JPS6316764B2 - - Google Patents

Info

Publication number
JPS6316764B2
JPS6316764B2 JP55034272A JP3427280A JPS6316764B2 JP S6316764 B2 JPS6316764 B2 JP S6316764B2 JP 55034272 A JP55034272 A JP 55034272A JP 3427280 A JP3427280 A JP 3427280A JP S6316764 B2 JPS6316764 B2 JP S6316764B2
Authority
JP
Japan
Prior art keywords
solar cell
current
power
limiter
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55034272A
Other languages
Japanese (ja)
Other versions
JPS56132122A (en
Inventor
Hidetoshi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3427280A priority Critical patent/JPS56132122A/en
Publication of JPS56132122A publication Critical patent/JPS56132122A/en
Publication of JPS6316764B2 publication Critical patent/JPS6316764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は太陽電池アレイの余剰電流を制御でき
る太陽電池電源装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a solar cell power supply device that can control surplus current of a solar cell array.

<従来例> 従来の太陽電池電源装置は、第1図の構成図に
示すものが用いられていた。図中、1は光エネル
ギーを電気エネルギーに変換する太陽電池素子、
2は所定の電力を得るために複数の太陽電池素子
1を電気的に直並列接続した太陽電池アレイ、3
は太陽電池アレイ2が発生した電力を消費する負
荷、4は負荷電力が太陽電池アレイの発生電力よ
り大きくなつた場合や太陽電池アレイの発生電力
が低下した場合負荷に電力を供給し調節するため
の電力蓄積機能を有する蓄電池、5は太陽電池ア
レイの発生電力と負荷電力との間で生ずる余剰電
力や不足電力に対し、それらの均衡を保ち制御す
る電力制御器である。この電力制御器5は太陽電
池アレイ2の発生電力不足の場合、不足分の電力
を蓄電池4から負荷2へ供給する様に蓄電池4の
出力制御を行ない余剰電力の場合、必要量の電力
を蓄電池4へ充電させる様に入力制御を行なう充
放電制御回路と入力電流をシヤント回路6により
制御する電流制御回路との機能を持つものであ
る。6は負荷へ電力を供給し蓄電池への充電を行
なつてもまだ太陽電池アレイの発生電力が余る場
合、その余剰電力を消費させる機能を持つシヤン
ト回路である。
<Conventional Example> As a conventional solar cell power supply device, one shown in the configuration diagram of FIG. 1 has been used. In the figure, 1 is a solar cell element that converts light energy into electrical energy;
2 is a solar cell array in which a plurality of solar cell elements 1 are electrically connected in series and parallel to obtain a predetermined power; 3;
4 is a load that consumes the power generated by the solar cell array 2, and 4 is a load that supplies and adjusts power to the load when the load power becomes larger than the power generated by the solar cell array or when the power generated by the solar cell array decreases. A storage battery 5 has a power storage function, and 5 is a power controller that balances and controls surplus power and power shortage that occur between the power generated by the solar cell array and the load power. When the power generated by the solar cell array 2 is insufficient, this power controller 5 controls the output of the storage battery 4 so that the insufficient power is supplied from the storage battery 4 to the load 2. When there is surplus power, the required amount of power is transferred to the storage battery. The shunt circuit 6 has the functions of a charge/discharge control circuit that performs input control to charge the battery 4 and a current control circuit that controls the input current using the shunt circuit 6. Reference numeral 6 denotes a shunt circuit that has a function of consuming the surplus power when there is still surplus power generated by the solar cell array even after power is supplied to the load and the storage battery is charged.

この装置は太陽電池アレイ2の発生電力自体を
制御するのではなく、すでに発生してしまつた電
力に対し処置をするものである。ここで太陽電池
アレイ2の発生電力をISC、負荷3で消費する電
流をIL、蓄電池4へ充電される電流をIBATとする
とISCが(IL+IBAT)より小さくなつた場合、シヤ
ント回路6で消費するシヤント電流ISHNTは次のよ
うになる。
This device does not control the power itself generated by the solar cell array 2, but rather deals with the power that has already been generated. Here, if the power generated by the solar cell array 2 is I SC , the current consumed by the load 3 is I L , and the current charged to the storage battery 4 is I BAT , if I SC becomes smaller than ( IL + I BAT ), then The shunt current I SHNT consumed by the shunt circuit 6 is as follows.

ISHNT=ISC−(IL+IBAT) 第2図は太陽電池の電圧−電流(V−I)特性
図で、太陽電池アレイ出力をV−I特性線7を示
している。VBUSはこの回路の動作電圧であり、
VBUSとV−I特性線7との交点をEとする。点E
を電流軸まで平行移動した点をA、同じく点Eを
電圧軸まで平行移動した点をH、零点をDとする
と、点A,D,H,Eで囲まれた部分が太陽電池
アレイの動作電圧VBUSに於ける発生電力となり点
Aが発生電流を示す点となる。ここで、負荷で消
費される電流点をC、蓄電池への充電々流をB−
CとするとA−Bがシヤント電流となり、点A,
B,F,Eで囲まれた部分がシヤント電力とな
る。このシヤント回路には、一般に電力型の抵抗
値Rの抵抗が使用され、I2 SHNT×Rの電力がシヤ
ント回路で熱として消費される。
I SHNT = I SC - ( IL + I BAT ) Fig. 2 is a voltage-current (V-I) characteristic diagram of a solar cell, and shows the V-I characteristic line 7 representing the output of the solar cell array. V BUS is the operating voltage of this circuit,
Let E be the intersection of V BUS and VI characteristic line 7. Point E
Let A be the point translated to the current axis, H be the point E translated parallel to the voltage axis, and D be the zero point.The area surrounded by points A, D, H, and E represents the operation of the solar cell array. This is the generated power at the voltage V BUS , and point A indicates the generated current. Here, the current point consumed by the load is C, and the charging current to the storage battery is B-
C, A-B becomes a shunt current, and points A,
The portion surrounded by B, F, and E becomes shunt power. This shunt circuit generally uses a power type resistor with a resistance value R, and the power of I 2 SHNT ×R is consumed as heat in the shunt circuit.

<解決すべき問題点> この装置を人工衛星に採用した場合、余剰電流
の発生により、シヤント回路からの発生量が徐々
に人工衛星内部に蓄積され衛星全体の温度が上昇
し、搭載されている各機器の許容温度を越え、誤
動作又は致命的故障の原因となることも考えられ
る。又、シヤント回路からの発熱量を予測して衛
星の熱設計を行なう場合も、衛星の運用モードに
よる負荷電流量の違いや、太陽光入射量の違い等
で太陽電池アレイの発生電流量が異なつたりして
余剰電流の量が一定でないため熱設計が非常にむ
ずかしくなる。しかも、シヤント回路を設計する
場合、負荷電流や蓄電池や蓄電池への充電々流が
零の時を考慮して太陽電池アレイの発生電力を全
て消費できる能力を持たせる必要がある。これら
のことは、シヤント回路の外形寸法が大型化する
という点で衛星の実装設計にも大きな制約を与え
ている。この様に従来の装置にはシヤント回路の
発熱に帰因した衛星の誤動作や故障、熱設計の複
雑化、そして外形寸法の大きさによる実装設計上
の制約などの欠点が生じていた。
<Problems to be solved> When this device is adopted in a satellite, the amount generated from the shunt circuit will gradually accumulate inside the satellite due to the generation of surplus current, causing the temperature of the entire satellite to rise, causing the temperature of the entire satellite to rise. It is also possible that the temperature exceeds the allowable temperature of each device, causing malfunction or fatal failure. In addition, when performing satellite thermal design by predicting the amount of heat generated from the shunt circuit, it is important to note that the amount of current generated by the solar cell array varies due to differences in the amount of load current depending on the satellite's operation mode, and differences in the amount of sunlight incident. Thermal design becomes extremely difficult because the amount of excess current is not constant. Moreover, when designing a shunt circuit, it is necessary to have the ability to consume all the power generated by the solar cell array, taking into consideration the times when the load current and the charging current to the storage battery or storage battery are zero. These issues also impose major constraints on the mounting design of satellites in that the external dimensions of the shunt circuits become larger. As described above, conventional devices have had drawbacks such as satellite malfunctions and failures due to heat generation in the shunt circuit, complicated thermal design, and restrictions on mounting design due to large external dimensions.

本発明の目的は、これらの欠点を除去し、太陽
電池アレイの発生電流量を連続的に制御し、負荷
および蓄電池が必要とする電流量と等しい量のみ
発生させ余剰電流を生じさせない様にした太陽電
池電源装置を提供することにある。
The purpose of the present invention is to eliminate these drawbacks, to continuously control the amount of current generated by the solar cell array, and to generate only the amount of current equal to the amount of current required by the load and storage battery, thereby preventing the generation of surplus current. The purpose of the present invention is to provide a solar battery power supply device.

<問題点を解決するための手段> 本発明による太陽電池電源装置は、太陽電池ア
レイの出力電力を所定の値に制限するようにアレ
イに直列に接続され機械的に傾斜可能なリミツタ
用太陽電池を含む太陽電池制御器と、太陽電池ア
レイの出力電圧を検出して所定の基準電圧と比較
しこの比較結果に基づいて太陽電池アレイの出力
電力が所定の値になるようにリミツタ用太陽電池
の傾斜角を制御する電力制御器とを含んでいる。
<Means for Solving the Problems> The solar cell power supply device according to the present invention includes limiter solar cells connected in series to the solar cell array and mechanically tiltable so as to limit the output power of the solar cell array to a predetermined value. A solar cell controller that detects the output voltage of the solar cell array, compares it with a predetermined reference voltage, and controls the limiter solar cell so that the output power of the solar cell array reaches a predetermined value based on the comparison result. and a power controller for controlling the tilt angle.

<作用> 太陽電池アレイの出力に余剰電流が生ずるよう
な状態になつた場合、電力制御器でこの状態を検
出し、太陽電池制御器を制御して、太陽電池アレ
イの発生電力を制限する。
<Function> When a state occurs in which surplus current is generated in the output of the solar cell array, the power controller detects this state and controls the solar cell controller to limit the power generated by the solar cell array.

<実施例> 以下図面により本発明を詳細に説明する。<Example> The present invention will be explained in detail below with reference to the drawings.

第3図は本発明の実施例のブロツク図である。
この図の電力制御器5は、蓄電池4への充放電電
流を制御する充放電制御回路11と、基準電圧回
路12からの基準電圧と太陽電池の出力電圧とを
比較しその電圧により太陽電池制御器8に制御信
号を送る制御回路13とを含むものである。この
太陽電池制御器8は、太陽電池アレイと直列に接
続されたリミツタ用太陽電池9と、このリミツタ
用太陽電池9の太陽方向に対する角度を前記制御
信号により機械的に制御する駆動部10とから構
成される。
FIG. 3 is a block diagram of an embodiment of the invention.
The power controller 5 in this figure compares a reference voltage from a charging/discharging control circuit 11 that controls the charging/discharging current to the storage battery 4 and a reference voltage from a reference voltage circuit 12 with the output voltage of the solar cell, and controls the solar cell based on the voltage. The control circuit 13 includes a control circuit 13 that sends a control signal to the device 8. This solar cell controller 8 includes a limiter solar cell 9 connected in series with the solar cell array, and a drive section 10 that mechanically controls the angle of the limiter solar cell 9 with respect to the solar direction using the control signal. configured.

次に本実施例の動作を説明する。 Next, the operation of this embodiment will be explained.

まず、太陽電池アレイ2の出力電流ISCが負荷
3に流れる電流ILと蓄電池への充電々流IBATの合
計値より大きくなつた場合(ISC>IL+IBAT)、電力
制御器5が余剰電流量を検知し、ISC=IL+IBAT
なる様な信号を太陽電池出力制御装置8へ送る。
この信号を受けた太陽電池出力制御装置8は駆動
部10を作動させリミツタ用太陽電池9の角度を
変化させる。このリミツタ用太陽電池9の角度変
化により受光面への太陽入射光量が減少し出力電
流も低下するので、太陽電池アレイ2の出力電流
にリミツタがかかりISCが制限され ISC=IL+IBAT となる。これは太陽電池の出力電流が受光面に入
射する光量にほぼ比例するという特性および複数
個の太陽電池素子を直列接続して太陽電池アレイ
を構成した場合、アレイの出力電流は最も出力電
流の小さい太陽電池素子の値に押えられてしまう
という特性を利用したものである。
First, when the output current I SC of the solar cell array 2 becomes larger than the sum of the current I L flowing to the load 3 and the charging current I BAT to the storage battery (I SC > I L + I BAT ), the power controller 5 detects the surplus current amount and sends a signal such that I SC =I L +I BAT to the solar cell output control device 8.
Upon receiving this signal, the solar cell output control device 8 operates the drive unit 10 to change the angle of the limiter solar cell 9. Due to this angle change of the limiter solar cell 9, the amount of sunlight incident on the light receiving surface decreases, and the output current also decreases, so a limiter is applied to the output current of the solar cell array 2, limiting I SC . I SC = I L + I BAT becomes. This is because the output current of a solar cell is almost proportional to the amount of light incident on the light-receiving surface, and when a solar cell array is constructed by connecting multiple solar cell elements in series, the output current of the array is the lowest output current. This takes advantage of the characteristic that the value is suppressed by the value of the solar cell element.

第4図は太陽電池素子の電圧−電流特性の太陽
の傾斜角度による変化特性図を示す。ここでθは
太陽光入射角で太陽電池受光面の法線と太陽光と
の角度である。太陽電池受光面の法線方向から太
陽光が入射する場合(θ=0゜)は特性線14のV
−I特性を有し、θが0より大きくなるに従いV
−I特性線は14から15、15から16,17
へと特性線を変化し、θ=90゜で出力は零となる。
FIG. 4 shows a characteristic diagram of changes in the voltage-current characteristics of a solar cell element depending on the inclination angle of the sun. Here, θ is the sunlight incident angle, which is the angle between the normal to the solar cell light-receiving surface and the sunlight. When sunlight enters from the normal direction of the solar cell light receiving surface (θ = 0°), V of characteristic line 14
-I characteristic, and as θ becomes larger than 0, V
-I characteristic line is 14 to 15, 15 to 16, 17
The characteristic line changes to , and the output becomes zero at θ=90°.

第5図はコーナー電極型太陽電池素子の短絡電
流ISC、開放電圧VOC、最大電力Pnaxの傾斜角度に
よる特性図を示す。ISC,Pnaxはほぼcosθの関数
に従つて変化し、例えば太陽光入射角θを60゜に
した場合、約50%のISCやPnaxを減少させること
ができる。これは太陽方向が太陽電池受光面の法
線方向から外れると、太陽電池受光面への太陽光
入射量の実効値が減少するためである。
FIG. 5 shows a characteristic diagram of the short circuit current I SC , the open circuit voltage V OC , and the maximum power P nax depending on the inclination angle of the corner electrode type solar cell element. I SC and P nax change approximately according to a function of cos θ, and for example, when the sunlight incident angle θ is set to 60°, I SC and P nax can be reduced by about 50%. This is because when the direction of the sun deviates from the normal direction of the solar cell light receiving surface, the effective value of the amount of sunlight incident on the solar cell light receiving surface decreases.

第6図a,bは本発明の実施例の構造を示す斜
視図およびその側面図を示す。この太陽電池アレ
イ2の受光面と垂直方向から太陽光が入射してい
る場合、余剰電流のない時は、リミツタ太陽電池
9が太陽電池アレイ2の太陽電池素子1と水平
(θ=0゜)の状態にある。そして負荷電流の減少
などにより余剰電流が発生すると、電力制御器5
からの制御信号で太陽電池出力制御装置8の駆動
部10が作動し、リミツタ用太陽電池9の受光面
の方線方向と太陽方向との間に角度を生じさせ、
太陽電池アレイ2の発生電流を制御する。
Figures 6a and 6b show a perspective view and a side view of the structure of an embodiment of the present invention. When sunlight is incident from a direction perpendicular to the light-receiving surface of the solar cell array 2, when there is no surplus current, the limiter solar cell 9 is parallel to the solar cell element 1 of the solar cell array 2 (θ=0°). is in a state of When surplus current occurs due to a decrease in load current, the power controller 5
The drive unit 10 of the solar cell output control device 8 is operated by a control signal from the limiter solar cell 9 to create an angle between the normal direction of the light-receiving surface of the limiter solar cell 9 and the direction of the sun.
The current generated by the solar cell array 2 is controlled.

第7図はこれらの関係を説明する太陽電池のV
−I特性図である。18はリミツタ用太陽電池9
への太陽光入射角がθ=0の時のV−I特性線で
ある。この回路の動作電圧をVBUSとするとVBUS
V−I特性線18との交点をMとし、M点を電流
軸まで平行移動した点をI、電圧軸で平行移動し
た点をP、零点をLとすると点I,L,P,Nで
囲まれた部分が動作電圧VBUSに於ける発生電力と
なり、Iが発生電流となる。そして余剰電流が発
生し、電力制御器8からの制御信号で駆動部10
が作動し、リミツタ用太陽電池9への太陽光入射
角がθ=θ1の時をV−I特性線19、余剰電流が
さらに増加し、θ=θ2の時をV−I特性線20と
なつたとする。動作電圧VBUSとV−I特性線19
との交点をNとし、このN点を電流軸および電圧
軸へ平行移動した点をJおよびPとすると、点
J,L,P,Nで囲まれた部分がθ=θ1の時にリ
ミツタ用太陽電池9により制御された発生電力で
あり、Jが発生電流となる。同様にVBUSとV−I
特性線20との交点をOとし、このO点を電流軸
および電圧軸へ平行移動した点をKおよびPとす
ると、K,L,P,Oで囲まれた部分がθ=θ2
時に制御された発生電力であり、Kが発生電流と
なる。この様に、リミツタ用太陽電池9の角度を
変えることにより動作点が点M→N→Oと変化
し、出力電流も零になるまで連続的に制御でき
る。ここで、出力電力が零となるのはθ≧90゜と
なつた場合である。負荷電流等が増加し、ISC<IL
+IBATとなつた時は、電力制御器からの制御信号
によりリミツタ用太陽電池受光面への太陽光入射
角θが小さくなる様に駆動部を作動させ回路の動
作点を点O→N→Mと連続的に変化させることが
できる。
Figure 7 shows the V of the solar cell to explain these relationships.
-I characteristic diagram. 18 is solar cell 9 for limita
This is a VI characteristic line when the angle of incidence of sunlight on θ=0. Letting the operating voltage of this circuit be V BUS , the intersection of V BUS and the VI characteristic line 18 is M, the point translated from M point to the current axis is I, the point translated parallel to the voltage axis is P, and the zero point is Letting L be the portion surrounded by points I, L, P, and N, the generated power at the operating voltage V BUS , and I is the generated current. Then, surplus current is generated, and a control signal from the power controller 8 causes the drive unit 10 to
operates and the angle of incidence of sunlight on the limiter solar cell 9 is θ = θ 1 , the VI characteristic line 19, and when the surplus current further increases and θ = θ 2 , the VI characteristic line 20 Suppose it becomes. Operating voltage V BUS and V-I characteristic line 19
Let the intersection point be N, and the points obtained by moving this N point in parallel to the current and voltage axes be J and P. When θ=θ 1 , the area surrounded by points J, L, P, and N is for the limiter. This is the generated power controlled by the solar cell 9, and J is the generated current. Similarly, V BUS and V-I
If the intersection with the characteristic line 20 is O, and the points obtained by moving this O point in parallel to the current and voltage axes are K and P, then the area surrounded by K, L, P, and O is when θ=θ 2 This is the controlled generated power, and K is the generated current. In this way, by changing the angle of the limiter solar cell 9, the operating point changes from point M→N→O, and the output current can be continuously controlled until it becomes zero. Here, the output power becomes zero when θ≧90°. The load current, etc. increases, and I SC < I L
When +I BAT occurs, the control signal from the power controller operates the drive unit so that the sunlight incident angle θ on the limiter solar cell light receiving surface becomes small, and the operating point of the circuit changes from O→N→M. can be changed continuously.

第8図は電力制御器5からの信号でリミツタ用
太陽電池9の角度を変える働きをする駆動部10
の具体的構造図で、サーマルルーバーを組合わせ
て使用したものである。21はリミツタ太陽電池
を貼付けてある基板、22はコイル状のバイメタ
ル、23はバイメタルを伸張させるための熱を発
生するヒータである。この太陽電池アレイに余剰
電流が発生すると、電力制御器5からの信号によ
り余剰電流又は負荷電流の一部をヒータ23に流
し、その時発生する熱によりコイル状のバイメタ
ル22を伸張させ、リミツタ用太陽電池9を貼付
けてある基板21の角度を変化させる。これによ
りリミツタ用太陽電池の角度が変化し太陽電池ア
レイの出力を連続的に制御することができる。
FIG. 8 shows a drive unit 10 that works to change the angle of the limiter solar cell 9 based on a signal from the power controller 5.
This is a concrete structural diagram of a thermal louver used in combination. 21 is a substrate to which a limiter solar cell is attached, 22 is a coiled bimetal, and 23 is a heater that generates heat to stretch the bimetal. When a surplus current is generated in this solar cell array, a part of the surplus current or load current is sent to the heater 23 according to a signal from the power controller 5, and the coil-shaped bimetal 22 is expanded by the heat generated at that time. The angle of the substrate 21 to which the battery 9 is attached is changed. This changes the angle of the limiter solar cell, making it possible to continuously control the output of the solar cell array.

<発明の効果> 以上説明した様にリミツタ用太陽電池を使用す
ることにより太陽電池アレイの発生電流を制御す
ることができるので従来の装置の様な余剰電力を
消費するためのシヤント回路が不要になり、シヤ
ント回路の発熱による温度上昇もなくなる。
<Effects of the invention> As explained above, by using limiter solar cells, it is possible to control the current generated by the solar cell array, so there is no need for a shunt circuit for consuming surplus power as in conventional devices. This eliminates the temperature rise due to heat generated by the shunt circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池出力制御装置のブロツ
ク図、第2図は従来の太陽電池出力制御装置の特
性図、第3図は本発明の実施例のブロツク図、第
4図は太陽電池の傾斜によるV−I特性図、第5
図はコーナー電極型太陽電池出力の角度特性図、
第6図は第3図の具体的構成図、第7図は第3図
の動作特性図、第8図は第6図の駆動部の具体的
構造図である。図において、 1……太陽電池素子、2……太陽電池アレイ、
3……負荷、4……蓄電池、5……電力制御器、
6……シヤント回路、7……太陽電池アレイのV
−I特性線、8……太陽電池出力制御装置、9…
…リミツタ用太陽電池、10……駆動部、11…
…充放電制御回路、12……基準電圧回路、13
……制御回路、14〜17……太陽電池素子のV
−I特性線、18〜20……リミツタ用太陽電池
を接続した時のV−I特性線、21……基板、2
2……バイメタル、23……ヒータである。
Fig. 1 is a block diagram of a conventional solar cell output control device, Fig. 2 is a characteristic diagram of a conventional solar cell output control device, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is a diagram of a solar cell output control device. VI characteristic diagram due to slope, 5th
The figure shows the angular characteristics of the output of a corner electrode type solar cell.
6 is a detailed diagram of the configuration of FIG. 3, FIG. 7 is a diagram of the operating characteristics of FIG. 3, and FIG. 8 is a diagram of the specific structure of the drive section of FIG. 6. In the figure, 1...Solar cell element, 2...Solar cell array,
3...Load, 4...Storage battery, 5...Power controller,
6...Shunt circuit, 7...V of solar cell array
-I characteristic line, 8...Solar cell output control device, 9...
...Solar cell for limiter, 10...Drive unit, 11...
...Charge/discharge control circuit, 12...Reference voltage circuit, 13
...Control circuit, 14-17...V of solar cell element
-I characteristic line, 18-20...V-I characteristic line when the limiter solar cell is connected, 21...Substrate, 2
2... bimetal, 23... heater.

Claims (1)

【特許請求の範囲】[Claims] 1 所定数の太陽電池素子を直列および並列に接
続して所定電力を得るようにした太陽電池アレイ
と、この太陽電池アレイと直列接続され1個の太
陽電池素子あるいは並列に接続された複数の太陽
電池素子からなり前記太陽電池の出力電力をリミ
ツトするリミツタと、このリミツタの太陽電池素
子面を制御信号により太陽方向から機械的に傾斜
させる駆動手段と、前記直列接続された前記太陽
電池アレイと前記リミツタの両端に接続される負
荷に印加される電圧を検出しこの電圧値と所定の
基準電圧値とを比較しこの比較した結果に従つて
前記リミツタの傾斜角度を制御する前記制御信号
を形成する制御回路とを含む太陽電池電源装置。
1 A solar cell array in which a predetermined number of solar cell elements are connected in series and parallel to obtain a predetermined power, and one solar cell element connected in series with this solar cell array or multiple solar cells connected in parallel. a limiter comprising a battery element and limiting the output power of the solar cell; a driving means for mechanically tilting the solar cell element surface of the limiter from the solar direction in response to a control signal; the solar cell array connected in series; Detecting the voltage applied to the load connected to both ends of the limiter, comparing this voltage value with a predetermined reference voltage value, and forming the control signal for controlling the inclination angle of the limiter according to the comparison result. A solar cell power supply device including a control circuit.
JP3427280A 1980-03-17 1980-03-17 Solar battery power source Granted JPS56132122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3427280A JPS56132122A (en) 1980-03-17 1980-03-17 Solar battery power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3427280A JPS56132122A (en) 1980-03-17 1980-03-17 Solar battery power source

Publications (2)

Publication Number Publication Date
JPS56132122A JPS56132122A (en) 1981-10-16
JPS6316764B2 true JPS6316764B2 (en) 1988-04-11

Family

ID=12409517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3427280A Granted JPS56132122A (en) 1980-03-17 1980-03-17 Solar battery power source

Country Status (1)

Country Link
JP (1) JPS56132122A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176427A (en) * 1984-02-23 1985-09-10 松下電工株式会社 Charger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341700U (en) * 1976-09-13 1978-04-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341700U (en) * 1976-09-13 1978-04-11

Also Published As

Publication number Publication date
JPS56132122A (en) 1981-10-16

Similar Documents

Publication Publication Date Title
JP6937064B1 (en) Battery charging / discharging device and method
US7786716B2 (en) Nanosatellite solar cell regulator
US8866465B2 (en) Nanosatellite photovoltaic regulator
EP1505659A1 (en) Power source device
JPH07503433A (en) Spacecraft bus adjustment using solar panel position
EP0055937B1 (en) A temperature compensated voltage regulator for photovoltaic charging systems
CN114417494A (en) Energy balance analysis method of small satellite power supply system
JPH06296333A (en) Power source for space ship
JPH066940A (en) Solar generator
JPS6316764B2 (en)
Peter et al. Switched capacitor dc-dc converter based maximum power point tracking of a PV source for nano satellite application
JP2611724B2 (en) Solar cell power supply
JPH11285168A (en) Charging circuit
JPH1140831A (en) Solar cell power supply device
JP2666754B2 (en) Power supply method in solar cell power supply
JP3047935B2 (en) Power supply
JPS61251436A (en) Solar cell power source unit
JP3191347B2 (en) Bus voltage controller
JPH0433529A (en) Power storage type power supply device
US7862946B1 (en) Self-regulating control of parasitic loads in a fuel cell power system
JPH08123562A (en) Solar battery applying equipment
JPS60146310A (en) Solar battery power supply device
JPS6289435A (en) Charger
JPH07147740A (en) Power supply apparatus of satellite
JPS61203835A (en) Condenser typesolar battery