JPS63169066A - Thin film transistor element - Google Patents

Thin film transistor element

Info

Publication number
JPS63169066A
JPS63169066A JP41587A JP41587A JPS63169066A JP S63169066 A JPS63169066 A JP S63169066A JP 41587 A JP41587 A JP 41587A JP 41587 A JP41587 A JP 41587A JP S63169066 A JPS63169066 A JP S63169066A
Authority
JP
Japan
Prior art keywords
gate
gate electrode
piled
oxide film
tpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41587A
Other languages
Japanese (ja)
Inventor
Masaru Takahata
勝 高畠
Junichi Owada
淳一 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP41587A priority Critical patent/JPS63169066A/en
Publication of JPS63169066A publication Critical patent/JPS63169066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To reduce resistance of a gate electrode so as to realize a high-speed operation, by disposing contact parts in at least two or more positions of a first gate and bringing wiring metals into contact with the gate. CONSTITUTION:Polycrystal silicon 1 is piled on a glass substrate and cut into island shapes. Next, a silicon oxide film serving as a gate insulating film, a polycrystal silicon film 2 serving as a gate electrode are serially piled thereon. Next, the polycrystal silicon film 2 and the silicon oxide film are removed exclusive of their gate portion, and the substrate is ion-implanted with P over the whole surface and annealed. Then, a silicon oxide film is piled thereon, and contact holes 4 are formed on the gate portion, and contact holes 5 are formed on source and drain portions. Further, Al is piled thereon by the use of a sputtering method or the like, and next the Al except for the Al existing on the source and drain portions 6 is removed. Hence, resistance of the gate electrode in a polycrystal silicon TFT manufactured on the glass substrate is apparently small, and hence a high-speed operation of the TFT can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタに係り、特に薄膜トランジス
タの晶速動作に好適な薄膜トランジスタ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor, and particularly to a thin film transistor element suitable for crystal fast operation of the thin film transistor.

〔従来の技術〕[Conventional technology]

最近、1986年(昭和61年)春季、第33回応用物
理学関係連合講演会予稿集3P−E−12゜P、836
に記載のように周辺回路内蔵のアクティブトリクス液晶
ディスプレイの研究が盛んになってきた。アクティブマ
トリクス方式の周辺回路はLにシフトレジスタとバツハ
ア回路で構成されるが、バッファ回路のトランジスタは
表示部内部の数百、数千個ものTPT’!i−駆動させ
なければならないので、大電流駆動のトランジスタが要
求される。さて、上記のような性能をTPT (薄膜ト
ランジスタ)で実現しようとすると、現在のところ、多
結晶シリコンを用いたMO8形TPTになると思われる
。これはa)基板は安価なガラス基板を使うので600
℃以下の低温プロセスでなければならない、b)a−S
i(アモルファスシリコン)TPTは移動度μfeが多
結晶シリコンのそれと比べて約2ケタ小さい、c)Cd
Seは経時変化の問題がある。d)バイポーラTPTの
充分な特性は。
Recently, Spring 1986 (Showa 61), 33rd Applied Physics Association Lecture Proceedings 3P-E-12゜P, 836
As described in , research into active trix liquid crystal displays with built-in peripheral circuits has become active. The peripheral circuit of the active matrix system consists of a shift register and a buffer circuit in L, but the transistors in the buffer circuit are hundreds or thousands of TPT'!'! Since it must be i-driven, a transistor capable of driving a large current is required. Now, if an attempt is made to achieve the above-mentioned performance with a TPT (thin film transistor), it is currently thought that an MO8 type TPT using polycrystalline silicon will be used. This is because a) an inexpensive glass substrate is used for the substrate, so it is 600 yen.
Must be a low temperature process below ℃, b) a-S
The mobility μfe of i (amorphous silicon) TPT is about two orders of magnitude smaller than that of polycrystalline silicon, c) Cd
Se has the problem of changing over time. d) What are the sufficient properties of bipolar TPT?

未だかつて出現していない等の理由によるものである。This is due to reasons such as it has never appeared before.

しかし、多結晶シリコンTPTのμfe(移動度)は単
結晶シリコンのそれと比べると約1ケタ小さいので、大
電流を得るためにはゲート幅Wを充分大きくしなければ
いけない(ここで、ゲート長りを短くするのは、ホトリ
ソプラノイの制約がある為、むやみに短くできない。)
結局。
However, the μfe (mobility) of polycrystalline silicon TPT is about one order of magnitude smaller than that of single-crystal silicon, so the gate width W must be made sufficiently large to obtain a large current (here, the gate length must be cannot be shortened unnecessarily because of the photolithography restrictions.)
in the end.

表示部のTPTと比較すると極めて大きなものになって
しまう。
This is extremely large compared to the TPT of the display section.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多結晶シリコンTPTのゲート電極は通常、単結晶NM
O5トランジスタと同じように製作する為。
The gate electrode of polycrystalline silicon TPT is usually made of single crystal NM.
To manufacture it in the same way as an O5 transistor.

ゲート電極は多結晶シリコンが用いられる。単結晶シリ
コンのプロセスではゲート電極となる多結晶シリコンに
P(燐)をイオン打込みした後。
Polycrystalline silicon is used for the gate electrode. In the single-crystal silicon process, P (phosphorus) ions are implanted into the polycrystalline silicon that will become the gate electrode.

900℃〜1200℃のNz%’囲気中でアニールする
為、P(燐)が充分、活性化されてゲートft電極(多
結晶シリコン)のシート抵抗が充分低くなる。
Since the annealing is performed in an Nz%' atmosphere at 900° C. to 1200° C., P (phosphorus) is sufficiently activated and the sheet resistance of the gate ft electrode (polycrystalline silicon) is sufficiently reduced.

りころが、アクティブマトリクス液晶ディスプレイ用に
製作される多結晶シリコンTPTはガラス基板上に製作
するので、単結晶シリコンプロセスと同じような900
℃〜1200℃のアニールができない(ガラス基板が歪
むので)。その結果、 TPTのゲート電極(多結晶シ
リコン)のシート抵抗が単結晶のそれと比べると数ケタ
高くなる。このようなゲート電極を持つTPTのゲート
部(第1図)にパルス電圧を加えた場合、涯抵抗の多結
晶シリコンゲートff1HとTPT自身の容量の為に、
ドレイン電流Ibはゲート電極にパルス電圧を印加した
タイミングより充分遅れて変化する。これでは屯営な書
込み動作が行えない。
The polycrystalline silicon TPT manufactured for active matrix liquid crystal displays is manufactured on a glass substrate, so the process is similar to the single crystal silicon process.
Annealing at temperatures between 1200°C and 1200°C is not possible (because the glass substrate will be distorted). As a result, the sheet resistance of the TPT gate electrode (polycrystalline silicon) is several orders of magnitude higher than that of a single crystal. When a pulse voltage is applied to the gate part (Fig. 1) of a TPT having such a gate electrode, due to the capacitance of the polycrystalline silicon gate ff1H and the TPT itself,
The drain current Ib changes with a sufficient delay from the timing at which the pulse voltage is applied to the gate electrode. This makes it impossible to perform regular write operations.

〔間〃A点を解決するための手段〕[Measures to solve point A]

そこで、上記問題点を解決する為、バッファ回路のTF
Tを第1図の構成にした。即ち、ゲート電極である多結
晶シリコン上に数カ所、ゲート部m ft極を接触さす
事により解決される。
Therefore, in order to solve the above problem, the TF of the buffer circuit
T has the configuration shown in Figure 1. That is, this problem can be solved by bringing the gate m ft pole into contact with the polycrystalline silicon serving as the gate electrode at several locations.

〔作用〕[Effect]

即ち、第1図のゲート電極は電気的に見た場合、本来の
ゲート幅Wにより、かなり、ゲート幅Wが短く見える。
That is, when the gate electrode in FIG. 1 is electrically viewed, the gate width W appears to be considerably short due to the original gate width W.

その結果、ゲート電極の抵抗が小さくなり高速動作が可
能になる。
As a result, the resistance of the gate electrode is reduced and high-speed operation is possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第3図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

a)ガラス基板上にLPCVD (Low Press
ureChemical Vapor Deposif
ion)、プラズマCVD等の公知の技術により、多結
晶シリコン1を堆積し、島状にカットする。次にLPG
VD、 APCVD(Atmospheric Pre
ssure Chemical VaporDeρos
ifion)法などにより、ゲート絶縁膜となる酸化シ
リコン膜、ゲート電極となる多結晶シリコン膜2を順次
堆積し、ゲート部以外の多結晶シリコン膜2.酸化シリ
コン膜を除去する。
a) LPCVD (Low Press
ureChemical Vapor Deposit
Polycrystalline silicon 1 is deposited by a known technique such as ion) or plasma CVD, and then cut into island shapes. Next, LPG
VD, APCVD (Atmosphere Pre
ssure Chemical VaporDeρos
A silicon oxide film, which will become a gate insulating film, and a polycrystalline silicon film 2, which will become a gate electrode, are sequentially deposited by a method such as ivion), and the polycrystalline silicon film 2. Remove the silicon oxide film.

b) p (燐)を全面にイオン打込みし、60゜℃で
アニールする。その後、酸化シリコン膜を堆積し、その
後ゲート部のコンタクトホール4.及び、ソース、ドレ
イン部のコンタクトホール5を形成する。
b) P (phosphorus) ions are implanted into the entire surface and annealed at 60°C. After that, a silicon oxide film is deposited, and then a contact hole 4 in the gate area is formed. Then, contact holes 5 for the source and drain portions are formed.

C)スパッタ法などによりAQを堆積し、その後ゲート
配線部3、ソース、ドレイン部6以外のAQを除去する
C) Deposit AQ by sputtering or the like, and then remove AQ other than the gate wiring portion 3, source, and drain portions 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガラス基板上に製作された多結晶シリ
コンTPTのゲートff電極の抵抗が見かけ上、小さく
見えるので、TPTの高速化の効果がある。
According to the present invention, the resistance of the gate ff electrode of a polycrystalline silicon TPT fabricated on a glass substrate appears to be small, which has the effect of increasing the speed of the TPT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のバッファ回路のTPTの平
面図、第2図は従来のバッファ回路のTPTの平面図、
第3図は本発明のTPTの製造工程図である。
FIG. 1 is a plan view of a TPT of a buffer circuit according to an embodiment of the present invention, FIG. 2 is a plan view of a TPT of a conventional buffer circuit,
FIG. 3 is a manufacturing process diagram of the TPT of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、薄膜トランジスタ素子において、第1のゲート電極
に対しゲート電極の少なくとも2ケ所以上の複数箇所に
コンタクト部を設け、配線金属を接触させる事を特徴と
する薄膜トランジスタ素子。
1. A thin film transistor element, characterized in that contact portions are provided at at least two or more locations on the gate electrode to contact the first gate electrode with metal wiring.
JP41587A 1987-01-07 1987-01-07 Thin film transistor element Pending JPS63169066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41587A JPS63169066A (en) 1987-01-07 1987-01-07 Thin film transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41587A JPS63169066A (en) 1987-01-07 1987-01-07 Thin film transistor element

Publications (1)

Publication Number Publication Date
JPS63169066A true JPS63169066A (en) 1988-07-13

Family

ID=11473166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41587A Pending JPS63169066A (en) 1987-01-07 1987-01-07 Thin film transistor element

Country Status (1)

Country Link
JP (1) JPS63169066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449123A2 (en) * 1990-03-24 1991-10-02 Sony Corporation Liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449123A2 (en) * 1990-03-24 1991-10-02 Sony Corporation Liquid crystal display device
EP0723179A1 (en) * 1990-03-24 1996-07-24 Sony Corporation Liquid crystal display device

Similar Documents

Publication Publication Date Title
TW424170B (en) Active matrix electro optical device
JPH1195256A (en) Active matrix substrate
JPS58182272A (en) Thin film transistor
JPS63169066A (en) Thin film transistor element
US6566173B1 (en) Polycrystalline silicon thin film transistor and manufacturing method thereof
JPS6273660A (en) Thin-film transistor device and manufacture thereof
TW400653B (en) Thin film transistor, LCD having thin film transistors, and method for making TFT array board
JPH11274505A (en) Thin film transistor structure and its manufacture
Wong et al. High-performance polycrystalline silicon thin-film transistor technology using low-temperature metal-induced unilateral crystallization
JPH06260644A (en) Manufacture of semiconductor device
JPS6376474A (en) Inverter circuit for thin film transistor
JPH10209452A (en) Thin film transistor and its manufacture
JPH07263704A (en) Thin film transistor and manufacture thereof
JPS58178564A (en) Thin film transistor
KR200161009Y1 (en) Poly-si tft lcd panel
JPH0360043A (en) Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film
KR100261680B1 (en) Method for fabricating thin film transistor
JPS60242620A (en) Contact forming method
JPH11284191A (en) Vertical type thin-film transistor and its manufacture
US6335543B1 (en) Polycrystalline silicon thin film transistor and manufacturing method thereof
JPH0730122A (en) Production of polycrystalline silicon thin-film transistor
JPH08228003A (en) Manufacture of active matrix panel
JPS6235565A (en) Semiconductor element
JPS63119580A (en) Manufacture of thin film transistor
JPH09116162A (en) Manufacture of film transistor