JPS638207A - Hydrogenation of silicon tetrachloride - Google Patents
Hydrogenation of silicon tetrachlorideInfo
- Publication number
- JPS638207A JPS638207A JP14969586A JP14969586A JPS638207A JP S638207 A JPS638207 A JP S638207A JP 14969586 A JP14969586 A JP 14969586A JP 14969586 A JP14969586 A JP 14969586A JP S638207 A JPS638207 A JP S638207A
- Authority
- JP
- Japan
- Prior art keywords
- silicon tetrachloride
- silicon
- hydrogen
- dichlorosilane
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000005049 silicon tetrachloride Substances 0.000 title claims abstract description 42
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- 239000005052 trichlorosilane Substances 0.000 claims abstract description 18
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 16
- 239000010703 silicon Substances 0.000 claims abstract description 16
- 238000004821 distillation Methods 0.000 claims abstract description 9
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 claims abstract 6
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims abstract 5
- 238000000034 method Methods 0.000 claims description 11
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 8
- 229910000077 silane Inorganic materials 0.000 abstract description 6
- 239000007795 chemical reaction product Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 19
- PPDADIYYMSXQJK-UHFFFAOYSA-N trichlorosilicon Chemical compound Cl[Si](Cl)Cl PPDADIYYMSXQJK-UHFFFAOYSA-N 0.000 description 19
- 238000007323 disproportionation reaction Methods 0.000 description 10
- 239000005046 Chlorosilane Substances 0.000 description 9
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- PPKPKFIWDXDAGC-IHWYPQMZSA-N (z)-1,2-dichloroprop-1-ene Chemical compound C\C(Cl)=C\Cl PPKPKFIWDXDAGC-IHWYPQMZSA-N 0.000 description 1
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000755266 Kathetostoma giganteum Species 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は四塩化珪素の水素化方法に関する。さらに詳し
くは四塩化珪素を原料にしてアモルファスシリコンの製
造に好適なりロルシランに転換するための水素化方法に
関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for hydrogenating silicon tetrachloride. More specifically, the present invention relates to a hydrogenation method for converting silicon tetrachloride into lorsilane, which is suitable for producing amorphous silicon, as a raw material.
(従来の技術)
トリクロルシラン(s1acz3)及びジクロルシラン
(BIH2Qt2) 等のクロルシランは半導体用の高
純度ンリコン製造の原料として或いは太陽を池に利用さ
れるアモルファスシリコン製造の原料として非常に有用
である。半導体用高純度シリコンの製造にはクロルシラ
ンと水素の混合ガスを通電加熱したシリコン棒上に接触
させ還元によりシリコンの結晶を析出させるのであるが
、この際四塩化珪素(Sict、、) が30〜70
%と多iK副生ずる。また後者のアモルファスノリコン
のH造にはクロルシランから次の不均化反応によシ4(
SiHCl2−* SiH4+−1−3Sict。(Prior Art) Chlorosilanes such as trichlorosilane (s1acz3) and dichlorosilane (BIH2Qt2) are very useful as raw materials for producing high-purity silicone for semiconductors or as raw materials for producing amorphous silicon used in solar energy. To produce high-purity silicon for semiconductors, a mixed gas of chlorosilane and hydrogen is brought into contact with an electrically heated silicon rod to precipitate silicon crystals by reduction. 70
% and multi-iK by-products. In addition, for the latter H production of amorphous Noricon, the following disproportionation reaction is performed from chlorosilane 4 (
SiHCl2-*SiH4+-1-3Sict.
、2 S i H2c L 、2−* S i H4
Z + S i c t r、tシラン(SiH4z
) を生成し、これをグロー放電によりアモルファス
シリコンに転換している。この不均化反応に於いても上
記の如く四塩化珪素がシランの数倍全生成することが分
る。この副生ずる四塩化珪素は原料として再利用するた
め反応塔に循環供給し水素化反応によりクロルシランに
転換している。四塩化珪素を水素化反応によりクロルシ
ランに転換する方法については現在迄いくつかの方法が
提案されているが、特開昭31−1/7グ22号で開示
されている方法が特に有名である。この方法は水素化反
応器の頂部より金属シリコンの粉体を投入し、底部より
水素と四塩化珪素の混合ガスを供給し温度:uro−r
ro℃、 圧カニ u oo−b oo ps工 の
条件下で流動層状態で次の反応によりクロルシランを生
成せしめている。, 2 S i H2c L , 2-* S i H4
Z + Si c tr, t Silane (SiH4z
), which is converted into amorphous silicon by glow discharge. It can be seen that in this disproportionation reaction, silicon tetrachloride is produced several times as much as silane, as described above. This by-produced silicon tetrachloride is recycled to the reaction tower for reuse as a raw material, and is converted into chlorosilane through a hydrogenation reaction. Up to now, several methods have been proposed for converting silicon tetrachloride into chlorosilane through a hydrogenation reaction, but the method disclosed in Japanese Patent Application Laid-open No. 1/7/1973 No. 22 is particularly famous. . In this method, metallic silicon powder is introduced from the top of the hydrogenation reactor, and a mixed gas of hydrogen and silicon tetrachloride is supplied from the bottom, at a temperature of uro-r.
Chlorosilane is produced by the following reaction in a fluidized bed under the conditions of roC and pressure.
jsict + 2Hλ + GiニゲS i Hc
t3グ
S i Q tp + −2E(,2+ 81 ;=
2 S i H2C12主にトリクロルシランを生成す
るが同時にジクロルシランも副生ずる。反応器を出るト
リクロル7ラン、ジクロルシラン、四塩化珪素及び水素
ガスの混合体は冷却されて水素ガス以外は凝縮液化し次
いで蒸留によりクロルシランと未反応の四塩化珪素は分
離され、四塩化珪素は前記水素化反応器に原料として循
環再利用される。クロルシランはアモルファスシリコン
製造のために利用される時は前記の不均化反応によりモ
ノ7ランに転換され、アモルファスシリコンの原料とな
る。不均化反応の際副生ずる四塩化珪素は蒸留操作によ
り分離され前記とへに水素化反応器に循環供給され原料
として再利用される。以上の従来法に於いては水素化反
応器の操業条件が温度がl夕0〜SSO℃であるととも
に圧力もrioo〜t00PF3工 と高く過酷である
ため水素化反応器の運転管理が容易でないこと、反応器
の腐蝕環境が厳しいことさらには生成するクロルシラン
の内でトリクロルシランの濃度が高いため不均化反応の
際の副生ずる四塩化珪素が多くなるため四塩化珪素の循
環流量が多くこのため装置容量が犬きぐなり同時に運転
用役費も増加するという問題がある。jsict + 2Hλ + Gi Nige S i Hc
t3gS i Q tp + -2E(,2+ 81 ;=
2 S i H2C12 Mainly produces trichlorosilane, but dichlorosilane is also produced as a by-product. The mixture of trichlorosilane, dichlorosilane, silicon tetrachloride, and hydrogen gas leaving the reactor is cooled and everything except hydrogen gas is condensed and liquefied, and then chlorosilane and unreacted silicon tetrachloride are separated by distillation. It is recycled and reused as a raw material in the hydrogenation reactor. When chlorosilane is used for producing amorphous silicon, it is converted into mono-7rane by the above-mentioned disproportionation reaction, and becomes a raw material for amorphous silicon. Silicon tetrachloride, which is produced as a by-product during the disproportionation reaction, is separated by distillation and recycled to the hydrogenation reactor and reused as a raw material. In the conventional method described above, the operating conditions of the hydrogenation reactor are harsh, with temperatures ranging from 0°C to 100°F and pressures ranging from 100°F to 300°F, making it difficult to manage the operation of the hydrogenation reactor. The corrosive environment of the reactor is severe.Furthermore, the concentration of trichlorosilane in the chlorosilane produced is high, which increases the amount of silicon tetrachloride produced as a by-product during the disproportionation reaction, resulting in a large circulating flow rate of silicon tetrachloride. There is a problem in that as the equipment capacity increases, the operating costs also increase.
(発明が解決しようとする問題点)
本発明は以上の従来法の問題点を解決すべく鋭意検討し
た結果成されたもので水素化反応器の反応条件がマイル
ドで且つ不均化反応の際副生ずる四塩化珪素の量が少く
てすむジクロルシランの収率が高くなる四塩化珪素の水
素化方法を提供するものである。(Problems to be Solved by the Invention) The present invention was achieved as a result of intensive studies to solve the above-mentioned problems of the conventional method. The present invention provides a method for hydrogenating silicon tetrachloride that requires less amount of silicon tetrachloride as a by-product and that increases the yield of dichlorosilane.
(問題点を解決するための手段)
本発明の要旨とするところは反応塔忙金属、シリコン及
び四塩化珪素を夫々投入及び供給し//QQ〜13oo
℃の温度範囲で反応せしめ、得られた反応物を次いで水
素化塔に導入し水素ガスでクエンチしてl00〜700
℃の温度範囲に冷却すると同時に前記反応物を水素還元
しジクロルシラ/、トリクロルシラン、四塩化珪素及び
水素の混合ガスを生成せしめ、次いで該混合ガスを冷却
し水素ガスを分離して補給水素ガスと共に前記水素化塔
に循環供給し、四塩化珪素は蒸留操作によりジクロルシ
ラン及びトリクロルシランから分離し前記反応塔に循環
供給することを特徴とする四塩化珪素の水素化方法であ
る。(Means for Solving the Problems) The gist of the present invention is to introduce and supply the reaction tower metal, silicon, and silicon tetrachloride, respectively.//QQ~13oo
The reaction product was then introduced into a hydrogenation tower and quenched with hydrogen gas to give a reaction temperature of 100 to 700 °C.
℃, and simultaneously reduce the reactant with hydrogen to produce a gas mixture of dichlorosilane/trichlorosilane, silicon tetrachloride, and hydrogen, and then cool the gas mixture to separate hydrogen gas and add it together with make-up hydrogen gas. The hydrogenation method for silicon tetrachloride is characterized in that silicon tetrachloride is recycled and supplied to the hydrogenation tower, and silicon tetrachloride is separated from dichlorosilane and trichlorosilane by a distillation operation and then recycled and supplied to the reaction tower.
本発明者は種々の反応の可能性について検討した結果次
の知見を得た。すなわち四塩化珪素を//QO〜/30
0℃の高い温度範囲で金属7リコンの粉宋と接触させる
と次の反応式により二塩化珪素及び三塩化珪素をかなり
高濃度で生成させることができる。The present inventor obtained the following findings as a result of studying the possibilities of various reactions. That is, silicon tetrachloride //QO~/30
When brought into contact with powdered metal 7 chloride in a high temperature range of 0° C., silicon dichloride and silicon trichloride can be produced in considerably high concentrations according to the following reaction formula.
5iCtp +Si□、2Sict2
3sictグ+ Sl;= グS i et3この反応
で得られる二塩化珪素及び三塩化珪素は不安定であるが
水素ガスでクエンチ(急冷)すると同時だ水素化還元す
れば夫々ジクロルシラン(Sin et ) 及び
トリクロルシラン(SiHct3)の形で安定化し高収
率で得られることが分った。5iCtp +Si□, 2Sict2 3sictg+Sl;=gS i et3Silicon dichloride and silicon trichloride obtained by this reaction are unstable, but when quenched (quenched) with hydrogen gas, they are simultaneously converted to dichlorosilane by hydrogenation reduction. It was found that it was stabilized in the form of (Sin et ) and trichlorosilane (SiHct3) and obtained in high yield.
特にジクロルシランの濃度が従来の水素化法に比して高
いので不均化反応によりシランに転換しアモルファスシ
リコンを製造する場合には副生する四塩化珪素が少くな
り循環量も小さくなる利点がある。上記反応に及ぼす圧
力の影響は少ないので常圧が採用される。原料の金属シ
リコンとしては冶金工業的に得られるシリコンでよく、
粉末粒子の大きさとしては130〜300ミクロンが好
ましい。反応温度は1ioo℃より低い時は二塩化珪素
、三塩化珪素への転換率が低くなり、/300℃より高
い時は反応器材質上及び熱経済的に不利である。クエン
チ後の@度としてはlOo 〜700℃が好ましくこれ
より低い範囲では反応性に乏しく、高い範囲では塩化珪
素が残存するとともに金属シリコンの生成が起るおそれ
がある。水素他塔は無触媒方式でもよく場合によっては
触媒方式でもよい。触媒としては銅系の触媒が好適であ
り固定床式とし、クエンチ後のガスが触媒床を通る構造
とする。In particular, the concentration of dichlorosilane is higher than in conventional hydrogenation methods, so when converting it to silane through a disproportionation reaction to produce amorphous silicon, there is an advantage that by-product silicon tetrachloride is reduced and the amount of circulation is also reduced. . Since pressure has little effect on the above reaction, normal pressure is employed. The raw material silicon metal may be silicon obtained through metallurgy.
The size of the powder particles is preferably 130 to 300 microns. When the reaction temperature is lower than 100°C, the conversion rate to silicon dichloride and silicon trichloride becomes low, and when it is higher than /300°C, it is disadvantageous in terms of reactor material and thermoeconomics. The temperature after quenching is preferably lOo to 700° C. If the temperature is lower than this, the reactivity is poor, and if the temperature is higher than this, silicon chloride may remain and metal silicon may be formed. The hydrogen column may be of a non-catalytic type or may be of a catalytic type depending on the case. A copper-based catalyst is suitable as the catalyst, and a fixed bed type is used, so that the gas after quenching passes through the catalyst bed.
以下実施例を示す第1図の70−/−トに基づいてさら
に本発明の詳細な説明する。lは流動層型の反応塔であ
り後続の蒸留工程及び不均化工程で回収される四塩化珪
素が底部よシ装入される。反応塔/内の温度は100θ
℃以上の高温であるため四塩化珪素は予熱器グにより適
宜温度迄予熱されて装入される。2は金属シリコン粉末
のホッパであり図示はされない定量供給装置により一定
割合で金属/リコン粉宋は反応塔/の頂部からフィード
される。反応塔の型式としては棚段式又は空塔式の流動
層が好適であり、金属シリコンは反応塔内を下降しなが
ら上昇する四塩化珪素と反応し二塩化珪素及び三塩化珪
素を生成する。反応@度は1100〜7300℃の高温
であるため電熱コイル3の加熱方式が採用される。反応
塔頂部より流出する二塩化珪素、三塩化珪素、水素及び
四塩化珪素の混合ガスは次で水素化塔夕に入り常温の水
素ガスにより水素化されると同時にクエンチ(急冷)さ
れ二塩化珪素はジクロルシラン(51H2ct2) に
三塩化珪素はトリクロル7ラン(SiHct3)に転換
される。ジクロル/ラン及びトリクロルシランの収率を
高めるために水素化と同時に4toθ〜700℃に急冷
する必要があり、このために水素他塔jK注入される水
素ガスの循環量は冷却後の温足も考慮して決められる。The present invention will be further described in detail below based on part 70-/- of FIG. 1 showing an embodiment. 1 is a fluidized bed type reaction column, into which silicon tetrachloride to be recovered in the subsequent distillation step and disproportionation step is charged from the bottom. The temperature inside the reaction tower is 100θ
Since the temperature is higher than 0.degree. C., silicon tetrachloride is preheated to an appropriate temperature using a preheater before being charged. Reference numeral 2 denotes a hopper for metal silicon powder, and metal/licon powder is fed at a constant rate from the top of the reaction tower by a quantitative feeding device (not shown). The preferred type of reaction tower is a tray type or empty column type fluidized bed, and metallic silicon reacts with silicon tetrachloride rising while descending within the reaction tower to produce silicon dichloride and silicon trichloride. Since the reaction is at a high temperature of 1100 to 7300°C, a heating method using an electric heating coil 3 is adopted. The mixed gas of silicon dichloride, silicon trichloride, hydrogen, and silicon tetrachloride flowing out from the top of the reaction tower then enters the hydrogenation tower and is hydrogenated by hydrogen gas at room temperature and simultaneously quenched (quenched) to form silicon dichloride. is converted into dichlorosilane (51H2ct2) and silicon trichloride is converted into trichlorosilane (SiHct3). In order to increase the yield of dichlorosilane and trichlorosilane, it is necessary to rapidly cool the hydrogen gas to 4 to 700℃ at the same time as the hydrogenation, and for this reason, the amount of circulating hydrogen gas injected into the hydrogen column is reduced even if it is hot after cooling. It can be decided after consideration.
水素他塔jを出る水素、ジクロル7ラン、トリクロルシ
ラン及び未反応の四塩化珪素の混合ガスは冷却器乙によ
り−30〜−30℃に冷却されジクロルシラン、トリク
ロルシラン及び四塩化珪素の成分は液化し分離器7に於
いて水素ガスから分離されポンプ7によって蒸留工程に
送られ図示はされない蒸留装置によってジクロロシラン
トトリクロロシランは四塩化珪素から分離され不均化工
程に送られてシランに転換される。前記の蒸留工程及び
不均化工程で回収された四塩化珪素は反応塔/の原料と
して循環再利用される。水素ガスについでは製品シラン
(SiH4+)の成分として系外に送出されるのでこの
分を含めて補給する必要がある。The mixed gas of hydrogen, dichlorosilane, trichlorosilane, and unreacted silicon tetrachloride exiting column J is cooled to -30 to -30°C by cooler B, and the components of dichlorosilane, trichlorosilane, and silicon tetrachloride are liquefied. Dichlorosilane and trichlorosilane are separated from hydrogen gas in a separator 7 and sent to a distillation process by a pump 7. Dichlorosilane and trichlorosilane are separated from silicon tetrachloride by a distillation device (not shown) and sent to a disproportionation process to be converted into silane. . The silicon tetrachloride recovered in the above-mentioned distillation step and disproportionation step is recycled and reused as a raw material for the reaction column. Since hydrogen gas is sent out of the system as a component of the product silane (SiH4+), it is necessary to replenish this amount as well.
(実 施 例)
ミ
内径、2jmmのアルーナ製反応管(//)に純度りざ
、コチの金属シリコン(/、り を充填し反応管外部
を電気ヒータ(カンタル線)(/3)で7.2♂0℃に
加熱した。反応管温度が所定の@度になったとこゝで反
応管下部より四塩化シリコン蒸発器(/り)で蒸発した
四塩化シリコンガスを一定量(/ =j t/ min
) 供給し、高温の金属シリコン充填層を通過させ
反応させた。反応部出ロガスに常温の水素ガスを反応部
出ロガスと並流に、四塩化シリコンガス量とほぼ同量(
/〜!t/min )供給し、混合後のガス温度を約2
00℃となるようにとしだ。このガスを凝縮器(/j)
で冷却し、凝縮液を回収すると共に重金を測定し、分析
用試料とした。(Example) A reaction tube made of Aruna (//) with an inner diameter of 2 mm was filled with high purity Riza and flathead metal silicon (//), and the outside of the reaction tube was heated with an electric heater (Kanthal wire) (/3). .2♂Heated to 0°C. When the temperature of the reaction tube reached a predetermined temperature, a certain amount of silicon tetrachloride gas (/ = t/min
) and passed through a high-temperature metal silicon packed bed to react. Inject hydrogen gas at room temperature into the reaction part log gas in parallel flow with the reaction part output log gas in an amount approximately equal to the amount of silicon tetrachloride gas (
/~! t/min) and keep the gas temperature after mixing at about 2
Set it so that the temperature is 00℃. This gas is transferred to a condenser (/j)
The condensate was collected and the heavy metal was measured and used as a sample for analysis.
実験結果の一例を次に示す)
実験時間 : 60分
四塩化ノリコン供給流量 : 乙j l / m i
n水素ガス供給流量 : jjt/min金属
シリコン充填層温度 : /210℃水素ガスクエン
チ後温度 : &75℃凝縮液重量 二
3グAir凝縮後の分析結果
ジクロロンラy : srmot%トリクロ
ロ7ラン = 3j 〃
四塩化ンリコン = 3乙 〃
(発明の効果)
以上説明した本発明によれば次の様な効果が得られる。An example of the experimental results is shown below) Experiment time: 60 minutes Noricone tetrachloride supply flow rate: Otsuj l/m i
nHydrogen gas supply flow rate: jjt/minMetal silicon packed bed temperature: /210℃ Temperature after hydrogen gas quenching: &75℃Condensate weight 2 3gAnalysis results after air condensationDichlororon y:srmot% trichloro7 run = 3j 〃4 Licon chloride = 3 (Effects of the invention) According to the present invention described above, the following effects can be obtained.
(1)水素化反応塔を常圧で運転できるので金属シリコ
ンの投入を始め運転管理が容易になる、(2)水素化反
応塔を常圧で運転できるので水素分圧が低くなり反応塔
の材質選定の問題が少くなる、(3)ジクロル7ランの
収率が高いため不均化反応によジシランに転換する際の
四塩化珪素の副生量が少いので循環量が減少し装置容量
及び運転用役費が節減できる。(1) The hydrogenation reaction tower can be operated at normal pressure, making it easier to manage the operation including the injection of metal silicon. (2) The hydrogenation reaction tower can be operated at normal pressure, which lowers the hydrogen partial pressure and lowers the hydrogen partial pressure of the reaction tower. (3) Due to the high yield of dichlor 7 run, the amount of silicon tetrachloride as a by-product when converted to disilane through the disproportionation reaction is small, reducing the circulation amount and increasing the equipment capacity. And the operating cost can be reduced.
第1図は本発明の実施例を示す70シート、第2図は本
発明の実験装置である、
/:反応塔、2:シリコンホッパ、3:電熱コイル、り
:予熱器、j:水素他塔、t:冷却器、7:分離器、r
:水素循環機、2:ポンプ、l/:反応管、/λ:金属
シリコン、13:電気ヒータ、/l:蒸発器、lj:凝
縮器。Figure 1 shows 70 sheets showing an example of the present invention, Figure 2 shows the experimental equipment of the present invention, /: reaction tower, 2: silicon hopper, 3: electric heating coil, ri: preheater, j: hydrogen, etc. tower, t: cooler, 7: separator, r
: hydrogen circulation machine, 2: pump, l/: reaction tube, /λ: metal silicon, 13: electric heater, /l: evaporator, lj: condenser.
Claims (1)
給し1100〜1300℃の温度範囲で反応せしめ、得
られた反応物を次いで水素化塔に導入し水素ガスでクエ
ンチして400〜700℃の温度範囲に冷却すると同時
に前記反応物を水素還元しジクロルシラン、トリクロル
シラン、四塩化珪素及び水素の混合ガスを生成せしめ、
次いで該混合ガスを冷却し水素ガスを分離して補給水素
ガスと共に前記水素化塔に循環供給し、四塩化珪素は蒸
留操作によりジクロルシラン及びトリクロルシランから
分離し前記反応塔に循環供給することを特徴とする四塩
化珪素の水素化方法。Metallic silicon and silicon tetrachloride are charged and supplied to the reaction tower, respectively, and reacted at a temperature range of 1100 to 1300°C.The obtained reactants are then introduced into a hydrogenation tower, quenched with hydrogen gas, and reacted at a temperature of 400 to 700°C. At the same time as cooling to a temperature range, the reactant is reduced with hydrogen to generate a mixed gas of dichlorosilane, trichlorosilane, silicon tetrachloride, and hydrogen,
Next, the mixed gas is cooled, hydrogen gas is separated, and the hydrogen gas is recycled and supplied to the hydrogenation tower together with make-up hydrogen gas, and silicon tetrachloride is separated from dichlorosilane and trichlorosilane by a distillation operation and is recycled and supplied to the reaction tower. A method for hydrogenating silicon tetrachloride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14969586A JPS638207A (en) | 1986-06-27 | 1986-06-27 | Hydrogenation of silicon tetrachloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14969586A JPS638207A (en) | 1986-06-27 | 1986-06-27 | Hydrogenation of silicon tetrachloride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS638207A true JPS638207A (en) | 1988-01-14 |
Family
ID=15480793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14969586A Pending JPS638207A (en) | 1986-06-27 | 1986-06-27 | Hydrogenation of silicon tetrachloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS638207A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056550A1 (en) * | 2006-11-07 | 2008-05-15 | Mitsubishi Materials Corporation | Process for producing trichlorosilane and trichlorosilane producing apparatus |
WO2011009390A1 (en) * | 2009-07-19 | 2011-01-27 | Chu Xi | Reactor and method for converting silicon gas |
CN102897770A (en) * | 2011-10-27 | 2013-01-30 | 内蒙古锋威硅业有限公司 | Method and device for improving hydrogenation of silicon tetrachloride |
WO2014095278A1 (en) | 2012-12-21 | 2014-06-26 | Evonik Industries Ag | Method for hydrogenating higher halogen-containing silane compounds |
US9394631B2 (en) | 2011-09-30 | 2016-07-19 | Toray Industries, Inc. | Core-sheath composite fiber and method for producing same |
-
1986
- 1986-06-27 JP JP14969586A patent/JPS638207A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056550A1 (en) * | 2006-11-07 | 2008-05-15 | Mitsubishi Materials Corporation | Process for producing trichlorosilane and trichlorosilane producing apparatus |
WO2011009390A1 (en) * | 2009-07-19 | 2011-01-27 | Chu Xi | Reactor and method for converting silicon gas |
US9394631B2 (en) | 2011-09-30 | 2016-07-19 | Toray Industries, Inc. | Core-sheath composite fiber and method for producing same |
CN102897770A (en) * | 2011-10-27 | 2013-01-30 | 内蒙古锋威硅业有限公司 | Method and device for improving hydrogenation of silicon tetrachloride |
CN102897770B (en) * | 2011-10-27 | 2015-09-02 | 内蒙古锋威硅业有限公司 | A kind of hydrogenation of silicon tetrachloride is improved one's methods and device |
WO2014095278A1 (en) | 2012-12-21 | 2014-06-26 | Evonik Industries Ag | Method for hydrogenating higher halogen-containing silane compounds |
DE102012224202A1 (en) | 2012-12-21 | 2014-07-10 | Evonik Industries Ag | Process for hydrogenating higher halogen-containing silane compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0133209A2 (en) | Trichlorosilane production process and equipment | |
US2488487A (en) | Production of alkyl silicon halides | |
EP1437327B1 (en) | Method for producing silicon | |
EP2096082B1 (en) | Method for manufacturing trichlorosilane | |
US4276424A (en) | Methods for the production of organic polysilanes | |
JP5374091B2 (en) | Method for producing polycrystalline silicon | |
KR20110067093A (en) | Fluidized bed reactor, the use thereof, and a method for the energy-independent hydration of chlorosilanes | |
CA1145117A (en) | Process for producing polycrystalline silicon | |
JP2000511154A (en) | Preparation method of polysilicon using exothermic reaction | |
KR101078502B1 (en) | Method for the production of trichlorosilae | |
US4318942A (en) | Process for producing polycrystalline silicon | |
JPS6259051B2 (en) | ||
US4390510A (en) | Process for treating spent silicon-containing reaction masses to produce halosilanes | |
KR20150037681A (en) | Process for producing trichlorosilane | |
KR101392944B1 (en) | Manufacturing method for trichlorosilane from silicon tetrachloride and Trickle bed reactor for the method | |
US5177236A (en) | Process for the preparation of 3-chloropropyl-silanes | |
JPH0222004B2 (en) | ||
JPS638207A (en) | Hydrogenation of silicon tetrachloride | |
CN105980305B (en) | Process for preparing trichlorosilane | |
JPS58161915A (en) | Manufacture of trichlorosilane | |
CN114314596B (en) | Method and system for continuously synthesizing higher-order silane by utilizing microwave heating fixed bed | |
JPH02172811A (en) | Production of trichlorosilane | |
JPS63170210A (en) | Production of chlorosilane | |
JPS643807B2 (en) | ||
US3706776A (en) | Process for the manufacture of vinyl trichlorosilane |