JPS60146310A - Solar battery power supply device - Google Patents

Solar battery power supply device

Info

Publication number
JPS60146310A
JPS60146310A JP59002793A JP279384A JPS60146310A JP S60146310 A JPS60146310 A JP S60146310A JP 59002793 A JP59002793 A JP 59002793A JP 279384 A JP279384 A JP 279384A JP S60146310 A JPS60146310 A JP S60146310A
Authority
JP
Japan
Prior art keywords
array
solar cell
power
cell array
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59002793A
Other languages
Japanese (ja)
Inventor
Hidetoshi Arai
荒井 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59002793A priority Critical patent/JPS60146310A/en
Publication of JPS60146310A publication Critical patent/JPS60146310A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PURPOSE:To prevent the generation of a shunt current by providing an array part for limiter to a solar battery array part and then unfolding and storing a part of the array part for limiter. CONSTITUTION:Plural solar battery elements 1 are connected in parallel and in series to form a solar battery array 10, and a limiter array part 1a and a main array part 1b are formed to each element 1. The electric power produced from the array 10 is supplied to a load 3 through a power control part 11 as well as to an accumulator 4. In this case, a reference power control signal is transmitted to a solar battery array control part 12 to drive a motor to unfold and store the array 10 when the part 11 detects an overcurrent, etc. in order to prevent the overstress to the load 3 and the battery 4. Then the part 12 decides the unfolding/storing width of the part 1a of the part 10 in response to said control signal and then unfolds and stores the part 1a through an array unfolding mechanism 7.

Description

【発明の詳細な説明】 本発明は衛星等の電源装置として用すられる太陽電池電
源装置、さら忙詳しく云えば太陽電池アレイに生じる余
剰電力制御に改良を施こした太陽電池電源装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell power supply device used as a power supply device for a satellite, etc., and more specifically, to a solar cell power supply device that has improved control of surplus power generated in a solar cell array.

第1図は従来の太陽電池電源装置の一例で、太陽電池ア
レイより発生する余剰電力を消費させるシャント回路を
有するものである。
FIG. 1 shows an example of a conventional solar cell power supply device, which has a shunt circuit for consuming surplus power generated from a solar cell array.

図において、光エネルギを電気エネルギに変換する太陽
電池素子lは複数個直並列に接続され、太陽電池アレイ
2を形成している。太陽電池アレイ2で発生したエネル
ギは電力制御器5を通って負荷3に供給される。電力制
御器5を通って負荷3に並列接続されてしる蓄電池4は
負荷電力が太陽゛電池アレイ2の発生電力よシ大きくな
った場合、あるいは太陽電池アレイの発生電力が低下し
た場合、負荷3に電力を供給するためのものである。シ
ャント回路6は太陽電池アレイ2で発生した電力の余剰
分を消費する。
In the figure, a plurality of solar cell elements 1 that convert light energy into electrical energy are connected in series and parallel to form a solar cell array 2. Energy generated by the solar cell array 2 is supplied to the load 3 through the power controller 5. The storage battery 4, which is connected in parallel to the load 3 through the power controller 5, is connected to the load when the load power becomes larger than the power generated by the solar cell array 2, or when the power generated by the solar cell array decreases. This is for supplying power to 3. The shunt circuit 6 consumes the surplus power generated by the solar cell array 2.

電力制御器5は太陽電池セル2より発生電力を受けて、
上記シャント回路6、蓄電池4、負荷3に対する制御を
行な−、太陽電池アレイの発生電力と負荷電力との間で
生ずる余剰電力や不足電力に対し、均衡を保つ。
The power controller 5 receives the generated power from the solar cell 2,
The shunt circuit 6, the storage battery 4, and the load 3 are controlled to maintain a balance against surplus power and power shortage occurring between the power generated by the solar cell array and the load power.

す々わち、太陽電池アレイの発生電力が不足の場合には
不足分の電力を蓄電池4から負荷3へ供給するよう制御
し、余剰電力の場合には必要量の電力を蓄電池4へ充電
させるように制御する。そして負荷3へ電力を供給し蓄
電池4へ充電を行なってもまだ太陽電池アレイの発生電
力が余る場合、シャント回路6を動作させてその余剰電
力を消費させる。
That is, if the power generated by the solar cell array is insufficient, the storage battery 4 is controlled to supply the insufficient power to the load 3, and if there is surplus power, the necessary amount of power is charged to the storage battery 4. Control as follows. If power is still generated by the solar cell array after supplying power to the load 3 and charging the storage battery 4, the shunt circuit 6 is operated to consume the surplus power.

太陽電池アレイ2は展開機構7によシ収納部19より引
き出されて展開される。展開機構7は駆動モータと、と
のモータにより駆動させられる伸展ブームよりhす、太
陽電池アレイ2は伸展ブームにより展開させられる。駆
動回路部8は駆動モータを制御するための回路である。
The solar cell array 2 is pulled out from the storage section 19 by the unfolding mechanism 7 and unfolded. The deployment mechanism 7 is driven by a drive motor and an extension boom driven by the motors, and the solar cell array 2 is deployed by the extension boom. The drive circuit section 8 is a circuit for controlling the drive motor.

従来の太陽電池電源装置の発生電力の制御方法は、上記
説明で明らか表ようにすでに発生してしまった電力に対
し処置をする方式である。
As is clear from the above description, the conventional method for controlling the power generated by a solar battery power supply device is a method for dealing with the power that has already been generated.

上記装置におして、太陽電池アレイ2の発生電流(電力
)をIsc、負荷で消費する電流をIL。
In the above device, the current (power) generated by the solar cell array 2 is Isc, and the current consumed by the load is IL.

蓄電池へ充電される電流をIBATとするとIscが(
IL 十IBAT )より大きくなった場合、すなわち
Isc ) (IL+ IBAT )の関係にあるとき
はIsc −(IL+IBAT )が余剰電流=シャン
ト磁流l5HNTとな9、シャント回路で消費し々けれ
ばならなく々る。
If the current charged to the storage battery is IBAT, Isc is (
When it becomes larger than IL + IBAT ), that is, when the relationship is Isc ) (IL + IBAT ), Isc - (IL + IBAT ) becomes surplus current = shunt magnetic current l5HNT9, and it must be completely consumed in the shunt circuit. That's it.

これらの関係を第2図に示す太陽電池の電圧−電流(V
−I)特性で説明する。曲線9は第1図の太陽電池アレ
イ2出力をV−I特性であられしたものである。VBL
18は本回路の動作電圧であり、VausとV−I特性
9との交点をEとし、E点を電圧軸に対し平行移動し、
電流軸まで下した点をA1同じくE点を電流軸に対し平
行移動し、電圧軸まで下した点をH1零点をDとすると
、A、D、H,Eで囲まれた部分が太陽電池アレイ2の
動作電圧VBU8における発生電力とかり、Aが発生電
流となる。ここで負荷3で消費される電流を0、蓄電池
への充電電流をB−0とすると、A−((B−0) +
O)=A−Bが余剰電流すkわちシャント電流と々すA
、B、F、Bで囲まれた部分がシャント電力となる。
These relationships are shown in Figure 2 as voltage-current (V
- I) Explain in terms of characteristics. Curve 9 is the output of the solar cell array 2 shown in FIG. 1 obtained by applying the VI characteristic. VBL
18 is the operating voltage of this circuit, the intersection of Vaus and the VI characteristic 9 is set to E, and the E point is moved parallel to the voltage axis.
The point down to the current axis is A1. Similarly, point E is moved parallel to the current axis, and the point down to the voltage axis is H1. If the zero point is D, the area surrounded by A, D, H, and E is the solar cell array. The generated power at the operating voltage VBU8 of 2 is the generated current, and A is the generated current. Here, if the current consumed by load 3 is 0 and the charging current to the storage battery is B-0, then A-((B-0) +
O) = A - B is the surplus current k, that is, the shunt current A
, B, F, and B is the shunt power.

シャント回路6には、一般的に電力形の抵抗6aが使用
されてbる。この抵抗値をRとすると、シャント這流”
I 8 HPI Tが流れることにより、I288NT
×凡の電力がシャント回路6で消費されることにかり、
そのほとんどが熱に変換されてしまう。
The shunt circuit 6 generally uses a power type resistor 6a. If this resistance value is R, then the shunt flow is
By flowing I 8 HPI T, I288NT
×Since the average power is consumed in the shunt circuit 6,
Most of it is converted into heat.

本装置を人工衛星に搭載した場合を例にとると、余剰電
流の発生により、シャント回路からの発熱量が徐々に人
工衛星内部に蓄積され、次第に、衛星全体の温度が上昇
し、搭載されている各機器の許容温度を越えてしttn
誤動作または致命的故障の原因となることも考えられる
For example, when this device is mounted on a satellite, the generation of surplus current causes the heat generated from the shunt circuit to gradually accumulate inside the satellite, gradually increasing the temperature of the entire satellite, and causing the temperature of the entire satellite to rise. The temperature exceeds the allowable temperature of each device.ttn
It is also conceivable that it may cause malfunction or fatal failure.

また、シャント回路からの発熱量を予測して衛星の熱設
計を行なう場合でも衛星の運用モードによる負荷電流量
の違すや、太陽光入射量の違い等で太陽電池アレイの発
生電流量が異なるなど余剰電流量が一定でなりため、非
常に難しくなる。
In addition, even when thermal design of a satellite is performed by predicting the amount of heat generated from the shunt circuit, the amount of current generated by the solar array will vary depending on the load current amount depending on the satellite's operation mode and the amount of sunlight incident. This becomes extremely difficult because the amount of surplus current remains constant.

しかも、シャント回路を設計する場合、負荷電流や蓄電
池への充電電流が零の時を考慮して太陽゛成池アレイの
発生電力を全て消費できる能力を持念せる必要がある。
Moreover, when designing a shunt circuit, it is necessary to take into consideration the times when the load current and the charging current to the storage battery are zero, and have the ability to consume all the power generated by the solar array.

しかも、信頼性を考慮した冗長回路を必要とするケース
も少々くない。
Moreover, there are few cases in which a redundant circuit is required in consideration of reliability.

これらのことはシャント回路の外形寸法が大形化すると
いう点で、衛星の実装設計にも大き々制約を与えている
These factors greatly restrict the mounting design of the satellite in that the external dimensions of the shunt circuit become larger.

以上、述べたように、従来のこの種の装置にはシャント
回路の発熱に帰因する、衛星の誤動作や故障の発生、熱
設計の複雑化、そして外形寸法の大きさによる実装設計
上の制約などの欠点が生じてbた。
As mentioned above, conventional devices of this type suffer from satellite malfunctions and failures due to heat generation in the shunt circuit, complicated thermal design, and mounting design constraints due to large external dimensions. There were some drawbacks such as:

本発明の目的は、以上の欠点を除去するもので、負荷お
よび蓄電池が必要とする電流量と等しい量のみ発生させ
、余剰電流すなわちシャント電流を生じさせなりように
した太陽電池電源装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a solar battery power supply device that generates only an amount of current equal to the amount of current required by the load and the storage battery, and does not generate surplus current, that is, shunt current. There is a particular thing.

前記目的を達成するために本発明による太陽電池電源装
置は複数の太陽電池素子を電気的に直並列接続した太陽
電池アレイと、前記太陽電池アレイを収納する収納部と
、前記太陽電池アレイの収納量を制御するプレイ展開機
構と、負荷と、蓄電池と、前記太陽電池アレイより受け
る発生電力が前記負荷の消費量より大きいとき前記蓄電
池に供給し、さらに余剰のときは、その余剰分に対応の
電力制御信号を発生する電力制御部と、前記電力制御信
号と所定の設定値とを比較し、前記アレイ展開機構の駆
動量を決める駆動制御信号を出力する太陽電池アレイ制
御部とを含み、太陽電池アレイの一部を収納または展開
することにより太陽電池アレイの電力を余剰分にいよう
に発生させるように構成しである。
In order to achieve the above object, the solar cell power supply device according to the present invention includes a solar cell array in which a plurality of solar cell elements are electrically connected in series and parallel, a storage section for storing the solar cell array, and a storage section for the solar cell array. a play expansion mechanism that controls the amount of electricity, a load, a storage battery, and when the generated power received from the solar cell array is larger than the consumption amount of the load, it is supplied to the storage battery, and when there is a surplus, a power supply corresponding to the surplus is provided. a solar cell array control section that compares the power control signal with a predetermined setting value and outputs a drive control signal that determines the drive amount of the array deployment mechanism; The structure is such that surplus power from the solar cell array can be generated as needed by storing or expanding a portion of the battery array.

前記構成によれば従来の問題は解決でき、本発明の目的
は完全に達成される。
According to the above configuration, the conventional problems can be solved and the object of the present invention can be completely achieved.

以下、図面を参照して本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は本発明による太陽電池電源装置の実施例を示す
ブロック図である。
FIG. 3 is a block diagram showing an embodiment of the solar cell power supply device according to the present invention.

図において、光エネルギを電気エネルギに変換する太陽
電池素子1が複数個並直列接続されて太陽電池アレイ1
0が形成されている。各太陽′電池素子はリミッタ用ア
レイ部1aとメインアレイ部1bよりなる。太陽電池ア
レイ10に発生したα力は電力制御部11を通って負荷
3に供給される。蓄′醒池4は電力制御部11を通して
太陽″電池アレイ10に@続されている。電力制御部1
1は太陽電池アレイ10の出力を制御し、負荷3への過
大ストレスを防止したり、蓄電池4の性能劣化を防止す
るため充放電々流量を制御し、かつ余剰電流を検知し、
太陽畦池アレイ制御部12ヘアレイ展開/収納ブームの
モータを駆動する基準となる電力制御信号を送る。太1
11!電池アレイ制御部12は電力制御部11より電力
制御信号を受けると、その電力制御信号に応じて太陽電
池アレイlOの展開/収納@(量)を決める駆動制御信
号を出力する。アレイ展開機構7はアレイを展開/収納
する伸展ブームとこれを駆動する駆動モータよりなり、
駆動モータは太陽電池アレイ制御部12よりの駆動制御
信号により駆動させられる。
In the figure, a solar cell array 1 includes a plurality of solar cell elements 1 that convert light energy into electrical energy connected in parallel and series.
0 is formed. Each solar cell element consists of a limiter array section 1a and a main array section 1b. The α force generated in the solar cell array 10 is supplied to the load 3 through the power control section 11. The storage pond 4 is connected to the solar cell array 10 through the power control section 11.The power control section 1
1 controls the output of the solar cell array 10, controls the charging/discharging flow rate to prevent excessive stress on the load 3, and prevents performance deterioration of the storage battery 4, and detects surplus current;
Solar ridge array control unit 12 Sends a power control signal that serves as a reference for driving the motor of the hair array deployment/storage boom. Thick 1
11! When the battery array control unit 12 receives the power control signal from the power control unit 11, it outputs a drive control signal that determines the expansion/storage@(amount) of the solar battery array IO in accordance with the power control signal. The array deployment mechanism 7 consists of an extension boom for deploying/storing the array and a drive motor for driving the boom.
The drive motor is driven by a drive control signal from the solar cell array controller 12.

次に動作につ−で説明する。Next, the operation will be explained.

まず、太陽電池アレイ10の出力電流Isoが負荷3に
流れる電流ILと蓄電池への充電電流I BATの合計
値より大きくkつた場合、す々わちIso ) IL 
+ IBATとなるとIso、−(IL +IBAT)
の余剰電流が発生する。すると電力制御器11が余剰電
流量を検知し、Iso = IL + IBATとたる
ような電力制御信号を太陽電池アレイ制御部12へ送る
。この信号を受けた太陽電池アレイ制御部12は、あら
かじめ設定されている値と比較し、太陽電池アレイ10
の収納幅(量)を駆動制御信号として駆動機構7へ送抄
、アレイの一部が収納される。これにより太陽電池アレ
イ10の受光面が減少し、その結果、Isoが制限され
l5o=IL + IBATとkる。
First, if the output current Iso of the solar cell array 10 is larger than the sum of the current IL flowing through the load 3 and the charging current IBAT to the storage battery, then
+ IBAT means Iso, -(IL +IBAT)
surplus current is generated. Then, the power controller 11 detects the amount of surplus current and sends a power control signal such as Iso=IL+IBAT to the solar cell array controller 12. Upon receiving this signal, the solar cell array control unit 12 compares it with a preset value and determines whether the solar cell array 10
The paper is sent to the drive mechanism 7 using the storage width (amount) as a drive control signal, and a part of the array is stored. This reduces the light-receiving surface of the solar cell array 10, and as a result, Iso is limited to 15o=IL+IBAT.

本方式の特徴は、太陽電池アレイの一部分を展開または
収納することにより全発生覗カを制御することであり、
この点について以下に説明する。
The feature of this method is that all generated peepers are controlled by deploying or retracting a portion of the solar cell array.
This point will be explained below.

第4図〜第6図は本発明にかかる太陽電池電源装置の太
陽電池アレイ部の実施例を示したもので第4図(a)は
折畳み収納方式、第4図(blは巻込み収納方式の太陽
電池アレイの外観図である。
4 to 6 show embodiments of the solar cell array section of the solar cell power supply device according to the present invention, in which FIG. 4(a) shows a folding storage method, and FIG. FIG. 2 is an external view of a solar cell array.

第5図、第6図は太陽電池アレイ部のアレイ構成を示し
たもので、13がリミッタ用アレイ部(イ)中 〜(ロ)14がメインアレイ部である。第5図はアレイ
部を4回路に分割した例である。各々の回路はリミッタ
用アレイ部(イ)〜に)とメインアレイ部に分かれてお
り、リミッタ用アレイ部は第6図に示すようにパドルの
根元部分に実装されている。リミッタ用アレイ部(イ)
〜(ロ)はメインアレイと直列に接続されているため、
リミッタアレイ部を折畳む等して太陽光が照射されなし
ようにすればこの部分の太陽電池素子はダイオードの逆
特性をもち、それに直列接続されているメインアレイ部
に太陽光が照射されても電流は流れな−。第7図は太陽
電池アレイ内の一回路の等節回路を示す図である。同図
(alは、リミッタ用アレイ部およびメインアレイ部に
太陽光が照射された場合、同図(blはメインアレイ部
のみに照射された場合である。なお、図中15はリミッ
タ用アレイ部の等節回路、16はメインアレイ部の等節
回路である。
5 and 6 show the array configuration of the solar cell array section, in which 13 is a limiter array section (a), middle to (b), and 14 is a main array section. FIG. 5 shows an example in which the array section is divided into four circuits. Each circuit is divided into a limiter array section (a) to 2) and a main array section, and the limiter array section is mounted at the base of the paddle as shown in FIG. Array part for limiter (a)
~(b) is connected in series with the main array, so
If the limiter array part is folded or otherwise prevented from being irradiated with sunlight, the solar cell element in this part will have the opposite characteristics of a diode, and even if the main array part connected in series with it is not irradiated with sunlight, the solar cell element in this part will have the opposite characteristics of a diode. No current flows. FIG. 7 is a diagram showing one equinodal circuit in the solar cell array. The same figure (al is the case where the limiter array part and the main array part are irradiated with sunlight, the same figure (bl is the case where only the main array part is irradiated with sunlight. In addition, 15 in the figure is the case where the limiter array part and the main array part are irradiated with sunlight. 16 is an isochoric circuit of the main array section.

次に本装置の動作原理を第8図のV−I特性を用すて説
明する。第6図(alのようにリミッタ用アレイ部(イ
)〜に)の全てに太陽光が照射されて込る時のV−I(
電圧−゛電流)%性を曲線17とする。次にリミッタ用
アレイ部(ハ)に)が収納すれ、(イ)(ロ)のみに太
陽光が照射されると、V−IW性は曲線18と方る。こ
こで、4回路のアレイの構成や太陽電池素子の特性等が
全て等しいとすると、曲線18のVBusにおける電流
値は曲線17の場合の約V2 K々る。
Next, the operating principle of this device will be explained using the VI characteristic shown in FIG. Fig. 6 (VI when sunlight is irradiated to all of the limiter array parts (A) to (A) as shown in al) (
Curve 17 represents the voltage-current ratio. Next, when the limiter array section (c) is housed and sunlight is irradiated only on (a) and (b), the V-IW property becomes curve 18. Here, assuming that the configuration of the four-circuit array and the characteristics of the solar cell elements are all the same, the current value at VBus of curve 18 is approximately V2K higher than that of curve 17.

次に全てのりεツタ用アレイ部を収納すると、太陽電池
アレイの発生電流は零となる。
Next, when all the ε ivy array parts are stored, the current generated by the solar cell array becomes zero.

以上は太陽電池アレイ発生電流を4段階に制御する例で
あるが必要に応じて多段階に制御することも可能であり
、また、リミッタ用アレイ部の構成によっては連続的に
制御することもできる。
The above is an example of controlling the solar cell array generated current in four stages, but it is also possible to control it in multiple stages as necessary, and it can also be controlled continuously depending on the configuration of the limiter array section. .

以上、詳しく説明したように本発明は太陽電池アレイ部
にリミッタ用アレイ部を設け、アレイの一部を展開/収
納することにより、アレイの発生電流を制御できるから
従来の装置のような余剰電力を消費するためのシャント
回路が不要となり、かつシャント回路の発熱による衛星
内の温度上昇を防止し、実装スペースをも大幅に縮少で
きるという利点がある。
As explained above in detail, the present invention provides a limiter array section in the solar cell array section, and by expanding/retracting a portion of the array, the current generated by the array can be controlled, so that surplus power is avoided unlike in conventional devices. This eliminates the need for a shunt circuit to consume energy, prevents temperature rise inside the satellite due to heat generated by the shunt circuit, and has the advantage of significantly reducing mounting space.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池電源装置の一例を示すブロック
図、第2図は太陽電池アレイの電圧電流特性を示すグラ
フ、第3図は本発明による太陽電池電源装置の実施例を
示すブロック図、第4図は第3図の太陽電池アレイの外
観を示す斜視図、第5図、第6図は本発明にかかる太陽
電池アレイの構成図、第7図は太陽電池アレイ内の一回
路の等価回路図、第8図は第3図の動作図である。 l・・・太陽電池素子 2・・・太陽電池アレイ3・・
・負荷 4・・・蓄電池 5・・・電力制御器 6・・・シャント回路7・・・ア
レイ展開機構 8・・・駆動回路9・・・V−I%性 
10・・・太陽電池アレイ11・・・電力制御部 12・・・太陽電池アレイ制御部 13・・・リミッタ用アレイ部 14・・・メインアレイ部 15・・・リミッタ用アレイ部の等節回路16・・・メ
インアレイ部の等節回路 17・V−I特性 工s・11−1%性19・・・収納
部 特許出願人 日本電気株式会社 代理人 弁理士 井 ノ ロ 壽 第5図 第6図 27図 (a) (し) 才8図 VBLIS −m− ■
FIG. 1 is a block diagram showing an example of a conventional solar cell power supply device, FIG. 2 is a graph showing voltage-current characteristics of a solar cell array, and FIG. 3 is a block diagram showing an example of a solar cell power supply device according to the present invention. , FIG. 4 is a perspective view showing the appearance of the solar cell array in FIG. 3, FIGS. 5 and 6 are configuration diagrams of the solar cell array according to the present invention, and FIG. 7 is a diagram showing one circuit in the solar cell array. The equivalent circuit diagram, FIG. 8, is an operational diagram of FIG. 3. l...Solar cell element 2...Solar cell array 3...
・Load 4...Storage battery 5...Power controller 6...Shunt circuit 7...Array expansion mechanism 8...Drive circuit 9...V-I% property
10... Solar cell array 11... Power control section 12... Solar cell array control section 13... Limiter array section 14... Main array section 15... Equal node circuit of limiter array section 16... Equinodal circuit of main array section 17. V-I characteristics Engineering s. 11-1% property 19... Storage section Patent applicant NEC Corporation Representative Patent attorney Hisashi Inoro Figure 5 6 Figure 27 (a) (shi) Age 8 Figure VBLIS -m- ■

Claims (1)

【特許請求の範囲】[Claims] 複数の太陽電池素子を電気的に直並列接続した太陽電池
アレイと、前記太陽電池アレイを収納する収納部と、前
記太陽電池アレイの収給量を制御するプレイ展開機構と
、負荷と、蓄電池と、前記太陽電池アレイより受ける発
生電力が前記負荷の消費量より大きbとき前記蓄電池に
供給し、さらに余剰のときは、その余剰分に対応の電力
制御信号を発生する電力制御部と、前記電力制御信号と
所定の設定値とを比較し、前記アレイ展開機構の駆動量
を決める駆動制御信号を出力する太陽電池アt/イ制御
部とを含み、太陽電池アレイの一部を収納または展開す
ることにより太陽電池アレイの電力を余剰分なり二うに
発生させるように構成したことを特徴とする太陽電池電
源装置。
A solar cell array in which a plurality of solar cell elements are electrically connected in series and parallel, a storage section that stores the solar cell array, a play expansion mechanism that controls the amount of input of the solar cell array, a load, a storage battery, and , a power control unit that supplies the power to the storage battery when the generated power received from the solar cell array is larger than the consumption amount of the load, and further generates a power control signal corresponding to the surplus when there is a surplus; A solar cell array control unit that compares the control signal with a predetermined setting value and outputs a drive control signal that determines the drive amount of the array deployment mechanism, and stores or deploys a part of the solar battery array. 1. A solar battery power supply device characterized in that the solar battery power supply device is configured to generate a surplus amount of power from a solar battery array.
JP59002793A 1984-01-10 1984-01-10 Solar battery power supply device Pending JPS60146310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002793A JPS60146310A (en) 1984-01-10 1984-01-10 Solar battery power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002793A JPS60146310A (en) 1984-01-10 1984-01-10 Solar battery power supply device

Publications (1)

Publication Number Publication Date
JPS60146310A true JPS60146310A (en) 1985-08-02

Family

ID=11539243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002793A Pending JPS60146310A (en) 1984-01-10 1984-01-10 Solar battery power supply device

Country Status (1)

Country Link
JP (1) JPS60146310A (en)

Similar Documents

Publication Publication Date Title
EP1034465B1 (en) Solar array system
US8981738B2 (en) Solar array regulator based on step-up and down conversion and solar power system comprising the same
US7982434B2 (en) Apparatus and method for controlling a power supply
US7768244B2 (en) Power-maximizing electrical energy generation system
Capel et al. Comparative performance evaluation between the S4R and the S3R regulated bus topologies
JP2005500792A (en) Improvement of photovoltaic cells
CN110877741B (en) Power supply device, flight tool applying same and power supply method thereof
EP0951128A2 (en) A spacecraft power system
JP2006302147A (en) Booster
US6181115B1 (en) Device for generating electrical energy for a power supply bus
EP2343790B1 (en) Electrical power conditioning unit and system
JPS60146310A (en) Solar battery power supply device
JP3485445B2 (en) Solar powered power supply
JP2002010520A (en) Solar battery circuit
JP3147724B2 (en) Distributed power supply
JP2611724B2 (en) Solar cell power supply
JP7165507B2 (en) DC power supply system
JP2021197823A (en) Dc microgrid system and control method thereof
JP2000278883A (en) Electric double layer capacitor devicf with solar battery
JP3193350B2 (en) Power supply
JPH1140831A (en) Solar cell power supply device
JPS6316764B2 (en)
JP3656113B2 (en) Solar power plant
JP2666754B2 (en) Power supply method in solar cell power supply
CN217427757U (en) Inverter and power supply circuit thereof