JPS63166941A - Ni-ti functional material and its production - Google Patents

Ni-ti functional material and its production

Info

Publication number
JPS63166941A
JPS63166941A JP31453486A JP31453486A JPS63166941A JP S63166941 A JPS63166941 A JP S63166941A JP 31453486 A JP31453486 A JP 31453486A JP 31453486 A JP31453486 A JP 31453486A JP S63166941 A JPS63166941 A JP S63166941A
Authority
JP
Japan
Prior art keywords
phase
bar
functional material
tini
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31453486A
Other languages
Japanese (ja)
Inventor
Hideomi Ishibe
英臣 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP31453486A priority Critical patent/JPS63166941A/en
Publication of JPS63166941A publication Critical patent/JPS63166941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To manufacture an Ni-Ti functional material improved in functional characteristics, by bundling plural Ni-Ti bar bodies and excess materials consisting of Ni bar or Ti bar and by applying size reduction working and diffusion heat treatment to the resulting composite material. CONSTITUTION:A Ti material 5 is coated with Ni material 6 by plating, etc., to be formed into an Ni-Ti bar body 7 of the prescribed composition. Plural pieces of the above Ni-Ti bar bodies 7 and prescribed amounts of excess materials 8 consisting of Ni bar and/or Ti bar are bundled and, by means of a sheath material 10 such as soft-steel pipe, etc., formed into a composite material 9 having, in part, nonuniform-composition parts in its cross section. Subsequently, the above composite material 9 is subjected to high-degree size reduction working of >=about 50% draft by means of wire drawing, rolling, etc. Then, after the sheath material 10 is removed, diffusion heat treatment working is applied to the composite material 9. In this way, the above Ni-Ti bar bodies 7 are diffused to be formed into a base phase 2 of NiTi phase and, in this base phase 2, secondary phases 3 containing Ti2Ni phase and/or TiNi3 phase stretched uniformly from one end 1A to the other end 1B are formed from the excess materials 8, so that functional material 1 can be obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、形状記憶合金、超弾性合金、あるいは防振合
金などとして好適に使用可能なNt−Ti系機能材料並
びにその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an Nt-Ti based functional material that can be suitably used as a shape memory alloy, a superelastic alloy, a vibration damping alloy, etc., and a method for manufacturing the same.

〔従来技術〕[Prior art]

所定の組成比を有するNi−74合金は、形状記憶効果
、超弾性、擬弾性挙動などの新たな機能を有することが
見出されて以来、用途開発を含めた巾広い研究開発が進
められている。
Since it was discovered that Ni-74 alloy with a certain composition ratio has new functions such as shape memory effect, superelasticity, and pseudoelastic behavior, extensive research and development including application development has been carried out. There is.

これら種々の機能は、主としてNiとTiとが等価原子
比によって生まれるNL−Ti相の金属化合物相を利用
するものであり、従来から次のような方法で製造されて
きた。
These various functions mainly utilize the metal compound phase of NL-Ti phase created by the equivalent atomic ratio of Ni and Ti, and have conventionally been produced by the following method.

(1)  その一方法は、所定量のNi、:!:Tiと
を溶解させて得た鋳塊に熱間、冷間での加工を施し、ま
た熱処理加工も付与しながら、所定の大きさの製品を得
るという溶解法であり、 (2)又他の方法は例えば「金属J 1984年9月号
P34〜37「粉末合金によるTiNi系記憶合金の製
造」で開示されるように、所定量のTi粉末とNt鉛粉
末を利用し、これらを混合した混合粉末体を熱処理拡散
せしめることにより一体なNi−Ti合金を得る、いわ
ゆる粉末法の応用である。
(1) One method is to use a predetermined amount of Ni:! : It is a melting method in which a product of a predetermined size is obtained by hot and cold processing and heat treatment on an ingot obtained by melting Ti, (2) and others. For example, this method uses a predetermined amount of Ti powder and Nt lead powder and mixes them, as disclosed in "Metal J September 1984 issue P34-37 "Production of TiNi-based memory alloy using powder alloy". This is an application of the so-called powder method in which an integrated Ni-Ti alloy is obtained by heat-treating and diffusing a mixed powder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで一般的にNi−Ti系合金でなる機能材料は、
他の組成(例えばCu−Zn系、Cu−Al−Zn系な
ど)でなるものと比べ、その耐食性はもちろん、強度や
熱による回復応力、回復率、寿命などいづれにもすぐれ
ていることから、多用されつつあるものの、その実用化
を考えた場合には、従来の種々方法で得られる一般的な
Ni−Ti合金ではその特性は十分とはいい難く、しか
も近年では前記これら機能特性の要求はより高度化しそ
の対応が求められて来た。
By the way, functional materials generally made of Ni-Ti alloys are
Compared to those made of other compositions (e.g. Cu-Zn system, Cu-Al-Zn system, etc.), it is superior not only in corrosion resistance but also in strength, recovery stress due to heat, recovery rate, and lifespan. Although it is becoming widely used, when considering its practical use, it is difficult to say that the general Ni-Ti alloys obtained by various conventional methods have sufficient properties, and in recent years, the requirements for these functional properties have been As the technology becomes more sophisticated, there is a need to respond to it.

〔発明の目的〕[Purpose of the invention]

本発明は、このような現状に鑑がみ、特に所定組成比に
制御されたTiNi相母相中にその一端から他端に向け
てTiNis相及び/又はTi2Ni相を含む第2相を
複合化させてなることを基本として前記機能特性を向上
させたNi−Ti系機能材料(以下機能材料と言う)の
提供並びにその製造方法の提供を目的とする。
In view of the current situation, the present invention specifically combines a second phase containing a TiNis phase and/or a Ti2Ni phase from one end to the other end in a TiNi phase matrix whose composition ratio is controlled to a predetermined composition ratio. The present invention aims to provide a Ni-Ti based functional material (hereinafter referred to as "functional material") which has improved functional properties based on the above-mentioned properties, and to provide a method for producing the same.

〔発明の開示〕[Disclosure of the invention]

以下本発明の一例を添付図面に基づきその製造方法とと
もに説明する。
An example of the present invention will be described below along with a manufacturing method thereof based on the accompanying drawings.

本発明の機能材料1は、第1〜3図に示すように、所定
のNiとTIとによって生成されるTiNi相母相2の
内部にその一端IAから他端IBに向かって伸ばされた
第2相3を含んで形成され、第1図では機能材料1は、
丸線状に仕上げられている。
As shown in FIGS. 1 to 3, the functional material 1 of the present invention has a TiNi phase matrix 2 formed by predetermined Ni and TI, which has a structure extending from one end IA toward the other end IB. The functional material 1 is formed to include two phases 3, and in FIG.
It is finished in a round shape.

機能材料1は、本発明ではその最終用途を形状記憶合金
や超弾性、擬弾性合金、防振合金等の機能合金用として
おり、しかもそれは主として47〜60at%のNiと
残部Tiとを少なくとも含んでなるTi1l相によって
得られることから、前記母相2はその組成比を前記範囲
に制御されかつ必要な機能も有している。
In the present invention, the final use of the functional material 1 is for functional alloys such as shape memory alloys, superelastic alloys, pseudoelastic alloys, and anti-vibration alloys, and it mainly contains at least 47 to 60 at% Ni and the balance Ti. Since it is obtained from the Ti1l phase, the parent phase 2 has a composition ratio controlled within the above range and also has the necessary functions.

また該母相2は、機能合金としての必要性(例えば最終
製品での変態点調整、加工性など)から、前記組成の一
部をCu、v+Mo1CrJ1+Co+Feなど1種以
上の第3元素で置換させたものも使用できるが、その量
はせいぜい5at%以下である。
Furthermore, in view of the necessity as a functional alloy (for example, adjustment of transformation point in the final product, workability, etc.), part of the composition of the matrix 2 is replaced with one or more third elements such as Cu, v+Mo1CrJ1+Co+Fe, etc. However, the amount thereof is at most 5 at% or less.

一方前記TiNi相母相2内にその長手方向に沿って複
合される第2相3は、本例ではTiヨNi相又はTiN
is相を少なくとも含む微細な横断面を有する繊維状を
呈しており、第1図ではその複数本は前記母相2の横断
面内において略均−に分散されている。
On the other hand, in this example, the second phase 3 compounded within the TiNi phase mother phase 2 along its longitudinal direction is a Ti+Ni phase or a TiNi phase.
It has a fibrous shape with a fine cross section containing at least an IS phase, and in FIG.

そして該第2相3は本例ではTiNi3相あるいはTi
 Ji相を少なくとも含んで構成されているが、この場
合、より詳細に見ると前記相思外にも、例えばTi2N
i相の場合には前記母相2との間に両者の混合した中間
的な相3Aを伴っている。しかしこれらは非常に機中で
あり、実質的には前記TiJi相やTiNi、相(符号
3B)に代表することもできる。第2図は、第1図に示
す機能材料1のA−A′断面を約800倍程度に拡大し
たスケッチであり、その状態が示されている。又同図符
号3Cはここで用いる余剰材8が十分に拡散することな
く残留しているものである。
In this example, the second phase 3 is a TiNi three phase or a TiNi three phase or a TiNi three phase in this example.
It is composed of at least a Ji phase, but in this case, when looking in more detail, it is found that, for example, Ti2N
In the case of the i-phase, an intermediate phase 3A, which is a mixture of the two, is present between the i-phase and the parent phase 2. However, these are very intermediate, and can be substantially represented by the TiJi phase and the TiNi phase (symbol 3B). FIG. 2 is a sketch of the AA' cross section of the functional material 1 shown in FIG. 1, enlarged approximately 800 times, and shows its state. Further, reference numeral 3C in the same figure indicates that the surplus material 8 used here remains without being sufficiently diffused.

これら、7iNis相やTiJi相は前記母相2である
TiNi相と同様に、Ni元素とTi元素との組成比関
係によって生まれる金属間化合物であるものの、それら
は非常に硬質で高強度という特徴を有している。
These 7iNis and TiJi phases are intermetallic compounds created by the compositional relationship between Ni and Ti elements, similar to the TiNi phase, which is the matrix 2, but they are characterized by being extremely hard and having high strength. have.

例えば前記TiNis相について見ると、その組成は約
75at%のNiと残部Tiとによって得られ、その特
性はヴイッカース硬度400度以上と非常に硬質な相で
あり、一般的なTiNi相とは全く別異なものである。
For example, looking at the TiNis phase mentioned above, its composition is obtained by approximately 75 at% Ni and the balance Ti, and its characteristics are a very hard phase with a Vickers hardness of 400 degrees or more, which is completely different from the general TiNi phase. It's different.

このようなことから見ると、前記第2相3横断面内では
前記母相2から第2相3の中央に向けてTi又はNi組
成がなだらかに変化しているものと見られる。
From this perspective, it appears that within the cross section of the second phase 3, the Ti or Ni composition changes gradually from the parent phase 2 toward the center of the second phase 3.

又機能材料1内に分布されたこのような第2相3は、本
例では例えば、横断面面積1000μd以下でその複数
本を略均−に分散させたり、あるいは任意部分に集中分
布させるなどは、該機能材料1の使用目的に応じ任意に
調整することができ、これらは、該機能材料1の長手方
向に沿って平行あるいはラセン状に配設することができ
る。
In addition, in this example, the second phase 3 distributed in the functional material 1 can be dispersed approximately evenly in a plurality of pieces with a cross-sectional area of 1000 μd or less, or distributed concentrated in an arbitrary part. , can be arbitrarily adjusted depending on the purpose of use of the functional material 1, and these can be arranged in parallel or in a spiral shape along the longitudinal direction of the functional material 1.

第3図は本発明の他の例を示すものであって、複数本の
第2相3を異形状に形成された母相2内に沿ってラセン
状に撚り合わしたものである。
FIG. 3 shows another example of the present invention, in which a plurality of second phases 3 are twisted together in a spiral shape along the inside of the parent phase 2 formed in an irregular shape.

このような構成においては、ある部分では2本以上の第
2相3同志が隣接する部分で部分的に結合し、より大き
く成長した第2相を含んでもよい。
In such a configuration, two or more second phase 3 comrades may be partially combined in an adjacent portion in a certain portion, and may include a second phase that has grown larger.

前記第2相3について、これまで主として横断面円形状
の場合を説明したが、本発明はそれに限定されるもので
はなく、非円形、例えば異形状、偏平状、箔状に形成さ
せてもよく、又その複数を複合化させる場合には、各々
の大きさ、形状、分散状態など均一に、あるいは不均一
になしてもよい。
Although the second phase 3 has mainly been described so far as having a circular cross section, the present invention is not limited thereto, and may be formed in a non-circular shape, such as an irregular shape, a flat shape, or a foil shape. , and when a plurality of them are combined, each size, shape, and dispersion state may be made uniform or non-uniform.

しかし一般的には、均一に設ける方が、生産性、品質特
性面から好ましい。
However, in general, it is preferable to provide them uniformly from the viewpoint of productivity and quality characteristics.

さらに前記第2相3は、TiJi相とTiNi s相と
を各々分散させることもできる。
Furthermore, the second phase 3 can also have a TiJi phase and a TiNis phase dispersed therein.

以上詳述したように母相2内部にその長手方向に沿って
伸びた第2相3を複合させることは丁度繊維強化複合材
料的な働きをさせることとなり、この為、回復応力など
の強度が求められる機能材料ではその特性を向上させる
ことができ、又その形状も、単に丸線に限らず、板、異
形状品などにも応用できる。
As detailed above, compounding the second phase 3 extending along the longitudinal direction inside the matrix 2 causes it to function like a fiber-reinforced composite material, and for this reason, the strength such as recovery stress is reduced. The properties of the required functional materials can be improved, and the shape is not limited to just round wires, but can also be applied to plates, irregularly shaped products, etc.

このような新規な構造を有する機能材料1は、例えば、
本願出願人が先に提案した特願昭60−260844号
に開示される方法を応用することによって得ることがで
きる。
The functional material 1 having such a novel structure is, for example,
This can be obtained by applying the method disclosed in Japanese Patent Application No. 60-260844, which was previously proposed by the applicant of the present application.

第4図は第1図のような線条の機能材料1を得る場合の
製造方法の一過程を概略した一例であって、所望のTi
Ni材を形成しうるTi材5の表面上に所定量のNi材
6を被覆せしめた線条のTi−N4条体7の複数本(例
えば10〜100.000本程度)と、Ni材及び/又
はTi材から選択される余剰材8 (例えば1〜100
0本程度)とを、組み合わせて集束し、かつその横断面
においてNiとTiとの組成比が部分的に異なる組成不
均一部を有する複合材9を形成し、それに縮寸加工と、
拡散処理加工を施すものである。なお第4図中の符号1
0は、前記複合材9を形成する為に一時的に用いられる
外装材であり、銅あるいは軟鋼製バイブなどが適用でき
る。
FIG. 4 is an example schematically showing a manufacturing method for obtaining the linear functional material 1 as shown in FIG.
A plurality of (for example, about 10 to 100,000) four filamentous Ti-N stripes 7 each having a predetermined amount of Ni material 6 coated on the surface of a Ti material 5 capable of forming a Ni material, and a Ni material and / or surplus material 8 selected from Ti materials (e.g. 1 to 100
(approximately 0 pieces) are combined and bundled to form a composite material 9 having a compositional non-uniformity portion where the composition ratio of Ni and Ti is partially different in its cross section, and a reduction process is performed on the composite material 9.
Diffusion processing is applied. Note that the code 1 in Figure 4
0 is an exterior material temporarily used to form the composite material 9, and a vibrator made of copper or mild steel can be used.

この方法において用いられる前記Ti−Ni条体7は、
本例では直径0.05〜5W程度のTi材5の表面に、
該Ti材5とによってTiNi材を形成しうるよう制御
された量のNi材6をメッキ、クラフト等の方法で被覆
することによって構成されている。もちろん前記Ni−
Ti条体7としては、前記特願昭60−260844号
公報が開示するようにTi線条材とNi線条材とを撚り
合わせたものも使用できる他、例えば、特願昭61−1
38495号rNiTi系機能合金用複合材」あるいは
特願昭61−142187号rNiTi系機能合金用複
合材」によって得られるような機械的結合された複合材
も用いうる。
The Ti-Ni strip 7 used in this method is
In this example, on the surface of the Ti material 5 with a diameter of about 0.05 to 5W,
It is constructed by coating a controlled amount of Ni material 6 with the Ti material 5 by a method such as plating or crafting so that a TiNi material can be formed. Of course, the Ni-
As the Ti strip body 7, a structure obtained by twisting a Ti wire material and a Ni wire material as disclosed in the above-mentioned Japanese Patent Application No. 60-260844 can also be used.
Mechanically bonded composites such as those obtained by "Composite material for NiTi-based functional alloys" No. 38495 or "Composite material for NiTi-based functional alloys" published in Japanese Patent Application No. 142187/1987 may also be used.

このようなNi−Ti条体7は、各条体7毎にすでに所
定のTiNi組成比に調整されており、このため製造能
率を向上させる。
Such a Ni-Ti strip 7 has already been adjusted to have a predetermined TiNi composition ratio for each strip 7, thus improving manufacturing efficiency.

一方、前記余剰材8としては、Ni及び/又はTiでな
る直径0.1〜10mm程度の線条材が好適に用いられ
る。
On the other hand, as the surplus material 8, a wire material made of Ni and/or Ti and having a diameter of about 0.1 to 10 mm is preferably used.

又該余剰材8はその最終においては前記Ni−Ti条体
7との拡散反応、あるいは余剰材8内部に前記第2相3
を生成せしめるよう含まれているNiとTiとの拡散反
応によってTi、Ni材又はTjNisを含む第2相3
を生成せしめるものであり、又これらは拡散熱処理条件
によってその組成比及び断面積が変化する為、用いうる
該余剰材8の太さ、本数等は熱処理条件とともに予め決
定しておくことが望まれる。なお余剰材8は、一般に前
記Ni−Ti条体7中の各Ni材6又はTi材5よりも
容量を大きく設定しておくのが好ましい。
Further, in the final stage, the surplus material 8 undergoes a diffusion reaction with the Ni-Ti strip 7 or the second phase 3 is formed inside the surplus material 8.
A second phase 3 containing Ti, Ni material or TjNis is formed by a diffusion reaction between the Ni and Ti contained to generate
Since the composition ratio and cross-sectional area of these materials change depending on the diffusion heat treatment conditions, it is desirable that the thickness, number, etc. of the surplus material 8 that can be used be determined in advance together with the heat treatment conditions. . Note that it is generally preferable to set the capacity of the surplus material 8 to be larger than that of each Ni material 6 or Ti material 5 in the Ni-Ti strip 7.

このような複合材9には次いで冷間や温間の縮寸加工が
伸線や圧延、スウエージング等によって施され、その横
断面積を減少させてNi−Ti条体7や余剰材8を微細
化させるとともに内部隙間を排除する。
Such a composite material 9 is then subjected to cold or warm reduction processing by wire drawing, rolling, swaging, etc. to reduce its cross-sectional area and to finely form the Ni-Ti strips 7 and surplus materials 8. and eliminate internal gaps.

加工率は一般に50%以上で行ない、それに引き続いて
内部のNi材5とTi材6とが相互に拡散しうる拡散熱
処理を行なう。
The processing rate is generally 50% or more, followed by a diffusion heat treatment that allows the Ni material 5 and Ti material 6 inside to diffuse into each other.

この際、前記Ni−Ti条体7の各々は略均−なTiN
i相に変化し、又余剰材8はその最終において前記機能
材料1の−@IAから他部IBに向かって伸びた第2相
3を形成するよう温度700〜1100℃、時間10〜
30時間の範囲から用途、目的に応じた条件を選択する
At this time, each of the Ni-Ti strips 7 is made of approximately uniform TiN.
The surplus material 8 is heated at a temperature of 700 to 1100° C. for a period of 10 to 100°C so that the surplus material 8 finally forms a second phase 3 extending from -@IA of the functional material 1 toward the other part IB.
Select the conditions according to the usage and purpose from the range of 30 hours.

特に該第2相3は、主としてNiとTiとの組成比関係
、熱処理条件によって、その大きさも変化することから
、予め条件を設定する必要あり、この条件の一例は次の
実施例で説明される。
In particular, the size of the second phase 3 changes mainly depending on the composition ratio relationship between Ni and Ti and the heat treatment conditions, so it is necessary to set the conditions in advance. An example of this condition is explained in the following example. Ru.

〔実施例−1〕 TiNi相を形成しうるNi41条体として、直径0゜
2鶴の純Ni線材と0.18鶴の純Ti線材とを組合せ
て使用してこれらを撚り合わせ、又余剰材としては直径
0.3 mの純Ni材を各々用意した。
[Example-1] As a Ni41 strip that can form a TiNi phase, a pure Ni wire with a diameter of 0.2 mm and a pure Ti wire with a diameter of 0.18 mm were used in combination and twisted together, and the surplus material was Pure Ni materials with a diameter of 0.3 m were each prepared.

そしてこれらNi−Ti条体の複数本と余剰材とを本数
比10:1程度の割合でその横断面内において均一に分
散するよう配置することによって部分的に組成不均一部
を有する複合材(直径10鶴)を形成し、その外周を軟
鋼パイプでなる外装材で覆った。
Then, by arranging a plurality of these Ni-Ti strips and the surplus material at a ratio of approximately 10:1 so that they are uniformly dispersed within the cross section, a composite material having a partially non-uniform composition ( 10 cranes in diameter), and its outer periphery was covered with an exterior material made of mild steel pipe.

この外装材で覆われた複合材は、次に冷間伸線機により
加工率50%以上の強度の加工を施した後、機械的方法
で前記外装材のみを除去し、その結果、内部の各Ni−
Ti条ELや余剰材がお互いに圧接された一本の線材が
得られた。
The composite material covered with this exterior material is then subjected to strong processing with a processing rate of 50% or more using a cold wire drawing machine, and then only the exterior material is removed using a mechanical method. Each Ni-
A single wire rod was obtained in which the Ti strip EL and the surplus material were pressed together.

そしてこの時のNiとTiとの組成比率を調査したが、
その値は最初の撚り合わせ状態での比率と、はとんど変
化しておらず、このことから両者は、はぼ同等の割合で
縮径化されていることが推察される。そしてこの時、余
剰材も約20μm以下にまで微細化されしかも、前記伸
線加工によって内部隙間も完全に排除されたものとなっ
た。
Then, we investigated the composition ratio of Ni and Ti at this time.
The value is almost unchanged from the ratio in the initial twisted state, and from this it can be inferred that both are reduced in diameter at approximately the same rate. At this time, the surplus material was also reduced to about 20 μm or less, and the internal gaps were completely eliminated by the wire drawing process.

この為その取扱いは非常に容易となり、そのまま100
0℃の真空加熱炉中で15時間の拡散熱処理加工を行な
い、その結果、前記Ni−Ti条体同志はお互いの相互
拡散現象によって均一なTiNi相を生成した。しかし
比較的横断面積の大きな余剰材は、未だ完全に拡散する
ことなく 、TxNi3相を含んだ微細な第2相が混在
する直径0.4鶴の機能材料が得られ、しかも該第2相
は機能材料の長手方向に略同寸で連続化したものであっ
た。
For this reason, it is very easy to handle and can be used as is.
Diffusion heat treatment was performed for 15 hours in a vacuum heating furnace at 0° C., and as a result, the Ni—Ti strips produced a uniform TiNi phase by mutual diffusion. However, the surplus material with a relatively large cross-sectional area has not yet completely diffused, and a functional material with a diameter of 0.4 mm in which a fine second phase including three TxNi phases is mixed is obtained. The functional material was made continuous with approximately the same size in the longitudinal direction.

そしてこの材料から、試料を採取しDSC熱量計で各変
態温度を測定した結果、Af点湯温度80℃形状記憶合
金であることがわかった。
Samples were taken from this material and each transformation temperature was measured using a DSC calorimeter. As a result, it was found that the material was a shape memory alloy with an Af hot water temperature of 80°C.

〔実施例−2〕 実施例−1で使用したものと同一構成のNi−Ti条体
2000本をいったん、軟鋼製パイプ(長さ1m)内に
挿入し、加工率80%以上の伸線加工を行なった後前記
外装材のみを機械的方法で除去した。
[Example-2] 2000 Ni-Ti strips having the same configuration as those used in Example-1 were inserted into a mild steel pipe (1 m in length) and wire-drawn with a processing rate of 80% or more. After that, only the exterior material was removed mechanically.

次にこうして残った複合体100本と、余剰材として直
径0.1鶴の純Nl線材10本とを各々均一に混合させ
た合計110本を前記と同一の軟鋼パイプ内に再度集束
させ2次集束材とした後、さらに90%以上の伸線加工
を行ない直径1.2 wmの線材を得た。その結果、前
記Ni−Ti条体の各純Ni&!jI材及びTii材の
各々が1〜3μm程度の繊維状に、また余剰材も14μ
m程度にまで各々微細化されていた。
Next, the remaining 100 composite wires and 10 pure Nl wires with a diameter of 0.1 mm as surplus material were each uniformly mixed, for a total of 110 wires, and re-focused in the same mild steel pipe as above for secondary production. After making it into a bundled material, it was further subjected to a wire drawing process of 90% or more to obtain a wire rod with a diameter of 1.2 wm. As a result, each pure Ni &! Each of the jI material and Tii material is in the form of fibers of about 1 to 3 μm, and the surplus material is also 14 μm.
They were each miniaturized to about m.

このようなことは拡散時間の大巾な短縮化と、Ti線材
の酸化を押さえ、得られる製品の均質化に大きく寄与す
るものであった。
This greatly shortened the diffusion time, suppressed oxidation of the Ti wire, and greatly contributed to the homogenization of the obtained product.

この状態から、外装材除去と1000℃、10時間の拡
散熱処理を行った結果、Af点湯温度80℃有し、その
TiNi相でなる母相内に、前記余剰材がTiNis相
を含んだ第2相(横断面面積70μd)となって混在す
る機能材料が得られた。
From this state, as a result of removing the exterior material and performing a diffusion heat treatment at 1000°C for 10 hours, the Af hot water temperature was 80°C, and the surplus material contained a TiNis phase in the parent phase of the TiNi phase. A functional material in which two phases (cross-sectional area: 70 μd) were mixed was obtained.

〔比較材〕[Comparative material]

溶解法によって得た均一なTiNi相でなるNi−Ti
合金(Ni41条体%)を冷間伸線により0.7鶴にま
で加工し、そして900℃×0.5時間の条件で焼なま
し処理を行った結果、Af点湯温度85℃形状記憶線材
が得られたのでこれを比較材として使用した。
Ni-Ti consisting of a uniform TiNi phase obtained by a dissolution method
The alloy (Ni 41 strips%) was processed to 0.7 wire by cold wire drawing and annealed at 900℃ for 0.5 hours, resulting in a shape memory with an Af hot water temperature of 85℃. Since a wire rod was obtained, this was used as a comparison material.

〔試験結果−1〕 これら機能材料について形状記憶特性、超弾性特性を各
々調査した (イ)回復応力測定結果 実施例−1,2で得た材料(焼なまし状態品)をインス
トロン型引張り試験機に標点距離20鶴でセットし5%
の予歪を付加し、その時の負荷応力を求めた。
[Test results-1] The shape memory properties and superelastic properties of these functional materials were investigated. (a) Restoration stress measurement results Set on the test machine with a gauge length of 20 cranes and set it at 5%.
A pre-strain was added and the applied stress at that time was determined.

そして一旦応力を除荷した後100℃の温風をかけ、そ
の時発生する回復応力を求めた結果、第1表に示されて
いるように、本発明の機能材料は、従来材に比してはる
かに高い機能を有していることがうかがえた。
Once the stress was unloaded, hot air at 100°C was applied, and the recovery stress generated at that time was determined. As shown in Table 1, the functional material of the present invention is more effective than conventional materials. It appears that it has much higher functionality.

第  1  表 (ロ) 熱疲労寿命試験 実施例−1,2及び比較材で得た焼なまし処理材を長さ
5C11に切断し、一方は固定し、他方には20 kg
/man”の応力を加えた状態で、100℃での加熱と
20℃程度の冷却とを1サイクル(約10秒)として、
これを交互に繰り返し、それによって変化する変位f1
(伸び)を調査した。
Table 1 (b) The annealed materials obtained from thermal fatigue life test examples 1 and 2 and comparative materials were cut into lengths of 5C11, one part was fixed, and the other part was loaded with 20 kg.
One cycle (approximately 10 seconds) of heating at 100°C and cooling at about 20°C with a stress of /man'' applied.
This is repeated alternately, and the displacement f1 changes accordingly.
(elongation) was investigated.

その結果は第5図に示されている。The results are shown in FIG.

〔試験結果−2〕 前記実施例−1,2及び、比較例で得られた各々の機能
材料の超弾性機能について試験するため、各試料を一旦
加工率30%で加工した後400℃×0.5時間の熱処
理を行った。
[Test Results-2] In order to test the superelastic function of each of the functional materials obtained in Examples 1 and 2 and the comparative example, each sample was once processed at a processing rate of 30% and then heated at 400°C x 0. Heat treatment was performed for .5 hours.

試験方法は各試料を各々のAf温度以上に加熱した状態
で、インストロン型引張試験機に標点距離20鶴でセッ
トし、そのまま5%の予歪を与えた後、除荷し、この時
の応力−歪線図から、応力誘起マルテンサイト生成開始
応力σMと、除荷による逆変態開始応力σRとを求め各
材料の超弾性特性を比較した。
The test method was to heat each sample above its Af temperature, set it on an Instron tensile tester with a gauge length of 20, give it a pre-strain of 5%, and then unload it. From the stress-strain diagram, the stress-induced martensite formation start stress σM and the reverse transformation start stress σR due to unloading were determined, and the superelastic properties of each material were compared.

第2表はその結果をまとめたものである。Table 2 summarizes the results.

第2表 〔発明の効果〕 以上詳述したように本発明の機能材料は、TiNi相で
なる母相中にその一端から他端に向かって伸ばされた第
2相を混在せしめ、複合構造としたことから、一般的な
機械的性質を向上させ、その結果例えば引張強さが同等
でも伸び率の高い材料となる。この点については本発明
者らは例えば引張強さが170 kg/m+w”の場合
には7%から10%へと約1.5倍の改良がなされたこ
とを確認しており、新しい用途の開発の一因となるもの
と思われる。
Table 2 [Effects of the Invention] As detailed above, the functional material of the present invention has a composite structure in which a second phase extending from one end of the TiNi phase to the other end is mixed into the mother phase of the TiNi phase. This improves general mechanical properties, resulting in materials with higher elongation, for example, with the same tensile strength. Regarding this point, the present inventors have confirmed that, for example, when the tensile strength is 170 kg/m+w'', an improvement of about 1.5 times has been achieved, from 7% to 10%, and it is possible to develop new applications. This is thought to be a factor in development.

超弾性や形状記憶用として使用する際の種々特性を向上
させたものであり、例えば、形状記憶における機械的特
性では降伏応力、回復応力ともに従来材料をはるかに上
回る結果かえられ、又熱サイクル疲労による寿命も本発
明品では、安定している為、長期間の使用にも十分に耐
え得るものである。
It has improved various properties when used for superelasticity and shape memory. For example, in terms of mechanical properties in shape memory, both yield stress and recovery stress are far superior to conventional materials, and it also has resistance to thermal cycle fatigue. Since the product of the present invention has a stable lifespan, it can withstand long-term use.

このような傾向は超弾性の場合でも見られており、大き
な効果を備えていることが解かる。
This tendency is also seen in the case of superelasticity, and it can be seen that it has a great effect.

従って本発明の機能材料では、その直径や寸法が細径化
できることから材料費低減が可能となるとともに、その
製造方法も、溶解などの大掛かりな設備を必要とせず、
容易にかつ短時間で得られることから生産量に関係な〈
実施でき、均質で高特性の製品が寸法、形状に限定され
ることなく得られるなど、本発明の工業的価値は大きい
ものである。
Therefore, the functional material of the present invention can reduce the material cost because its diameter and dimensions can be reduced, and the manufacturing method does not require large-scale equipment such as melting.
Because it can be obtained easily and in a short time, it is not related to production volume.
The industrial value of the present invention is great, as it is possible to obtain a homogeneous and high-characteristic product without being limited by size or shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の機能材料の一例を示す斜視図、第2図
はそのA−A’断面拡大図、第3図は機能材料の他の例
を示す斜視図、第4図は機能材料製造の一過程を示す斜
視図、第5図は機能材料の特性測定結果を示す線図であ
る。 1−機能材料、 2−・−TiNi相母相、3−・・第
2相、 5・−・・−Ni材、 6−T i材、7−−
 Ni−Ti条体、 8−・・余剰材、9−・−複合材
。 特許出願人    日 本 精 線 株式会社代理人 
弁理士  苗   村      正fJ4  ml 第5図 づイクル壷ヒ(回) 昭和62年3月8日 2.f明o名称   、=、、系機能材料及びその製造
方法3.1i正をする者 事件との関係   特許出願人 住所 大阪市東区高[!!5丁目45番地名  称  
日 木精 線株式会社 代表者 和  1) 角  平 4、代理人 住所大′阪市淀用区西中島4丁目2番26号5、補正に
より増加する発明の数     16.11正の対象 Haの用紙の上の余白に「特許法第38条ただし書の現
定による特許出願」旨記載しかつ、発明の名称の欄と発
明者の欄との間に項目を設けて「特許請求の範囲に記載
された発明の数2」を追加する。
Fig. 1 is a perspective view showing an example of the functional material of the present invention, Fig. 2 is an enlarged cross-sectional view taken along line A-A', Fig. 3 is a perspective view showing another example of the functional material, and Fig. 4 is the functional material. FIG. 5 is a perspective view showing one manufacturing process, and a diagram showing the results of measuring the characteristics of the functional material. 1-Functional material, 2-.-TiNi phase matrix, 3-.Second phase, 5--Ni material, 6-Ti material, 7--
Ni-Ti strip, 8--surplus material, 9--composite material. Patent applicant Japan Seisen Co., Ltd. Agent
Patent Attorney Tadashi Naemura fJ4 ml Figure 5 Ikuru Bohi (time) March 8, 1986 2. fmei o name ,=,, system functional materials and their manufacturing method 3.1 Relationship with the person who makes the i correction Patent applicant address Higashi-ku, Osaka City [! ! 5-45 name
Representative of Nippon Seisen Co., Ltd. Kazu 1) Kado Hei 4, Agent address: 4-2-26-5 Nishinakajima, Yodoyo-ku, Osaka City, Number of inventions increased by amendment 16.11 Positive object Ha In the margin at the top of the paper, write ``A patent application pursuant to the proviso to Article 38 of the Patent Act,'' and place an item between the title of the invention column and the inventor column, and write ``In the scope of claims.'' The number of described inventions 2 is added.

Claims (3)

【特許請求の範囲】[Claims] (1)NiとTiとを少なくとも含有してなるNi−T
i系機能材料であって、該機能材料はTiNi相でなる
母相中にその一端から他端に向かって伸ばされたTi、
Ni相及び/又はTiNi_3相を含む第2相を混在さ
せていることを特徴とするNi−Ti系機能材料。
(1) Ni-T containing at least Ni and Ti
An i-based functional material, the functional material includes Ti stretched from one end to the other end in a matrix consisting of a TiNi phase;
A Ni-Ti-based functional material characterized by containing a second phase including a Ni phase and/or a TiNi_3 phase.
(2)前記第2相は、該機能材料横断面において複数存
在するとともにそれらが均一に分散している特許請求の
範囲第1項記載のNi−Ti系機能材料。
(2) The Ni-Ti-based functional material according to claim 1, wherein a plurality of the second phases exist in the cross section of the functional material and are uniformly dispersed.
(3)TiNi相を形成し得るよう制御された複数のN
i−Ti条体と、Ni条及び/又はTi条でなる所定量
の余剰材とを集束し、かつその横断面において部分的な
組成不均一部を有する複合材を形成するとともに、該複
合材に縮寸加工と拡散熱処理加工とを施すことにより、
前記Ni−Ti条体が形成するTiNi相母相中に伸ば
されたTi_2Ni相及び/又はTiNi_3相を含む
第2相を生成せしめることを特徴とするNi−Ti系機
能材料の製造方法。
(3) Multiple N controlled to form a TiNi phase
The i-Ti strips and a predetermined amount of surplus material consisting of Ni strips and/or Ti strips are collected to form a composite material having a partial compositional non-uniformity in its cross section, and the composite material By applying size reduction processing and diffusion heat treatment to
A method for producing a Ni-Ti-based functional material, characterized in that a second phase containing an extended Ti_2Ni phase and/or TiNi_3 phase is generated in a TiNi phase matrix formed by the Ni-Ti strips.
JP31453486A 1986-12-27 1986-12-27 Ni-ti functional material and its production Pending JPS63166941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31453486A JPS63166941A (en) 1986-12-27 1986-12-27 Ni-ti functional material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31453486A JPS63166941A (en) 1986-12-27 1986-12-27 Ni-ti functional material and its production

Publications (1)

Publication Number Publication Date
JPS63166941A true JPS63166941A (en) 1988-07-11

Family

ID=18054445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31453486A Pending JPS63166941A (en) 1986-12-27 1986-12-27 Ni-ti functional material and its production

Country Status (1)

Country Link
JP (1) JPS63166941A (en)

Similar Documents

Publication Publication Date Title
EP0226826B1 (en) Method for making titanium-nickel alloys
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD
JP2003517935A (en) Improved alloy fiber and method for producing the same
JPS63166941A (en) Ni-ti functional material and its production
US6248192B1 (en) Process for making an alloy
JPS6120694A (en) Bonding wire
JPH0456095B2 (en)
US3390983A (en) Tantalum base alloys
JP3648676B2 (en) Auxiliary materials for superconducting materials
JPS599610B2 (en) Alloys suitable for furnace components
JPS6013424B2 (en) Manufacturing method for eyeglass frame materials
JPH02243747A (en) Intermetallic compound wire and its production
JP7322247B1 (en) Cu-Ag alloy wire and manufacturing method thereof
JP2502058B2 (en) Manufacturing method of NiTi alloy
JPS62294155A (en) Composite material for niti function alloy
JPS6072695A (en) Brazing alloy for stainless steel
JPH02187212A (en) Manufacture of extra-fine titanic wire
JP2770386B2 (en) Composite wire and method of manufacturing the same
JPH04323353A (en) Production of shape memory alloy wire by focusing wire drawing method
JPS63203212A (en) Composite fiber for ni-ti base functional fibered material and its manufacture
JPS62297448A (en) Composite material for niti series functional alloy
JPS5944378B2 (en) Method for manufacturing dental silver amalgam alloy
JP2000052087A (en) Platinum, and brazing material for platinum alloy
TW593690B (en) Method of producing high strain rate superplastic Zn-Al alloys
JPH02159341A (en) Molybdenum material