JPS6316869B2 - - Google Patents

Info

Publication number
JPS6316869B2
JPS6316869B2 JP13380483A JP13380483A JPS6316869B2 JP S6316869 B2 JPS6316869 B2 JP S6316869B2 JP 13380483 A JP13380483 A JP 13380483A JP 13380483 A JP13380483 A JP 13380483A JP S6316869 B2 JPS6316869 B2 JP S6316869B2
Authority
JP
Japan
Prior art keywords
groove
impedance
door
opening
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13380483A
Other languages
Japanese (ja)
Other versions
JPS6025187A (en
Inventor
Shigeru Kusunoki
Takahiro Matsumoto
Masaaki Yamaguchi
Tomotaka Nobue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13380483A priority Critical patent/JPS6025187A/en
Publication of JPS6025187A publication Critical patent/JPS6025187A/en
Publication of JPS6316869B2 publication Critical patent/JPS6316869B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高周波電波を遮蔽する電波シール
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a radio wave sealing device for shielding high frequency radio waves.

従来例の構成とその問題点 従来、この種の電波シール装置として、たとえ
ば高周波により調理物を誘電加熱して調理する電
子レンジを例に挙げて説明する。電子レンジは調
理物を収納して高周波加熱する加熱庫と、この加
熱庫の調理物出入用の開口部を開閉自在に覆う扉
とを備えたものであるが、調理物の出入時に扉を
開ける際、加熱庫内の高周波電磁波が庫外へ漏洩
して人体に弊害を及ぼさないように電波シール対
策が施されている。
Configuration of Conventional Example and Its Problems A conventional radio wave sealing device of this type will be described using, for example, a microwave oven that cooks food by dielectrically heating it using high frequency waves. A microwave oven is equipped with a heating compartment that stores food and heats it using high-frequency waves, and a door that can be opened and closed to cover the opening of the heating compartment for putting food in and out. At this time, radio wave sealing measures are taken to prevent high-frequency electromagnetic waves inside the heating chamber from leaking outside the chamber and causing harm to the human body.

従来の一例として米国特許第3182164号を第1
図に示す。第1図において、1は電子レンジの加
熱庫であり、この加熱庫1の開口部2を開閉自在
に覆う取手3を有する扉4が設けられている。こ
の扉4の周縁部には加熱庫1側に向いて開口した
隙間部5を有する空胴のチヨーク部6が形成され
ている。このチヨーク部6の奥行7は、使用され
る高周波の波長の実質的に4分の1に設計されて
いる。この場合扉4の厚みも4分の1波長であ
る。すなわち従来電子レンジで使用されている電
磁波の周波数は2450MHzであるので、4分の1波
長は約30mmとなる。この長さのチヨーク部6と対
向させるために、加熱庫1の開口部2に形成した
周縁部8の厚さ9は4分の1波長より大きい値と
なる。したがつて加熱庫1の開口部2の有効大き
さは周縁部8の分だけひとまわり小さい。
As an example of the conventional technology, U.S. Patent No. 3182164 is the first
As shown in the figure. In FIG. 1, reference numeral 1 denotes a heating chamber of a microwave oven, and a door 4 having a handle 3 that covers an opening 2 of the heating chamber 1 so as to be openable and closable is provided. A hollow wall portion 6 having a gap portion 5 opened toward the heating chamber 1 is formed at the peripheral edge of the door 4 . The depth 7 of this cheese yoke portion 6 is designed to be substantially one-fourth of the wavelength of the high frequency wave used. In this case, the thickness of the door 4 is also a quarter wavelength. In other words, since the frequency of electromagnetic waves conventionally used in microwave ovens is 2450 MHz, a quarter wavelength is approximately 30 mm. In order to face the chiyoke part 6 of this length, the thickness 9 of the peripheral part 8 formed in the opening part 2 of the heating chamber 1 has a value larger than a quarter wavelength. Therefore, the effective size of the opening 2 of the heating chamber 1 is slightly smaller by the peripheral edge 8.

次に従来の他の一例として、米国特許第
2500676号を第2図a,bに示す。この例も電子
レンジの構成を示したものであり、マグネトロン
10の発振によつて得た高周波を加熱庫11に供
給し、調理物12を電磁誘導により加熱調理する
ものである。この加熱庫11の開口部13にはこ
の開口部13を開閉自在に覆う扉14が設けられ
ている。この扉14の周縁部にも溝状のチヨーク
部15が形成され、高周波が外部へ漏洩するのを
このチヨーク部15で防いでいる。このチヨーク
部15の深さ16もやはり使用周波数の4分の1
波長で設計されている。このため開口部13の有
効大きさは第1図同様、加熱庫11よりもひとま
わり小さい。
Next, as another conventional example, U.S. Patent No.
No. 2500676 is shown in Figures 2a and b. This example also shows the configuration of a microwave oven, in which high frequency waves obtained by oscillation of a magnetron 10 are supplied to a heating chamber 11 to heat and cook food 12 by electromagnetic induction. The opening 13 of the heating warehouse 11 is provided with a door 14 that covers the opening 13 so as to be openable and closable. A groove-shaped yoke portion 15 is also formed at the peripheral edge of the door 14, and this yoke portion 15 prevents high frequency waves from leaking to the outside. The depth 16 of this yoke portion 15 is also one-fourth of the operating frequency.
Designed by wavelength. Therefore, the effective size of the opening 13 is slightly smaller than the heating chamber 11, as in FIG.

上述のとおり、従来のチヨーク部は4分の1波
長の深さとして高周波を減衰させるという技術思
想に基づいている。
As described above, the conventional choke section is based on the technical concept of attenuating high frequencies by having a depth of one-quarter wavelength.

すなわち、チヨーク部の特性インピーダンスを
Zo、深さをLとし、終端部を短絡したときにチ
ヨーク部開口部でのインピーダンスZINは、 ZIN=jZotan(2πL/λo) (λoは自由空間波長) となる。
In other words, the characteristic impedance of the chiyoke section is
Zo, the depth is L, and when the terminal end is short-circuited, the impedance Z IN at the opening of the chain yoke is Z IN =jZotan (2πL/λo) (λo is the free space wavelength).

チヨーク部方式の電波減衰手段は、チヨーク部
の深さLを4分の1波長に選定することにより、 |ZIN|=Zotan(π/2)=∞ を達成するという原理に基づいている。
The radio wave attenuating means of the yoke part method is based on the principle that |Z IN |=Zotan(π/2)=∞ is achieved by selecting the depth L of the yoke part to be 1/4 wavelength.

もし、チヨーク部内に誘電体(比誘電率εr)を
充填すると、電波の波長入′は、 λ′≒λo/√r に圧縮される。この場合チヨーク部の深さL′は、 L′≒L/√r と短くなる。しかしながらL′=λ′/4とすること
に変りはなく、チヨーク方式においては、深さを
実質的に4分の1波長よりも小さくすることがで
きず、開口部の小型化に限界のあるものであつ
た。
If a dielectric material (relative permittivity ε r ) is filled in the cheese yoke, the wavelength input' of the radio wave is compressed to λ'≒λo/√ r . In this case, the depth L' of the chiyoke portion becomes short as L'≒L/ √r . However, there is no difference in setting L' = λ'/4, and in the Chi York method, the depth cannot be made substantially smaller than a quarter wavelength, and there is a limit to the miniaturization of the aperture. It was hot.

近年、固体発振器の開発が進み実用化の時代が
到来した。電子レンジも例外ではなく、従来のマ
グネトロン発振器から固体発振器へと移行しつつ
ある。
In recent years, the development of solid-state oscillators has progressed, and the era of practical use has arrived. Microwave ovens are no exception; traditional magnetron oscillators are being replaced by solid-state oscillators.

電子レンジにおいて発振器の固体化による長所
は次のとおりである。
The advantages of solid-state oscillators in microwave ovens are as follows.

(1) マグネトロンの駆動電圧は約3Kvであるのに
対し、トランジスタ等による固体発振器の駆動
電圧は約400v以下でよく、実際には約40vが使
用されている。よつて電源電圧が低いので人体
にとつて安全であり、たとえリークしても感電
事故が発生しにくいものである。このためアー
スレス化が可能となり、ポータブル化の展開も
図れる。
(1) The drive voltage of a magnetron is approximately 3Kv, whereas the drive voltage of a solid-state oscillator using a transistor or the like can be approximately 400V or less, and in practice, approximately 40V is used. Therefore, since the power supply voltage is low, it is safe for the human body, and even if there is a leak, electric shock accidents are unlikely to occur. Therefore, it becomes possible to make it earthless, and it is also possible to develop it into a portable device.

(2) マグネトロンの寿命は約8000時間であるのに
対し、固体発振器はその約10倍以上であり、長
寿命である。
(2) While the lifespan of a magnetron is approximately 8,000 hours, a solid-state oscillator has a long lifespan of approximately 10 times longer.

(3) マグネトロンの発振周波数は固定であるのに
対し、固体発振器の発振周波数は可変可能であ
り、たとえば915MHzに対して上下13MHzの範
囲で変化させることができる。したがつて、負
荷(調理物)の大きさで周波数を自動追尾させ
ることにより、共振周波数が変わり高効率動作
を得ることができる。実験によれば2450±50M
Hz内で周波数を自動追尾させると、実用負荷効
率を固定周波数に比べて約60〜80%向上させる
ことができた。
(3) While the oscillation frequency of a magnetron is fixed, the oscillation frequency of a solid-state oscillator can be varied, for example, within a range of 13MHz above and below 915MHz. Therefore, by automatically tracking the frequency based on the size of the load (food to be cooked), the resonance frequency changes and highly efficient operation can be achieved. According to experiment 2450±50M
By automatically tracking the frequency within Hz, we were able to improve practical load efficiency by approximately 60 to 80% compared to a fixed frequency.

(4) 固体発振器は大量生産により、将来マグネト
ロンよりも低価格となり得る。
(4) Solid-state oscillators could become cheaper than magnetrons in the future due to mass production.

また現在高周波調理用として国際的に割り当て
られているISM周波数(Industrial、Scientific、
Medical)は5880MHz、2450MHz、915MHz、
400MHz等であり、これを逸脱して使用してはな
らない。現在のマグネトロンは上述のとおり
2450MHzで発振させているが、固体発振器で、同
一周波数2450MHzで発振させると、十分な出力電
力が得られずパワー不足となつてしまう。そこで
所望の出力電力を得るためには必然的により低い
周波数を選定しなければならず、たとえば915M
Hzが適当である。しかしながらこの周波数は従来
の周波数に比べて約2.7分の1であるので、波長
は逆に約2.7倍となり、4分の1波長は約80mmと
なつてしまう。したがつて電子レンジの周波数と
して915MHzを選定すると、第1図、第2図で説
明したチヨーク部の厚みは約80mmを超えることに
なり、加熱室の開口部の有効大きさは従来例に比
してきわめて小さくなり、実用化はきわめて困難
となる不都合を有するものである。
In addition, the ISM frequencies (Industrial, Scientific,
Medical) is 5880MHz, 2450MHz, 915MHz,
400MHz, etc., and must not be used outside this range. The current magnetron is as described above.
It is oscillating at 2450MHz, but if you use a solid-state oscillator to oscillate at the same frequency of 2450MHz, you will not be able to obtain sufficient output power and the power will be insufficient. Therefore, in order to obtain the desired output power, it is necessary to select a lower frequency, for example, 915M
Hz is appropriate. However, since this frequency is about 1/2.7 of the conventional frequency, the wavelength is, on the contrary, about 2.7 times, and the quarter wavelength is about 80 mm. Therefore, if 915MHz is selected as the frequency of the microwave oven, the thickness of the cheese yoke explained in Figures 1 and 2 will exceed approximately 80mm, and the effective size of the opening of the heating chamber will be greater than that of the conventional example. This has the disadvantage that it becomes extremely small, making it extremely difficult to put it into practical use.

一方、発振周波数を2450MHzから915MHzに変
更する長所は次のとおりである。
On the other hand, the advantages of changing the oscillation frequency from 2450MHz to 915MHz are as follows.

(1) 波長が長くなつたため、調理物の内部まで電
波が浸透し、加熱調理時間の速度を速くするこ
とができた。たとえば直径12cmの肉塊の中央部
を約50℃にするのに、2450MHz、600wで50分
以上要したのに対し、915MHz、300wで50分以
下しかかからない。
(1) Because the wavelength has become longer, radio waves can penetrate deep into the food, making it possible to speed up the cooking time. For example, it took more than 50 minutes at 2450MHz and 600W to heat the center of a 12cm diameter meatball to about 50℃, but it took less than 50 minutes at 915MHz and 300W.

(2) 焼けむらの原因は定在波であり、定在波ピツ
チは波長と相関がある。915MHzを使用した場
合は定在波ピツチが大きく、調理物に焼けむら
が目立ちにくいものである。
(2) The cause of uneven burning is standing waves, and the pitch of standing waves is correlated with wavelength. When 915MHz is used, the standing wave pitch is large, making it difficult to notice uneven cooking on the food.

よつて、電子レンジの使用周波数を915MHzに
変更することの短所は、電波シール手段が大きく
なつてしまうことである。
Therefore, the disadvantage of changing the operating frequency of the microwave oven to 915MHz is that the radio wave sealing means becomes larger.

なお、チヨーク部の厚さを小さくする手段の一
つとして、チヨーク部に誘電体を充填する構成が
ある。この構成によればチヨーク部の誘電率が大
きくなるので、チヨーク部を4分の1波長よりも
小さくでき、しかも4分の1波長のチヨーク部と
同等の効果を奏する。しかしながら誘電体が高価
であるために電子レンジ全体の価格も高価なもの
となつてしまい、また製造上手間とコストがかか
り、実用化の妨げとなつていた。
Note that as one means for reducing the thickness of the chiyoke part, there is a structure in which the chiyoke part is filled with a dielectric material. According to this configuration, the dielectric constant of the chiyoke part becomes large, so that the chiyoke part can be made smaller than a quarter wavelength, and the same effect as that of a chiyoke part of a quarter wavelength can be achieved. However, since the dielectric material is expensive, the price of the microwave oven as a whole becomes expensive, and the manufacturing time and cost are high, which hinders its practical use.

以下、従来例の原理を理論的に説明する。 The principle of the conventional example will be theoretically explained below.

チヨーク方式は周知の4分の1波長インピーダ
ンス変換原理にもとづくものである。即ち、チヨ
ーク溝の特性インピーダンスをZoc、溝の深さを
lcとし、加熱室からチヨーク溝に至る漏波路1の
特性インピーダンスをZop、漏波路17の長さを
lp使用波長をλとしたときに、第3図の如くチヨ
ーク溝18の底Cの短絡インピーダンス(Zc=
O)はチヨーク溝18の開孔部Bで ZB=jZoctan2π/λlcとなる。19は電子レンジの 加熱室、20はドアである。ここでlc=λ/4と選 ぶことにより|ZB|=∞と変換できる。この開孔
部BのインピーダンスZBを線路始点A部でみたと
きのインピーダンスZAは ZA=−jZop1/tan2π/λlpとなる。ここでlp=λ/
4と 選ぶことにより|ZA|=Oと変換できる。チヨ
ーク溝18の底部Cでの短絡状態が4分の1波長
インピーダンス変換原理をたくみに利用すること
で線路始点に現出することにより電波シール装置
として実用化しているものである。
The Chi-Yoke method is based on the well-known quarter-wavelength impedance conversion principle. In other words, the characteristic impedance of the chiyoke groove is Zoc, and the depth of the groove is
lc, the characteristic impedance of the leakage path 1 from the heating chamber to the chiyoke groove is Zop, and the length of the leakage path 17 is
When the lp wavelength used is λ, the short-circuit impedance (Zc=
O) is the opening B of the chiyoke groove 18, and Z B =jZoctan2π/λlc. 19 is a heating chamber of the microwave oven, and 20 is a door. Here, by choosing lc=λ/4, it can be converted to |Z B |=∞. When the impedance Z B of the opening B is viewed at the line starting point A, the impedance Z A is Z A =-jZop1/tan2π/λlp. Here lp=λ/
By choosing 4, it can be converted to |Z A |=O. The short-circuit condition at the bottom C of the channel groove 18 appears at the starting point of the line by skillfully utilizing the quarter-wavelength impedance conversion principle, thereby making it practical as a radio wave sealing device.

漏波路17やチヨーク溝18に誘電率εrの誘電
体を装荷することにより波長λ′は自由空間波長λ
のλ/√rになるが、4分の1波長(λ′/4)イ
ンピーダンス原理を用いることにより同様の効果
を得られる。
By loading a dielectric material with a dielectric constant ε r into the leakage path 17 and the chiyoke groove 18, the wavelength λ' becomes the free space wavelength λ.
However , the same effect can be obtained by using the quarter wavelength (λ'/4) impedance principle.

発明の目的 この発明は、発振周波数を低くしても、チヨー
ク部の大きさが大きくならない電波シール装置
を、提供するものである。
OBJECTS OF THE INVENTION The present invention provides a radio wave sealing device in which the size of the choke portion does not increase even if the oscillation frequency is lowered.

発明の構成 この発明は、新しいインピーダンス変換原理を
用いた電波シールであり、漏波路と溝のそれぞれ
が特性インピーダンス不連続構成をとることによ
り、4分の1波長相当の寸法よりも小さい形状と
したものである。
Structure of the Invention This invention is a radio wave seal using a new impedance conversion principle, in which each of the leakage path and the groove has a characteristic impedance discontinuity configuration, resulting in a shape smaller than the size equivalent to a quarter wavelength. It is something.

実施例の説明 本発明はたとえば電子レンジの本体又は扉の少
なくとも一方に溝を少くとも2つ設け、この溝の
形状は短絡部側の特性インピーダンスを開孔部側
のそれよりも大きく構成し、開孔端から短絡端ま
での溝深さは4分の1波長未満である点に特徴を
有する。
DESCRIPTION OF EMBODIMENTS The present invention provides, for example, at least two grooves in at least one of the main body or the door of a microwave oven, and the shape of the grooves is such that the characteristic impedance on the short circuit side is larger than that on the open side, It is characterized in that the groove depth from the open end to the shorted end is less than a quarter wavelength.

小型化を可能にする基本的考え方としては、以
下のとおりである。
The basic idea that makes miniaturization possible is as follows.

溝開孔部の特性インピーダンス、長さ位相定数
をZo1、l1、β1とする。溝短絡部の特性インピー
ダンス、長さ位相定数をZo2、l2、β2とする溝の
開孔端から短絡端までの距離(溝の深さ)をl
(total)とするとl(total)=l1+l2となる。
Let the characteristic impedance and length phase constant of the groove opening be Zo 1 , l 1 , and β 1 . The characteristic impedance and length phase constant of the groove short-circuit part are Zo 2 , l 2 , β 2 The distance from the open end of the groove to the short-circuit end (groove depth) is l
(total), then l (total) = l 1 + l 2 .

上記条件で溝の開孔端のインピーダンスZは、 Z=Zo1・tanβ1l1+Ktanβ2l2/1−Ktanβ1l1・tanβ
2l2…(1) (但しK=Zo2/Zo1) となることは、簡単な計算で導出できる。
Under the above conditions, the impedance Z at the open end of the groove is Z = Zo 1 · tanβ 1 l 1 +Ktanβ 2 l 2 /1−Ktanβ 1 l 1 · tanβ
2 l 2 ...(1) (However, K=Zo 2 /Zo 1 ) can be derived by simple calculation.

従来例ではZo2=Zo1、β1=β2(即ちK=1)に
相当するものである。従つてそのインピーダンス
Z′は1式より Z′=Zo1・tanβ1l1+tanβ2l2/1−tanβ1l1・tan
β2l2=Zo1tan(β1l1+β2l2)=Zo1tan(β1・ltotal
)…(2) となり、ltotalをλ/4とすることでインピーダン
ス反転していた。
In the conventional example, this corresponds to Zo 2 =Zo 1 and β 12 (that is, K=1). Therefore its impedance
Z′ is calculated from equation 1 as Z′=Zo 1・tanβ 1 l 1 +tanβ 2 l 2 /1−tanβ 1 l 1・tan
β 2 l 2 = Zo 1 tan (β 1 l 1 + β 2 l 2 ) = Zo 1 tan (β 1・ltotal
)…(2), and the impedance was inverted by setting ltotal to λ/4.

一方本発明の構成によれば構成要件より、特性
インピーダンスがZo2>Zo1であるから、1式に
おいて特性インピーダンスの比Kの値は必らず1
より大きくなる。インピーダンスZを無限大にす
るためには1式の分母が零になればよいので1=
Ktanβ1l1・tanβ2l2を満たせばよく、特性インピ
ーダンス比Kの値を1より大きくした分だけ寸法
l1,l2を小さくしても従来と同様のインピーダン
ス反転がはかれるのである。本発明は電波シール
の分野で歴史的に用いられていたλ/4線路では
なく、λ/4未満線路でインピーダンス反転を実
施するものである。この原理を、理解しやすくす
るために、解析結果の一部を第4図に示す。第4
図は、A端を励振源としD端を開放した伝送路の
1部に、先端Cが短絡された開孔Bを有する溝を
設けている。溝は開孔側より短絡側の溝幅を2倍
にしている。A点を同一条件で励振し、溝の深さ
lTを変化させたとき、伝送路内の電界は、a,
b,cのように変化し、D端に電波がとどかない
のはbの場合、すなわち溝の深さlTが、4分の
1波長の約80%のとき(λ/4未満線路)であ
り、それよりも長くても短くても(a,cの場
合)、bにくらべて電波がよく洩れる。これはl1
=l2=lT/2=λ/10.2、K=b2/b1=2を1≒
Ktanβ1・tanβl2に代入することで確認できる。
On the other hand, according to the configuration of the present invention, the characteristic impedance is Zo 2 > Zo 1 according to the configuration requirements, so the value of the characteristic impedance ratio K in equation 1 is necessarily 1.
Become bigger. In order to make impedance Z infinite, the denominator of equation 1 needs to be zero, so 1=
It is sufficient to satisfy Ktanβ 1 l 1・tanβ 2 l 2 , and the size is equal to the value of characteristic impedance ratio K larger than 1.
Even if l 1 and l 2 are made small, the same impedance reversal as in the conventional case can be achieved. The present invention performs impedance inversion using a less than λ/4 line instead of the λ/4 line that has been historically used in the field of radio wave seals. In order to make this principle easier to understand, part of the analysis results are shown in FIG. Fourth
In the figure, a groove having an opening B whose tip C is short-circuited is provided in a part of a transmission line in which the A end is an excitation source and the D end is open. The width of the groove on the short circuit side is twice that on the open hole side. Excite point A under the same conditions, and measure the depth of the groove.
When lT is changed, the electric field in the transmission line is a,
The wave changes as shown in b and c, and the radio wave does not reach the D end in case b, that is, when the groove depth lT is approximately 80% of a quarter wavelength (less than λ/4 line). , even if it is longer or shorter (cases a and c), radio waves leak more than in case b. This is l 1
=l 2 =lT/2=λ/10.2, K=b 2 /b 1 =2 to 1≒
This can be confirmed by substituting Ktanβ 1 and tanβl 2 .

特性インピーダンスを不連続にする考え方は以
下のとおりである。
The idea of making the characteristic impedance discontinuous is as follows.

本発明はシール装置の溝部を一方を接地導体と
し間隙寸法b離して幅寸法aの導体板を配置した
構成とからなる。
The present invention has a structure in which the groove portion of the sealing device has one side serving as a ground conductor and a conductor plate having a width dimension a and spaced apart by a gap dimension b.

詳細には溝開孔部側の幅をa1間隙をb1実効誘電
体をεeffとし、溝短絡部側の幅をa2間隙をb2とし
た構成で特性インピーダンスの比Kを次式で計算
し、 Kの値を1より大きくなるようにすることで特性
インピーダンスを不連続にする工夫をしている。
In detail, the width on the groove opening side is a , the gap is b , 1 the effective dielectric is ε eff , the width on the groove shorting side is a, 2 the gap is b 2 , and the characteristic impedance ratio K is calculated using the following formula. Calculate with By setting the value of K to be greater than 1, an attempt is made to make the characteristic impedance discontinuous.

図面に基づき実施例の詳細を説明する。 The details of the embodiment will be explained based on the drawings.

第5図は電子レンジの斜視図でバツチング板2
1を有する扉22が本体カバー23で覆われた本
体に装着されている。本体には操作パネル24が
設けられドア把手25は上記ドアに装着されてい
る。
Figure 5 is a perspective view of the microwave oven, showing the batching plate 2.
A door 22 having a number 1 is attached to a main body covered with a main body cover 23. The main body is provided with an operation panel 24, and a door handle 25 is attached to the door.

第6図に第5図のA―A線断面図、第7図に
λ/4未満インピーダンス反転素子を示す。
FIG. 6 shows a sectional view taken along the line AA in FIG. 5, and FIG. 7 shows an impedance inversion element of less than λ/4.

第6図で扉は凹部溝を有する台板26と封口板
27などで構成されている。凹部内には溝の深さ
方向に形状を変化させたλ/4未満インピーダン
ス反転素子28を配することで、電波シール溝2
9,30の2つの溝効果が実現できる。誘電体カ
バー31で溝部開口を覆つている。
In FIG. 6, the door is composed of a base plate 26 having a recessed groove, a sealing plate 27, and the like. By arranging the less than λ/4 impedance inversion element 28 whose shape changes in the depth direction of the groove in the recess, the radio wave seal groove 2
Two groove effects of 9 and 30 can be realized. A dielectric cover 31 covers the groove opening.

特性インピーダンスの比Kは第1の溝29にお
いてK1≒a1×b21/a2×b11 第2の溝30において K2≒a1×b22/a2×b12 となり、いずれも1より大きくできるので使用波
長λに対して少なくとも1方の溝の深さlをλ/
4未満の値でインピーダンス反転させることで電
波シールができる。
The characteristic impedance ratio K is K 1 ≒a 1 ×b 21 /a 2 ×b 11 in the first groove 29, K 2 ≒a 1 ×b 22 /a 2 ×b 12 in the second groove 30, and both Since the depth l of at least one groove can be made larger than 1, the depth l of at least one groove can be set to λ/
A radio wave seal can be created by inverting the impedance with a value less than 4.

発明の効果 本発明は実施例から明らかなように発明の目的
である小型化を実現できる効果に加えて次の効果
が出る。
Effects of the Invention As is clear from the embodiments, the present invention has the following effects in addition to the effect of achieving miniaturization, which is the object of the invention.

(1) 1つの溝にインピーダンス反転素子を長期配
置する構成で複数の小型電波シール溝が実現で
きる。
(1) Multiple small radio wave seal grooves can be realized by arranging impedance inverting elements in one groove for a long time.

(2) 誘電率が高い誘電体材料でインピーダンス反
転素子群を1体成型することにより、加工性が
高くなる。
(2) Processability is improved by molding the impedance inverting element group as a single unit using a dielectric material with a high permittivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図a,b、第3図は従来の電波シ
ール装置の断面図、第4図a,b,cは本発明に
おける溝部の電界解析図、第5図は本発明の一実
施例における電波シール装置を用いた電子レンジ
の斜視図、第6図は同装置の断面図、第7図a,
bは同装置の要部斜視図である。 22……扉、28,28′……λ/4未満インピ
ーダンス反転素子、29,30……溝、l……溝
の深さ。
Figures 1, 2a, b, and 3 are cross-sectional views of conventional radio wave sealing devices, Figures 4a, b, and c are electric field analysis diagrams of the groove portion of the present invention, and Figure 5 is a diagram of the conventional radio wave seal device. A perspective view of a microwave oven using a radio wave sealing device in an embodiment, FIG. 6 is a sectional view of the same device, FIG. 7a,
b is a perspective view of essential parts of the device. 22... Door, 28, 28'... Less than λ/4 impedance inversion element, 29, 30... Groove, l... Groove depth.

Claims (1)

【特許請求の範囲】[Claims] 1 開口部を有し電波が内部に供給される本体を
設け、この本体の前記開口部を開閉自在に覆う扉
を設け、前記扉又は前記本体には周辺方向に長い
凹部を設け、前記凹部の中には誘電体等の棒状体
から成る、使用実質波長の4分の1未満長さのイ
ンピーダンス反転素子を複数個、周期的に設け、
かつ前記インピーダンス反転素子は前記凹部の入
口側が取り付け部よりも太い形である電波シール
装置。
1. A main body having an opening and into which radio waves are supplied is provided, a door is provided to cover the opening of the main body so as to be openable and closable, a recess is provided in the door or the main body, and the recess is long in the peripheral direction. Inside, a plurality of impedance inverting elements each made of a rod-shaped body such as a dielectric material and having a length of less than one-fourth of the actual wavelength to be used are provided periodically;
and a radio wave sealing device, wherein the impedance inversion element has a shape where the entrance side of the recess is thicker than the attachment part.
JP13380483A 1983-07-21 1983-07-21 Radio wave sealing device Granted JPS6025187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13380483A JPS6025187A (en) 1983-07-21 1983-07-21 Radio wave sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13380483A JPS6025187A (en) 1983-07-21 1983-07-21 Radio wave sealing device

Publications (2)

Publication Number Publication Date
JPS6025187A JPS6025187A (en) 1985-02-07
JPS6316869B2 true JPS6316869B2 (en) 1988-04-11

Family

ID=15113418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13380483A Granted JPS6025187A (en) 1983-07-21 1983-07-21 Radio wave sealing device

Country Status (1)

Country Link
JP (1) JPS6025187A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4034792A1 (en) * 1990-11-02 1992-05-07 Hoechst Ag LIQUID DE-CLEANER BASED ON ACETATES AND METHOD FOR MELTING SNOW AND ICE ON TRAFFIC AREAS WITH THE MEANS OF THIS MEANS

Also Published As

Publication number Publication date
JPS6025187A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
JPS6340036B2 (en)
JPS6316869B2 (en)
JPS6316875B2 (en)
JPS6316866B2 (en)
JPS6316871B2 (en)
JPS6259437B2 (en)
JPS6316864B2 (en)
JPH0136717B2 (en)
JPH0130277B2 (en)
JPS6316867B2 (en)
JPS6316876B2 (en)
JPS6316868B2 (en)
JPS6316863B2 (en)
JPS6316872B2 (en)
JPS6313318B2 (en)
JPS6316870B2 (en)
JPH0127555B2 (en)
JPS6259438B2 (en)
JPS6316865B2 (en)
JPS6316873B2 (en)
JPH0142520B2 (en)
JPS6313319B2 (en)
JPH0136718B2 (en)
JPH0138397B2 (en)
JPS6316874B2 (en)