JPS63169026A - Mask structure for lithography - Google Patents

Mask structure for lithography

Info

Publication number
JPS63169026A
JPS63169026A JP62000224A JP22487A JPS63169026A JP S63169026 A JPS63169026 A JP S63169026A JP 62000224 A JP62000224 A JP 62000224A JP 22487 A JP22487 A JP 22487A JP S63169026 A JPS63169026 A JP S63169026A
Authority
JP
Japan
Prior art keywords
film
aluminum
nitrogen
thin film
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62000224A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikeda
勉 池田
Keiko Chiba
啓子 千葉
Hirofumi Shibata
浩文 柴田
Hideo Kato
日出夫 加藤
Yasuo Kawai
河合 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62000224A priority Critical patent/JPS63169026A/en
Publication of JPS63169026A publication Critical patent/JPS63169026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform an optical alignment by providing a thin film which mainly contains aluminum and nitrogen or a thin film made of a laminate containing mainly at least aluminum and nitrogen, and a patterned opening formed on the film as a high energy beam transmission section, thereby eliminating an intensity drop. CONSTITUTION:In a mask structure for a lithography made of a thin film in which a patterned opening is used as a high energy transmission section, the thin film is formed of a film containing mainly aluminum and nitrogen or a laminate containing a film mainly contains at least aluminum and nitrogen. The film in which the aluminum and the nitrogen are mainly contained includes a compound represented by AlN:O, AlN:H, AlN:O:H, AlN:C, AlN:C:O, etc. An inorganic material which forms a laminated layer film is exemplified by boron nitride, silicon oxide, etc. The organic material which forms the laminated layer film is, for example, polyimide, polyamide, etc. Thus, an optical alignment is facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リソグラフィー用マスク構造体に関する。さ
らに詳しく述べれば、本発明は高エネルギー線リソグラ
フィーのためのマスクに関するもので、特にパターン化
した開口部により高エネルギー線を通過せしめパターン
転写を行なうリングラフイー用マスク構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mask structure for lithography. More specifically, the present invention relates to a mask for high-energy beam lithography, and more particularly to a mask structure for lithography that uses patterned openings to allow high-energy beams to pass through and perform pattern transfer.

なお、使用可能な高エネルギー線としては固定ターゲッ
ト(例えば、Pd、St、Mo、Rh、AU、W、Cu
 )等の波長4〜13人の特性線、プラズマX線、SO
R線(X線〜真空紫外線)、遠紫外線、紫外線、イオン
ビームまたはエレクトロンビームが上げられる。
Note that usable high-energy beams include fixed targets (e.g., Pd, St, Mo, Rh, AU, W, Cu).
) etc. Wavelengths 4 to 13 Characteristic lines of people, plasma X-rays, SO
Examples include R-rays (X-rays to vacuum ultraviolet rays), deep ultraviolet rays, ultraviolet rays, ion beams, or electron beams.

[従来技術] リソグラフィは、照射エネルギーをマスクを通して感光
性材料に照射し、マスク上に予め形成′されたパターン
を感光性材料に投影する方法である。
[Prior Art] Lithography is a method of applying irradiation energy to a photosensitive material through a mask to project a pattern previously formed on the mask onto the photosensitive material.

従来、高エネルギー線リソグラフィー用マスクは、高エ
ネルギー線透過性薄膜上に高エネルギー線吸収体をパタ
ーン形成することによって得られていた。
Conventionally, masks for high-energy beam lithography have been obtained by patterning a high-energy beam absorber on a high-energy beam-transparent thin film.

[発明が解決しようとする問題点] しかし、高エネルギー線透過性薄膜において、高エネル
ギー線の吸収が犬なるため、高エネルギー線の強度の低
下をきたしていた。
[Problems to be Solved by the Invention] However, in the high-energy ray-transparent thin film, the absorption of high-energy rays is low, resulting in a decrease in the intensity of the high-energy rays.

一方、マスクは高エネルギー線の照射により熱を発生し
、マスク内に歪を生ずる。そのため、従来ではマスクを
構成する膜の材料として熱伝導性の良いチタン(Ti)
 、アルミ(AΩ)、窒化シリコン(SiN )および
炭化シリコン(SiC)等が提案されている。しかし、
これらは不透明なため、光学アライメントが困難である
という問題点があった。
On the other hand, the mask generates heat when irradiated with high-energy rays, causing distortion within the mask. Therefore, titanium (Ti), which has good thermal conductivity, has traditionally been used as the material for the film that makes up the mask.
, aluminum (AΩ), silicon nitride (SiN), silicon carbide (SiC), etc. have been proposed. but,
Since these are opaque, optical alignment is difficult.

本発明の目的は、上述の従来形における問題点に鑑み、
照射エネルギーとして高エネルギー線を使用してもその
強度低下がなく十分良好であり、かつ光学アライメント
も可能とするリソグラフィー用マスク構造体を提供する
ことにある。
The purpose of the present invention is to solve the above-mentioned problems in the conventional type.
It is an object of the present invention to provide a mask structure for lithography which is sufficiently good without any decrease in intensity even when high-energy rays are used as irradiation energy, and which also enables optical alignment.

[問題点を解決するための手段および作用1以上の如き
目的は、パターン化した開口部を高エネルギー線透過部
とした薄膜からなるリソグラフィー用マスク構造体にお
いて、その薄膜がアルミニウムおよび窒素を主体とする
膜からなるか、または少なくともアルミニウムおよび窒
素を主体とする膜を含有する積層体からなることを特徴
とするリソグラフィー用マスク構造体によって達成され
る。
[Means and Effects for Solving the Problems The purpose of the above is to provide a lithography mask structure consisting of a thin film in which patterned openings are high-energy ray transmitting portions, the thin film being mainly made of aluminum and nitrogen. This is achieved by a lithography mask structure characterized in that it is composed of a film containing a film containing aluminum or a laminate containing a film mainly containing at least aluminum and nitrogen.

なお、アルミニウムと窒素を主体とする膜はAΩN:O
,AuN:H,AΩN:O:H,AUN:C,A旦N:
C:0等で表わされる化合物も包含される。
Note that the film mainly composed of aluminum and nitrogen is AΩN:O
, AuN:H, AΩN:O:H, AUN:C, AdanN:
Compounds represented by C:0 etc. are also included.

本発明のマスク構造体における薄膜は、アルミニウムお
よび窒素を主体とする膜の単層からなるものでもよいし
、あるいはアルミニウムおよび窒素を主体とする膜と他
の無機物および/または有機物との積層体からなるもの
でもよい。
The thin film in the mask structure of the present invention may be a single layer of a film mainly composed of aluminum and nitrogen, or a laminate of a film mainly composed of aluminum and nitrogen and other inorganic and/or organic materials. It could be something like that.

積層膜を構成する無機物としては、少なくとも膜形成性
を有するものを使用することができる。
As the inorganic substance constituting the laminated film, one having at least film-forming properties can be used.

このような無機物としては、例えば窒化ホウ素、酸化ケ
イ素、窒化ケイ素、炭化ケイ素等が例示される。
Examples of such inorganic substances include boron nitride, silicon oxide, silicon nitride, and silicon carbide.

積層膜を構成する有機物としては、少なくとも膜形成性
を有するものを使用することかできる。
As the organic substance constituting the laminated film, it is possible to use at least one having film-forming properties.

このような有機物としては、たとえばポリイミド、ポリ
アミド、ポリエステル、パリレン(商品名、ユニオンカ
ーバイド社製)等が例示される。
Examples of such organic materials include polyimide, polyamide, polyester, and Parylene (trade name, manufactured by Union Carbide).

積層膜はアルミニウムおよび窒素を主体とする膜と無機
物膜および/または有機物膜との2層または3層からな
るものであってもよいし、またはアルミニウムおよび窒
素を主体とする膜と無機物膜および/または有機物膜と
の少なくとも一方を2層以上用いて全体として3層以上
からなるものとしてもよい。
The laminated film may consist of two or three layers of a film mainly composed of aluminum and nitrogen and an inorganic film and/or an organic film, or a film mainly composed of aluminum and nitrogen and an inorganic film and/or an organic film. Alternatively, it may be made up of three or more layers as a whole by using two or more layers of at least one of the organic material film and the organic material film.

本発明における薄膜の厚さは、特に制限されることはな
く適宜の厚さとすることができるが、例えば1〜10μ
m程度とするのが有利である。
The thickness of the thin film in the present invention is not particularly limited and can be set to an appropriate thickness, for example from 1 to 10 μm.
It is advantageous to set it to about m.

本発明のマスク構造体は、上記の薄膜の周辺部を適宜の
環状保持基板で保持することにより得られる。このよう
な保持基板としては、例えば、ガラス、シリコン、石英
、リン青銅、黄銅、鉄、ニッケル、ステンレス等が例示
で診るが、これらに限定されることはない。
The mask structure of the present invention can be obtained by holding the peripheral portion of the above thin film with a suitable annular holding substrate. Examples of such a holding substrate include, but are not limited to, glass, silicon, quartz, phosphor bronze, brass, iron, nickel, and stainless steel.

[実施例] 以下、実施例により本発明をさらに詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

衷m<H上 第1図(a)に示されるように、直径10cmの円形の
シリコンウェハ1の片面上にPIQ液(ポリイミド前駆
体、日立化成製)をスピンコードした後、50〜350
℃で4時間のキュアーを行なって1.5μm厚のポリイ
ミド膜2を形成した。さらにこのポリイミド膜2上にP
MMA (ポリメチルメタクリレート)膜3を2.5μ
mの厚さで形成しプリベータを行なった。
As shown in FIG. 1(a), PIQ liquid (polyimide precursor, manufactured by Hitachi Chemical) was spin-coded on one side of a circular silicon wafer 1 with a diameter of 50 to 350 cm.
Cure was carried out for 4 hours to form a polyimide film 2 with a thickness of 1.5 μm. Furthermore, P is applied on this polyimide film 2.
MMA (polymethyl methacrylate) film 3 with a thickness of 2.5μ
It was formed to a thickness of m and pre-baked.

次に、第1図(b)に示されるように、該PMMA膜3
に対し電子線描画を行ない、バターニングを行なった。
Next, as shown in FIG. 1(b), the PMMA film 3
Electron beam lithography was performed on the material and patterning was performed.

次に、第1図(C)に示されるように、パターニングさ
れたシリコンウェハ1をプラズマCVD装置(日型アネ
ルバ社製)内にセットし、該シリコンウェハの温度を2
40℃に保ち、トリエチルアルミニウム(八Ω((:H
aL)を水素(H2)ガスでバブリングしながら、アン
モニア(NH3)ガスおよび水素ガス中(ガス流量各1
15CCM)で、13.56 M Hz4Wの高周波電
力で、約ITorrの内圧にて、プラズマCVD法によ
りポリイミド膜2上に約2μm厚の窒化アルミニウム[
4を形成した。なお、この際の成膜速度は約200人/
minであり、所要時間は約1.5時間であった。
Next, as shown in FIG. 1(C), the patterned silicon wafer 1 is set in a plasma CVD apparatus (manufactured by Nikkei Anelva Co., Ltd.), and the temperature of the silicon wafer is set to 2.
Keep it at 40℃ and add triethylaluminum (8Ω((:H)
aL) in ammonia (NH3) gas and hydrogen gas (gas flow rate 1 each) while bubbling hydrogen (H2) gas.
15CCM), a high frequency power of 13.56 MHz 4W, and an internal pressure of about ITorr, an aluminum nitride film with a thickness of about 2 μm was deposited on the polyimide film 2 by the plasma CVD method.
4 was formed. The film formation rate at this time was approximately 200 people/
The time required was approximately 1.5 hours.

次に、第1図(d)に示されるようにPMMA剥離液に
よってPMMAを剥離し、ポリイミド膜2上に窒化アル
ミニウムパターン4を得た。
Next, as shown in FIG. 1(d), the PMMA was removed using a PMMA removal solution to obtain an aluminum nitride pattern 4 on the polyimide film 2.

次に、第1図(e)に示されるように、環状保持基板た
るリングフレーム(バイレックス製、内径7.5cm 
、外径9CI111厚さ5mm)5の一面にエポキシ系
接着剤を塗布し、該接着剤塗布面に上記窒化アルミニウ
ムIn14の面を接着した。
Next, as shown in Fig. 1(e), a ring frame (manufactured by Virex, inner diameter 7.5 cm
, outer diameter 9CI111 thickness 5mm) 5 was coated with an epoxy adhesive, and the surface of the aluminum nitride In14 was adhered to the adhesive coated surface.

次に、第1図(f) に示されるように、リングフレー
ム5の外周に沿って窒化アルミニウム膜4およびポリイ
ミド膜2に切込みを入れた。
Next, as shown in FIG. 1(f), cuts were made in the aluminum nitride film 4 and the polyimide film 2 along the outer periphery of the ring frame 5.

次に、第1図(g)に示されるように、界面活性剤(ア
ルキルベンゼンスルホン酸ソーダ)添加水溶液中で超音
波を作用させて、シリコンウェハ1を分離、除去した。
Next, as shown in FIG. 1(g), the silicon wafer 1 was separated and removed by applying ultrasonic waves in an aqueous solution containing a surfactant (sodium alkylbenzenesulfonate).

次に、第1図(h)に示されるように、ヒドラジン系溶
剤でポリイミド膜2を除去した。なお、この溶剤処理の
際に窒化アルミニウム膜4の保護のため該膜4上にター
ル系塗料を塗布しておき、ポリイミド膜2を除去した後
にアセトンにより該タール系塗料層を除去した。
Next, as shown in FIG. 1(h), the polyimide film 2 was removed using a hydrazine solvent. During this solvent treatment, a tar-based paint was applied on the aluminum nitride film 4 to protect it, and after the polyimide film 2 was removed, the tar-based paint layer was removed with acetone.

かくして、パターン化した開口部をもった窒化アルミニ
ウム膜4よりなるマスク薄膜からなり、周辺部が環状保
持基板たるリングフレーム5により保持されているリソ
グラフィー用マスク構造体を得た。
In this way, a lithography mask structure was obtained, which consisted of a mask thin film made of aluminum nitride film 4 having patterned openings, and whose peripheral portion was held by a ring frame 5 serving as an annular holding substrate.

本実施例において得られたマスク構造体の窒化アルミニ
ウム膜4にはピンホールが認められず、また内部応力が
小さいことが確認された。
No pinholes were observed in the aluminum nitride film 4 of the mask structure obtained in this example, and it was confirmed that the internal stress was small.

実施例2 実施例1と同様にシリコンウェハ6上にポリイミド膜7
を形成した(第2図(a))。
Example 2 A polyimide film 7 is formed on a silicon wafer 6 in the same way as in Example 1.
was formed (Fig. 2(a)).

次に、第2図(b) に示されるように、該ポリイミド
膜7の形成されたシリコンウェハ6をプラズマCVD装
置(日電アネルバ社製)内にセットし、該シリコンウェ
ハ温度を250℃に保ち、三塩化アルミニウム(AΩC
1,)を窒素(N2)ガスでバブリングしながらアンモ
ニア(NHa )ガスおよび窒素ガス中(ガス流量各1
1511:CM)で、13.56 M Hz20Wの高
周波電力で、約ITorrの内圧にて、プラズマCVD
法によりポリイミド膜7上に約2μm厚の窒化アルミニ
ウム膜8を形成した。なお、この際の成膜速度は約30
00人/minであり、所要時間は約7分間であった。
Next, as shown in FIG. 2(b), the silicon wafer 6 on which the polyimide film 7 was formed was set in a plasma CVD apparatus (manufactured by Nichiden Anelva), and the temperature of the silicon wafer was maintained at 250°C. , aluminum trichloride (AΩC
1,) in ammonia (NHa) gas and nitrogen gas (gas flow rate 1 each) while bubbling with nitrogen (N2) gas.
1511:CM), plasma CVD at a high frequency power of 13.56 MHz 20W and an internal pressure of approximately ITorr.
An aluminum nitride film 8 having a thickness of approximately 2 μm was formed on the polyimide film 7 by a method. Note that the film formation rate at this time was approximately 30
00 people/min, and the required time was about 7 minutes.

次に、第2図(C)に示されるように、窒化アルミニウ
ム膜8上にEBレジストCMS−EX (東−洋遭達製
)の層9を約1μm厚に形成し、電子線描画によってバ
ターニングを行なった。
Next, as shown in FIG. 2(C), a layer 9 of EB resist CMS-EX (manufactured by Toyo Entatsu) is formed on the aluminum nitride film 8 to a thickness of about 1 μm, and a butter pattern is formed by electron beam drawing. I performed the ning.

次に、第2図(d) に示されるように、CCLガスを
用いたりアクティブイオンエツチング(RIE)により
窒化アルミニウム膜8をパターニングし、その後0.R
IEによりCMS−EXを除去した。
Next, as shown in FIG. 2(d), the aluminum nitride film 8 is patterned using CCL gas or by active ion etching (RIE), and then the aluminum nitride film 8 is patterned using 0. R
CMS-EX was removed by IE.

次に、第2図(e)に示されるように、環状保持基板た
るリングフレーム(パイレックス製、内径7.5cm 
1外径9 cm、厚さ5mm)10の一面にエポキシ系
接着剤を塗布し、該接着剤塗布面に上記窒化アルミニウ
ム膜8の面を接着した。
Next, as shown in Fig. 2(e), a ring frame (manufactured by Pyrex, inner diameter 7.5 cm
An epoxy adhesive was applied to one side of the aluminum nitride film 8 (outer diameter 9 cm, thickness 5 mm) 10, and the surface of the aluminum nitride film 8 was adhered to the adhesive coated surface.

次に、第2図(f) に示されるように、リングフレー
ム10の外周に沿って窒化アルミニウム膜8およびポリ
イミド膜7に切込みを入れた。
Next, as shown in FIG. 2(f), cuts were made in the aluminum nitride film 8 and the polyimide film 7 along the outer periphery of the ring frame 10.

次に、第2図(g)に示されるように、界面活性剤(ア
ルキルベンゼンスホン酸ソーダ)添加水溶液中で超音波
を作用させて、シリコンウェハ6を分離、除去した。
Next, as shown in FIG. 2(g), the silicon wafer 6 was separated and removed by applying ultrasonic waves in an aqueous solution containing a surfactant (sodium alkylbenzenesulfonate).

次に、第2図(h)に示されるように、ヒドラジン系溶
剤でポリイミド膜7を除去した。なお、この溶剤処理の
際に窒化アルミニウ、ム膜8の保護のため該膜8上にタ
ール系塗料を塗布しておき、ポリイミド膜7を除去した
後にアセトンにより該タール系塗料層を除去した。
Next, as shown in FIG. 2(h), the polyimide film 7 was removed using a hydrazine solvent. During this solvent treatment, a tar-based paint was applied on the aluminum nitride film 8 to protect it, and after the polyimide film 7 was removed, the tar-based paint layer was removed with acetone.

かくして、パターン化した開口部をもりた窒化アルミニ
ウム膜8よりなるマスク薄膜からなり、周辺部が環状保
持基板たるリングフレーム10により保持されているリ
ソグラフィー用マスク構造体を得た。
In this way, a lithography mask structure was obtained, which consisted of a mask thin film made of aluminum nitride film 8 having patterned openings, and whose peripheral portion was held by a ring frame 10 serving as an annular holding substrate.

[発明の効果] 以上の如き本発明によれば、マスクの構成要素として用
いられるアルミニウムおよび窒素を主体とする膜は、可
視光線透過率が高く(1μm厚の光学濃度が約0.1 
) 、熱膨張率が低く(3〜4×10−’/l ) 、
熱伝導率が高く、かつ成膜性が良好である等の特徴を有
するので、以下のような効果が得られる。
[Effects of the Invention] According to the present invention as described above, the film mainly composed of aluminum and nitrogen used as the constituent elements of the mask has high visible light transmittance (optical density of about 0.1 μm thick).
), the coefficient of thermal expansion is low (3 to 4 x 10-'/l),
Since it has characteristics such as high thermal conductivity and good film formability, the following effects can be obtained.

(1)アルミニウムおよび窒素を主体とする膜は可視光
線の透過率が高いため、光学アライメントが容易にでき
る。
(1) Since a film mainly composed of aluminum and nitrogen has a high transmittance of visible light, optical alignment can be easily performed.

(2)アルミニウムおよび窒素を主体とする膜の熱膨張
係数は、シリコンウェハ焼付基板の熱膨張係数(2〜3
 x 10−6/ t )とほぼ同じ値であるから極め
て高精度の焼付けが可能となる。
(2) The thermal expansion coefficient of the film mainly composed of aluminum and nitrogen is the thermal expansion coefficient of the silicon wafer baked substrate (2 to 3
Since the value is almost the same as x 10-6/t), extremely high precision printing is possible.

(3)アルミニウムおよび窒素を主体とする膜の熱伝導
性が高いため、X Ia特にSOR線のような高エネル
ギー線、イオンビームのような透過マスクを使用できな
い高エネルギー線、プラズマ線等の高エネルギー線の照
射によるマスクの温度上昇を防止でき、特に真空中での
焼付けの際に効果が大である。
(3) Due to the high thermal conductivity of the film mainly composed of aluminum and nitrogen, XIa is particularly suitable for high-energy rays such as SOR rays, high-energy rays such as ion beams for which transmission masks cannot be used, and high-energy rays such as plasma rays. It can prevent the temperature of the mask from rising due to energy ray irradiation, and is particularly effective when baking in a vacuum.

(4)X線露光、特に波長の長い(λ=20〜200人
)X線を用いたX線露光、EB(電子線)露光およびI
B(イオンビーム)露光ではメンブレンとして透過率の
高い材質が非常に得にくいので、メンブレンの不要な本
発明によるマスクは有効である。
(4) X-ray exposure, especially X-ray exposure using long wavelength (λ = 20 to 200) X-rays, EB (electron beam) exposure and I
In B (ion beam) exposure, it is very difficult to obtain a material with high transmittance as a membrane, so the mask according to the present invention, which does not require a membrane, is effective.

【図面の簡単な説明】 第1図(a) 〜(h)および第2図(a) 〜(h)
は、いづれも本発明によるリソグラフィー用マスク構造
体の製造工程を示す図である。 1.6=シリコンウエハ、2,7:ポリイミド膜、3 
: PMMA膜、4.8=窒化アルミニウム膜、5.1
0:リングフレーム。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 辰 雄 代理人 弁理士   伊 東 哲 也 (h)四層ロロロロロ411 第1図 (h)4ココロロロロロ月二8 第2図
[Brief explanation of the drawings] Figure 1 (a) to (h) and Figure 2 (a) to (h)
2A and 2B are diagrams illustrating the manufacturing process of a lithography mask structure according to the present invention. 1.6=silicon wafer, 2,7: polyimide film, 3
: PMMA film, 4.8 = aluminum nitride film, 5.1
0: Ring frame. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito (h) 4-layer Rororororo 411 Figure 1 (h) 4 Hearts Rorororo Monthly 28 Figure 2

Claims (1)

【特許請求の範囲】 1、アルミニウムおよび窒素を主体とする薄膜、または
少なくともアルミニウムおよび窒素を主体とする膜を含
む積層体からなる薄膜と、高エネルギー線透過部として
該薄膜上に設けたパターン化した開口部とを有すること
を特徴とするリソグラフィー用マスク構造体。 2、前記高エネルギー線が、X線、電子線、真空紫外線
またはイオンビームである特許請求の範囲第1項記載の
リソグラフィー用マスク構造体。
[Claims] 1. A thin film consisting of a thin film mainly composed of aluminum and nitrogen, or a laminate containing at least a film mainly composed of aluminum and nitrogen, and a pattern provided on the thin film as a high-energy ray transmitting part 1. A lithography mask structure having an opening. 2. The lithography mask structure according to claim 1, wherein the high-energy beam is an X-ray, an electron beam, a vacuum ultraviolet ray, or an ion beam.
JP62000224A 1987-01-06 1987-01-06 Mask structure for lithography Pending JPS63169026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000224A JPS63169026A (en) 1987-01-06 1987-01-06 Mask structure for lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000224A JPS63169026A (en) 1987-01-06 1987-01-06 Mask structure for lithography

Publications (1)

Publication Number Publication Date
JPS63169026A true JPS63169026A (en) 1988-07-13

Family

ID=11467990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000224A Pending JPS63169026A (en) 1987-01-06 1987-01-06 Mask structure for lithography

Country Status (1)

Country Link
JP (1) JPS63169026A (en)

Similar Documents

Publication Publication Date Title
US4677042A (en) Mask structure for lithography, method for preparation thereof and lithographic method
US4837123A (en) Mask structure for lithography, method of preparation thereof and lithographic method
US4253029A (en) Mask structure for x-ray lithography
JPS63169026A (en) Mask structure for lithography
JPH0442666B2 (en)
US4284678A (en) High resolution mask and method of fabrication thereof
JPS62108522A (en) Mask structure for lithography
JPH0481855B2 (en)
JPH0992616A (en) Membrane, mask and aligner or device fabrication system employing them
JPH06163368A (en) X-ray exposure mask
JPH0423819B2 (en)
JPS61117545A (en) X-ray lithography method and mask holding body for x-ray lithography
JPS61248049A (en) Production of mask constituting body for lithography
JPH0316116A (en) Mask structure for x-ray lithography and x-ray exposure using mask structure
JPS5940644A (en) Mask for soft x-ray transfer and its production
JPH0481856B2 (en)
JPH0481854B2 (en)
JPS61118754A (en) X-ray lithography and mask holder for it
JPS6386516A (en) Manufacture of x-ray mask blank
JPS61159654A (en) Lithography method and mask holder for lithography
JP2001066762A5 (en)
JPS61249056A (en) Mask structural body for lithography
JPS6084817A (en) Mask for sor light exposure
JPH0394100A (en) Electropolishing solution and electropolishing method
JPH0744137B2 (en) X-ray exposure mask for step and repeat method