaluation of temperature distribution was performed as follows.

分散板より1 cm上および分散板より10cm上に取
り付けた温度計においてその温度指示値が5°C以上の
差異があるものについては温度分布が1恋い」とし、5
°C未満のものについては温度分布か「良好」とした。
If the temperature readings of thermometers installed 1 cm above the dispersion plate or 10 cm above the dispersion plate differ by 5°C or more, the temperature distribution will be 1 cm higher.
For those below °C, the temperature distribution was classified as "good."

発明の効果 上記実施例、比較例の結果からも理解されるように、本
発明の製造方法によれば、比較的簡易な反応制御手段に
よりトリクロルシランを高収率で得ることができ、工業
上すこぶる有用である。
Effects of the Invention As can be understood from the results of the above Examples and Comparative Examples, according to the production method of the present invention, trichlorosilane can be obtained in high yield by relatively simple reaction control means, and it is industrially suitable. Very useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で用いた反応装置系の概略図
である。
FIG. 1 is a schematic diagram of a reactor system used in Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 金属ケイ素粉末と塩化水素ガスとを流動層中で反応させ
ることによりトリクロルシランと四塩化ケイ素との混合
物を生成させるに際し、導入する塩化水素ガスに対して
モル比0.1〜1.0の非酸化性ガスを混合するととも
に、該混合ガスを金属ケイ素粉末の流動化開始速度の4
〜20倍の線速度で流動層に導入し、流動層での反応温
度を250〜350℃に制御することを特徴とする、ト
リクロルシランの製造方法。
When producing a mixture of trichlorosilane and silicon tetrachloride by reacting metal silicon powder and hydrogen chloride gas in a fluidized bed, a non-containing compound with a molar ratio of 0.1 to 1.0 to the introduced hydrogen chloride gas is used. While mixing the oxidizing gas, the mixed gas is mixed at
A method for producing trichlorosilane, which comprises introducing the trichlorosilane into a fluidized bed at a linear velocity of ~20 times, and controlling the reaction temperature in the fluidized bed at 250 to 350°C.
JP269787A 1987-01-09 1987-01-09 Method for producing chlorosilane Expired - Lifetime JPH0764536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP269787A JPH0764536B2 (en) 1987-01-09 1987-01-09 Method for producing chlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP269787A JPH0764536B2 (en) 1987-01-09 1987-01-09 Method for producing chlorosilane

Publications (2)

Publication Number Publication Date
JPS63170210A true JPS63170210A (en) 1988-07-14
JPH0764536B2 JPH0764536B2 (en) 1995-07-12

Family

ID=11536469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP269787A Expired - Lifetime JPH0764536B2 (en) 1987-01-09 1987-01-09 Method for producing chlorosilane

Country Status (1)

Country Link
JP (1) JPH0764536B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871705A (en) * 1996-09-19 1999-02-16 Tokuyama Corporation Process for producing trichlorosilane
JP2000140605A (en) * 1998-10-16 2000-05-23 Degussa Huels Ag Device for changing or discharging contents in container storing combustible or corrosive gas and method therefor
EP1586537A1 (en) * 2004-04-08 2005-10-19 Wacker-Chemie GmbH Method for producing trichlorosilane
JP2011225476A (en) * 2010-04-19 2011-11-10 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2013193941A (en) * 2012-03-22 2013-09-30 Osaka Titanium Technologies Co Ltd Method and apparatus for manufacturing chlorosilanes
WO2019098343A1 (en) * 2017-11-20 2019-05-23 株式会社トクヤマ Production method for trichlorosilane, and pipe
KR20200144572A (en) * 2018-04-18 2020-12-29 와커 헤미 아게 Method for producing chlorosilane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871705A (en) * 1996-09-19 1999-02-16 Tokuyama Corporation Process for producing trichlorosilane
JP2000140605A (en) * 1998-10-16 2000-05-23 Degussa Huels Ag Device for changing or discharging contents in container storing combustible or corrosive gas and method therefor
EP1586537A1 (en) * 2004-04-08 2005-10-19 Wacker-Chemie GmbH Method for producing trichlorosilane
JP2005298327A (en) * 2004-04-08 2005-10-27 Wacker Chemie Gmbh Method of manufacturing trichloromonosilane
US8043591B2 (en) 2004-04-08 2011-10-25 Wacker Chemie Ag Process for preparing trichloromonosilane
JP2011225476A (en) * 2010-04-19 2011-11-10 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2013193941A (en) * 2012-03-22 2013-09-30 Osaka Titanium Technologies Co Ltd Method and apparatus for manufacturing chlorosilanes
WO2019098343A1 (en) * 2017-11-20 2019-05-23 株式会社トクヤマ Production method for trichlorosilane, and pipe
JP6564554B1 (en) * 2017-11-20 2019-08-21 株式会社トクヤマ Method for producing trichlorosilane
KR20200088338A (en) * 2017-11-20 2020-07-22 가부시끼가이샤 도꾸야마 Trichlorosilane manufacturing method and piping
CN111629997A (en) * 2017-11-20 2020-09-04 株式会社德山 Method for producing trichlorosilane and piping
US11612869B2 (en) 2017-11-20 2023-03-28 Tokuyama Corporation Production method for trichlorosilane, and pipe
KR20200144572A (en) * 2018-04-18 2020-12-29 와커 헤미 아게 Method for producing chlorosilane
JP2021521092A (en) * 2018-04-18 2021-08-26 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing chlorosilane
US11845667B2 (en) 2018-04-18 2023-12-19 Wacker Chemie Ag Method for producing chlorosilanes

Also Published As

Publication number Publication date
JPH0764536B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
CA1229842A (en) Method for making alkylhalosilanes
KR101873923B1 (en) Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
KR101158946B1 (en) PROCESS FOR PREPARING HSiCl3 BY CATALYTIC HYDRODEHALOGENATION OF SiCl4
CA1145117A (en) Process for producing polycrystalline silicon
JPS6261530B2 (en)
EP1392601A1 (en) Process for preparation of polycrystalline silicon
WO2003040036A1 (en) Method for producing silicon
US4318942A (en) Process for producing polycrystalline silicon
AU2010239352A1 (en) Processes and an apparatus for manufacturing high purity polysilicon
JP5946835B2 (en) Fabrication of polycrystalline silicon in a substantially closed loop method and system
US20040022713A1 (en) Method for producing trichlorosilane
JPS63170210A (en) Production of chlorosilane
JPS61286211A (en) Manufacture of chlorosilane
JPH0222004B2 (en)
US9394180B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
US4487950A (en) Method for making methylchlorosilanes
US8449848B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
JPS58161915A (en) Manufacture of trichlorosilane
JPS5855329A (en) Manufacture of silicon tetrachloride
JPH10139786A (en) Production of vinyltrichlorosilane
JPH02172811A (en) Production of trichlorosilane
JPS638207A (en) Hydrogenation of silicon tetrachloride
JP3676515B2 (en) Method for producing silicon trichloride
JP3746109B2 (en) Method for producing silicon tetrachloride
JPS59121109A (en) Production of high purity silicon