JPS6289435A - Charger - Google Patents

Charger

Info

Publication number
JPS6289435A
JPS6289435A JP13215285A JP13215285A JPS6289435A JP S6289435 A JPS6289435 A JP S6289435A JP 13215285 A JP13215285 A JP 13215285A JP 13215285 A JP13215285 A JP 13215285A JP S6289435 A JPS6289435 A JP S6289435A
Authority
JP
Japan
Prior art keywords
commercial
charging
charging current
secondary battery
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13215285A
Other languages
Japanese (ja)
Inventor
牛嶋 和文
塚本 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13215285A priority Critical patent/JPS6289435A/en
Publication of JPS6289435A publication Critical patent/JPS6289435A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (ロ)従来の技術 シリコンを素材とする太陽電池の開発が進み、民生機器
への応用が進んでいるが、その出力は日照条件に太きく
左右されるため、バックアップ用として二次電池を併用
して用いるのが一般的である。とのよう々二次電池の充
電装置を備えた太陽電池の電源として例えば特開昭59
−198846号公報がある。これは太陽光により発電
する太陽電池と、互いに直列に接続され前記太陽電池に
よる発電電力を蓄積する複数個の蓄電池と、前駅各蓄電
池を所定個数ごとに分割して構成された複数個の蓄電池
ブロックを前記太陽電池にそれぞれ接続する複数個のス
イッチからなる第1スイッチ群と、前記各蓄電池を前記
所定個数と異なる個数ごとに分割して構成された複数個
の他の蓄電池ブロックを前記太陽電池にそれぞれ接続す
る複数個のスイッチからなる第2スイッチ群と、前記両
スイッチ群の各スイッチをオン、オフ制御する制御部と
を備えたもので、鉛蓄電池の容量の変動時や充電電流の
変動時に、制御部により第1スイッチ群から第2スイッ
チ群または第2スイッチ群から第1スイッチ群に切換え
てオンさせるのみで、太陽電池の出力電圧の変動を小さ
くして前記電圧をほぼ最適出力電圧に保つことができ安
価な構成により効率よく前記鉛蓄電池を充電することが
できるとともに、nc−Dcコンバータを使用しなくて
も、太陽電池の低い出力電圧を高くしてインバータに入
力することができ、太陽電池及びインバータを効率よく
動作させることができるものである。しかしながら、季
節によって悪天候が続き、鉛蓄電池に充電するだけの出
力が得られない場合には負荷を作動させることができず
システムとして機能しない問題点がある。
[Detailed description of the invention] (b) Conventional technology Solar cells made of silicon have been developed and are being applied to consumer devices, but their output is greatly affected by sunlight conditions, so backup It is common to use a secondary battery in combination for this purpose. For example, as a power source for a solar battery equipped with a rechargeable battery charging device,
There is a publication No.-198846. This consists of solar cells that generate electricity from sunlight, multiple storage batteries that are connected in series to each other and store the power generated by the solar cells, and multiple storage batteries that are constructed by dividing each previous station storage battery into a predetermined number of batteries. A first switch group consisting of a plurality of switches that respectively connect blocks to the solar cells, and a plurality of other storage battery blocks configured by dividing each of the storage batteries into a number different from the predetermined number, connect the blocks to the solar cells. This device is equipped with a second switch group consisting of a plurality of switches each connected to a second switch group, and a control section that controls on/off of each switch in both switch groups. Sometimes, by simply switching on the control unit from the first switch group to the second switch group or from the second switch group to the first switch group and turning on, the fluctuation in the output voltage of the solar cell is reduced and the voltage is almost the optimum output voltage. It is possible to efficiently charge the lead-acid battery due to its inexpensive structure, and it is also possible to increase the low output voltage of the solar cell and input it to the inverter without using an NC-DC converter. , solar cells and inverters can be operated efficiently. However, if the weather is bad depending on the season and the output is not sufficient to charge the lead-acid battery, there is a problem that the load cannot be operated and the system does not function properly.

斯かる点に鑑みて提案されたものに第4図にブロック図
でその概要を示した太陽電池と商用交流電源による電池
の充電回路がある(詳しくはN EDo光発電シンポジ
ウム83予稿集P、69r太陽光発電研究開発の現状と
今後の課題」を参照)。
In view of these points, a battery charging circuit using a solar battery and a commercial AC power supply has been proposed, the outline of which is shown in the block diagram in Figure 4 (for details, see NEDo Photovoltaic Symposium 83 Proceedings P, 69r). (See ``Current Status and Future Challenges of Photovoltaic Power Research and Development'').

このよう々蓄電池を太陽電池の発電出力で充電し、貯え
た電力を負荷に供給する装置では発電電力が不足して蓄
電池が過放電するのを防+hするために負荷を切り離す
か、または商用電源や発電機など別電源により蓄電池を
充′市する方式が採用される。
In devices like this, which charge a storage battery with the generated output of a solar cell and supply the stored power to a load, in order to prevent the storage battery from overdischarging due to insufficient generated power, the load must be disconnected or the commercial power supply A method is adopted in which the storage battery is charged using a separate power source such as a generator or a generator.

前記第4図において大喝’di池(101)は逆流防上
ダイオード(102)を介して蓄電池(103)を充電
する。
In FIG. 4, the large-scale diode (101) charges the storage battery (103) through the backflow prevention diode (102).

一方変圧器(104)の二次出力は整流平滑回路(lo
5)を介して同じく蓄電池(103)Ic接続される。
On the other hand, the secondary output of the transformer (104) is the rectifier and smoothing circuit (lo
Similarly, the storage battery (103) Ic is connected via the storage battery (103) Ic.

ここで蓄電池(103)の蓄電各社が設定した下限値を
下まわると商用電[(10g)がスイッチ(107)の
閉成によって変圧器(1os)の−次側に接続され、充
電が開始される。そして商用電力による丈電′電*#旺
ミ充番電流により蓄電池の蓄電容Iが高まり設定した上
限値を上回ると商用電源(106)はスイッチ(107
)の開成により切り離されて充電が停止する。この間蓄
電池(1os)への充電電流は商用電源(XOS)と太
陽電池(lot)の各々の電流を合算した値となる。ま
た同時に放電電流も負荷(log)Kより発生ずる。
When the storage battery (103) falls below the lower limit value set by each energy storage company, commercial electricity (10g) is connected to the negative side of the transformer (1os) by closing the switch (107), and charging starts. Ru. Then, when the electricity storage capacity I of the storage battery increases due to the electric current supplied by the commercial power and exceeds the set upper limit, the commercial power supply (106) switches the switch (107).
) is opened, the battery is disconnected and charging stops. During this time, the charging current to the storage battery (1os) is the sum of the currents of the commercial power source (XOS) and the solar cells (lot). At the same time, a discharge current is also generated from the load (log) K.

太陽光発電と商用電力とを併用する電源装置では、その
目的が省電力にある場合が多く商用電力は、発電電力が
不足する場合のバックアップに用いられる。またこのよ
うな用途において蓄電池は通常浮動充電方式であるから
寿命を伸ばすために一定間間毎に均等充電、が必要とカ
リ、そのだめの充電電源としても用いる。ところが充電
電流が太陽電池の発電変動や負荷変動によって犬きく変
化し、商用電源による充電時にはその充電電気量の把梶
が難しく均等充電が正確に行えない問題点がある。特に
ニッケルカドミウム電池のように充電状態が端子電圧の
変化に反映し難い種類のものでは、充電電流を積算する
方式を採用するなど複雑になる。一般には温度スイッチ
を用いた満充電検知方式が採用されるが、充電電流が規
定の値以上に達しないと外気温の影響を受けて検知が不
正確となる。
In power supply devices that use both solar power generation and commercial power, the purpose is often to save power, and the commercial power is used as a backup when the generated power is insufficient. In addition, in such applications, storage batteries are usually of a floating charging type, so they must be charged evenly at regular intervals to extend their lifespan, and are therefore used as a charging power source. However, the charging current fluctuates rapidly due to fluctuations in the power generation of the solar cells and fluctuations in the load, and when charging using a commercial power source, it is difficult to determine the amount of electricity being charged, resulting in the problem that equal charging cannot be carried out accurately. Particularly in the case of nickel-cadmium batteries, in which the state of charge is difficult to reflect on changes in terminal voltage, the method becomes complicated, such as by adopting a method of integrating the charging current. Generally, a full charge detection method using a temperature switch is used, but if the charging current does not reach a specified value or higher, the detection will be inaccurate due to the influence of the outside temperature.

(ハ)発明が解決しようとする問題点 本発明が解決しようとする問題点は商用交流電源を太陽
電池のバックアップとして用いる充電装ft1lにおい
て商用交流電源による充電時に二次電池への充電電流を
一定に保つことである。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are that in a charging system ft1l that uses a commercial AC power source as a backup for a solar cell, the charging current to the secondary battery is constant when charging by the commercial AC power source. It is important to keep it.

に)問題点を解決するための手段 充電可能な二次電池に太陽電池と商用交流電源とを互い
に並列に接続するとともに、双方を併用池の発電出力が
低下し前記二次電池が放電を開始する直前に開始され、
また前記二次電池が満充電に到達する直前に終止される
如くする。また商用交流電源は整流された後平滑されて
直流に変換されるが、その出力電流値を指令により制御
する機能を設ける。
2) Means for solving the problem Connect a solar cell and a commercial AC power source in parallel to a rechargeable secondary battery, and use both together The power generation output of the battery decreases and the secondary battery starts discharging. is started just before
Further, the charging is terminated immediately before the secondary battery reaches full charge. Furthermore, commercial AC power is rectified and then smoothed and converted into DC, and a function is provided to control the output current value by commands.

(ホ)作 用 太陽電池の出力が不足し商用交流電源から光電電流が二
次電池に供給されるとき、制御機能は二次電池に供給さ
れる充電電流値を検出し、この充電電流が予め設定した
一定の値に保持されるように商用交流電源による充電電
流供給量を調節する。
(E) Operation When the output of the solar cell is insufficient and photoelectric current is supplied to the secondary battery from the commercial AC power source, the control function detects the charging current value supplied to the secondary battery, and this charging current is The amount of charging current supplied by the commercial AC power source is adjusted so that it is maintained at the set constant value.

(へ)実施例 以下本発明充電装置を図面の一実施例に即して詳細に説
明する。
(F) Embodiment The charging device of the present invention will be described in detail below with reference to an embodiment of the drawings.

mけアモルファスシリコンを素材とする太陽宙池(2)
は該太1揚宙池ix)の両出力端子間に逆流防止用ダイ
オード(3)を介して接続されてなるニッケルカドミウ
ム電池、(4)は該電池(2)に前記太陽電池(1)に
対して並列に接続されてなる負荷である。
Solar pond made of amorphous silicon (2)
(4) is a nickel-cadmium battery connected between both output terminals of the solar cell (1) via a backflow prevention diode (3); This is a load connected in parallel to the

(5)は商用交流電源、(6)はスイッチ(7)を介し
てその二次コイルを接続されて々る変圧器、]8)は該
変圧器(6)の二次コイルに接続されてなる整流平滑回
路部、(9)は該整流平滑回路部(8)に接続されたD
C−DCコンバータであり、チョッパ回路によって構成
されこの出力電流値は指令により調節できる機能を有す
る。
(5) is a commercial AC power supply, (6) is a transformer whose secondary coil is connected via a switch (7), ]8) is connected to the secondary coil of the transformer (6). The rectifying and smoothing circuit section (9) is connected to the rectifying and smoothing circuit section (8).
This is a C-DC converter, which is configured with a chopper circuit, and has the function of adjusting the output current value according to a command.

(1■u前ED c −D Cコンバータ(9)に指令
を与える比較器であり、一つの入力は前記電池(2)に
直列に介挿される雷、流検出器(11)の検出値、他の
一つの入力は設定値(l謁fある。前記DC−DCコン
バータ(9)は前記比較器+1(mの指令により出力を
調節するものであわ、また前記比較器叫は前妃設定値篠
と電流検出器(11)の出力信号が一致する方向に作動
する。
(1) A comparator that gives commands to the ED c - DC converter (9), one input is the detected value of the lightning and current detector (11) inserted in series with the battery (2), The other input is a set value (1). The DC-DC converter (9) adjusts the output according to the command of the comparator +1 (m), and the comparator output is the set value. It operates in the direction in which the output signals of Shino and the current detector (11) match.

前記D C−D Cコンバータ(9)は周知のtt術に
よって目的を達成し得るので詳細な説明は省略するがチ
ョッパの導1山幅制御により出力電流の平均値を任意に
調節できるものであり、一般にスイッチング電源方式と
して直流安定化電源に採用されているものを使っている
。そして前記DC−DCコンバータ(9)の出力電流工
Cはダイオード0埼を介して前記電池(2)に供給され
る。
The purpose of the DC-DC converter (9) can be achieved by the well-known tt technique, so a detailed explanation will be omitted, but the average value of the output current can be adjusted arbitrarily by controlling the width of the chopper. , generally uses a switching power supply system that is used in DC stabilized power supplies. The output current C of the DC-DC converter (9) is supplied to the battery (2) via a diode.

以上の構成を有する充電装置において、前記電流検出器
(11)の出力信号は、電池(2)を充電する電流より
の方向を正とすれば正極性とがり、逆に負荷(4)への
放電電流工りけ負極性となる。ここで設定値0乃は正極
性であり、前記DC−DCコンバータ(9)は電池(2
)の充電電流より(太陽電池からの供給C 電流工PV+ DC−DCコンバータからの出力電流△
プが正常に作動するためには、充電電流よりの設定値(
設定値(1匂に相当する実際電流)が太陽電池(1)の
みによって発生し得る充電電流の最大値よりも高いこと
が条件と々る。
In the charging device having the above configuration, the output signal of the current detector (11) has a positive polarity if the direction of the current that charges the battery (2) is positive, and conversely, the output signal of the current detector (11) has a positive polarity when the current that charges the battery (2) is positive. The current is of negative polarity. Here, the set value 0 to 0 is positive polarity, and the DC-DC converter (9) is connected to the battery (2
) From the charging current (supply C from the solar cell), the output current from the DC-DC converter △
In order for the pump to operate normally, the set value (
The condition is that the set value (actual current corresponding to one odor) is higher than the maximum value of the charging current that can be generated by the solar cell (1) alone.

つまり、 より(−宇)=IC十工Pv−工り 即ち、 ICミ丁B−(工PV−工L) が条件である。ここで工CけDC−DCコンバータt9
1Jl”その性質(機能)上負の値を取ることはな−の
で、前述のようによりを一定に保つためにけより〉(工
:pv −IL)で々ければならない。
In other words, the condition is (-U)=IC 10 Pv-Work, that is, IC Mit B-(Work PV-Work L). Here, construct DC-DC converter t9
1Jl" Due to its nature (function), it does not take a negative value, so in order to keep the bias constant as described above, it must be set at pv-IL.

第2図に第1図の各電流の経時変化を示す。回ると充電
電流よりが設定値を越えるのでこれを比較器(10)に
よって検出し、DC−DCコンバータ(9)を制御して
ICを減じる。そして工pvの増分に対応してICが減
少し、充電電流jBを一定に保つ。時b、 刻t!において負荷(4)が変動しIi、が増加主U充
電電流IBが設定値以下に低下するとこれを比較器C叫
によって検出し、DC−DCコンバータ+91ヲ制’御
してICを増加し、充電宙、流よりを一宇に保つ。
FIG. 2 shows the changes over time of each current in FIG. 1. When the charging current exceeds the set value, this is detected by the comparator (10) and the DC-DC converter (9) is controlled to reduce the IC. Then, IC decreases in accordance with the increment of power pv to keep the charging current jB constant. Time b, time t! When the load (4) changes, Ii increases. When the main U charging current IB falls below the set value, this is detected by the comparator C, and the DC-DC converter +91 is controlled to increase the IC. Charge the universe, keep the flow in one universe.

時刻t5で工PVけ最大値をとるが、ICけ逆に最小値
となる。そしてとの後太陽宙池f1)の出力電流工P■
の減少険に応じてDC−DCコンバータ(9)の出力電
流ICが増加17、充電電流よりが一宇に保たれる。
At time t5, the power PV takes the maximum value, but the IC becomes the minimum value. And the output current of the solar pond f1) P■
The output current IC of the DC-DC converter (9) increases 17 in accordance with the decrease in the charge current, and the charging current is maintained at one level.

第3図は本発明充電装置の他の実殉例を示し、第1図の
DC−DCコンバータ(9)を使わずに商用交流電源(
6)の出力制御を実現する電流制御機能を具備したもの
である。
FIG. 3 shows another example of the charging device of the present invention, in which a commercial AC power supply (
6) is equipped with a current control function to realize output control.

第1図と異なるところは商用交流電源(5)と変圧器(
6)の−次コイルとの間に双方向サイリスタ04)をス
イッチ(7)の代わりに介挿したこと、及びそのサイリ
スタHのゲートに該サイリスタ(1舶の点弧位相を制御
する点弧位相制御回路峙を接続1.y 、この制御回路
用を比較器(l(至)に接続し7たととである。この実
施回路において充wIIwt流よりの電化を検出する比
較器f+CjIの指令たより双方向サイリスタ(l葡の
点弧位相を変化させることによって変圧器(6)の入力
電圧を調節し、その結果として六Jノ電流ICを変え、
充電電流IBを一定に保つ。
The differences from Figure 1 are the commercial AC power supply (5) and the transformer (
A bidirectional thyristor 04) is inserted between the secondary coil of 6) instead of the switch (7), and the gate of the thyristor H has a firing phase that controls the firing phase of the thyristor (1). The control circuit is connected 1.y, and the control circuit is connected to the comparator (l) (7). Adjust the input voltage of the transformer (6) by changing the firing phase of the thyristor (l) and as a result change the current of the 6J IC,
Keep charging current IB constant.

(ト)発明の効果 本発明は以上の説明の如く、充電可能々二次電池に太陽
電池と商用交流電源とを互いに並列に接続するとともに
、双方を併用して前記二次電池に充電電流を供給するも
のであって、充電電流が商用交流電源より供給されてい
る間太陽電池からの充電電流供給量と商用交流電源から
の充電電流供給量を調節するものであ斡、均等充電電流
が一定に調節されるため充@量が時間によって規定でき
ると共に充電電流が過大になることを防止できるため電
池の寿命が伸びるという利点が生まれる。
(G) Effects of the Invention As described above, the present invention connects a solar cell and a commercial AC power source in parallel to a rechargeable secondary battery, and uses both together to supply a charging current to the secondary battery. It is a device that adjusts the amount of charging current supplied from the solar cell and the amount of charging current supplied from the commercial AC power source while the charging current is supplied from the commercial AC power source, so that the equal charging current is constant. Since the charge amount can be regulated according to time, and the charging current can be prevented from becoming excessive, the life of the battery can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明充電装置の一実施回路図、第2図は第1
図の各電流の経時変化特性図、@3図は他の実施回路図
、第4図は@1図に相当する従来回路図である。 12)・・・二次電池、(1)・・・太陽電池、(6)
・・・商用交流電源、(4)・・・負荷。
Fig. 1 is an implementation circuit diagram of the charging device of the present invention, and Fig. 2 is a circuit diagram of the charging device of the present invention.
The time-dependent change characteristics of each current shown in the figure, Figure @3 is another implementation circuit diagram, and Figure 4 is a conventional circuit diagram corresponding to Figure @1. 12)...Secondary battery, (1)...Solar cell, (6)
...Commercial AC power supply, (4)...Load.

Claims (2)

【特許請求の範囲】[Claims] (1)充電可能な二次電池に太陽電池と商用交流電源と
を互いに並列に接続するとともに、双方を併用して前記
二次電池に充電電流を供給するものであつて、充電電流
が商用交流電源より供給されている間太陽電池からの充
電電流供給量と商用交流電源からの充電電流供給量との
和が一定となるよう商用交流電源からの充電電流供給量
を調節することを特徴とする充電装置。
(1) A solar cell and a commercial AC power source are connected in parallel to a rechargeable secondary battery, and both are used together to supply charging current to the secondary battery, and the charging current is a commercial AC power source. The amount of charging current supplied from the commercial AC power source is adjusted so that the sum of the amount of charging current supplied from the solar cell and the amount of charging current supplied from the commercial AC power source remains constant while being supplied from the power source. Charging device.
(2)前記二次電池に負荷を接続し、充電電流の供給量
の合計が一定となるように商用交流電源からの充電電流
供給量を調節しながら太陽電池及び商用交流電源によつ
て前記二次電池を充電するものであつて、この二次電池
の充電中に同時に該二次電池から負荷への放電が起こる
場合、前記二次電池に対する正味の充電電流を調節する
ことを特徴とする上記特許請求の範囲第1項記載の充電
装置。
(2) A load is connected to the secondary battery, and the solar cell and the commercial AC power supply are used to charge the secondary battery while adjusting the amount of charging current supplied from the commercial AC power source so that the total amount of charging current supplied is constant. The above-mentioned device for charging a secondary battery is characterized in that, when discharging from the secondary battery to a load occurs simultaneously during charging of the secondary battery, the net charging current to the secondary battery is adjusted. A charging device according to claim 1.
JP13215285A 1985-06-18 1985-06-18 Charger Pending JPS6289435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215285A JPS6289435A (en) 1985-06-18 1985-06-18 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215285A JPS6289435A (en) 1985-06-18 1985-06-18 Charger

Publications (1)

Publication Number Publication Date
JPS6289435A true JPS6289435A (en) 1987-04-23

Family

ID=15074571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215285A Pending JPS6289435A (en) 1985-06-18 1985-06-18 Charger

Country Status (1)

Country Link
JP (1) JPS6289435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227679A (en) * 1992-02-12 1993-09-03 Nissin Electric Co Ltd Solar beam power generating facility
JPH09502076A (en) * 1993-07-16 1997-02-25 イー グレゴリー、ウィリアム Lead Acid Battery Regenerator / Trickle Charger
JP2012175859A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Rectifier system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212325A (en) * 1982-06-02 1983-12-10 富士電機株式会社 Power supply system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212325A (en) * 1982-06-02 1983-12-10 富士電機株式会社 Power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227679A (en) * 1992-02-12 1993-09-03 Nissin Electric Co Ltd Solar beam power generating facility
JPH09502076A (en) * 1993-07-16 1997-02-25 イー グレゴリー、ウィリアム Lead Acid Battery Regenerator / Trickle Charger
JP2012175859A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Rectifier system

Similar Documents

Publication Publication Date Title
US20120025752A1 (en) Battery charger
JPS6154820A (en) Dc/ac converter of photogenerator system
US20130300346A1 (en) Charge controlling system, charge controlling apparatus, charge controlling method and discharge controlling apparatus
JP2008048544A (en) Solar power generating system
CN110176788B (en) Power storage system and power storage device
JPH11127546A (en) Photovoltaic power generating system
JPH09121461A (en) Self-charging battery and electric apparatus employing it
US20150263564A1 (en) Energy storage system and method for driving the same
JP4137784B2 (en) Solar power generator control system
JPS6289435A (en) Charger
US20230055592A1 (en) Direct current distribution based charging/discharging system for battery formation
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JPS6290984A (en) Solar photovoltaic generation control system
GB2090084A (en) Photovoltaic Battery Charging System
JP6795082B2 (en) DC power supply system
JPH10174312A (en) System interconnection operating method for hybrid power supply system involving photovoltaic power generation and wind power generation
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JP2000166124A (en) Auxiliary power unit
JP3688744B2 (en) Solar power plant
JP3695688B2 (en) Power supply adjustment device using capacitor power storage device
JPH04308431A (en) Control method for photovoltaic power generation linking system
JP3193350B2 (en) Power supply
CN210898560U (en) Intelligent battery system with parallel mains supply
KR101523941B1 (en) Energy storage system