JPS63166490A - Method and apparatus for making long-term stable silver ion water - Google Patents

Method and apparatus for making long-term stable silver ion water

Info

Publication number
JPS63166490A
JPS63166490A JP31479286A JP31479286A JPS63166490A JP S63166490 A JPS63166490 A JP S63166490A JP 31479286 A JP31479286 A JP 31479286A JP 31479286 A JP31479286 A JP 31479286A JP S63166490 A JPS63166490 A JP S63166490A
Authority
JP
Japan
Prior art keywords
water
chamber
silver
anode
silver ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31479286A
Other languages
Japanese (ja)
Other versions
JPH028799B2 (en
Inventor
Yoshiaki Matsuo
至明 松尾
Jinichi Ito
仁一 伊藤
Katsue Oshima
大嶋 勝衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31479286A priority Critical patent/JPS63166490A/en
Priority to US07/050,437 priority patent/US4755268A/en
Priority to EP87304693A priority patent/EP0247852A1/en
Priority to BR8702748A priority patent/BR8702748A/en
Publication of JPS63166490A publication Critical patent/JPS63166490A/en
Publication of JPH028799B2 publication Critical patent/JPH028799B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To hold a uniform concn. of silver ions, by a method wherein raw water is preliminarily subjected to deionization treatment and, after org. carboxylic acid is added to the treated water, the silver ion eluted in the first electrolytic cell is introduced into the second electrolytic cell where NaCl is added to form a complex. CONSTITUTION:Raw water is passed through an ion exchange substance such as an ion exchange resin to remove a Ca<2+> ion. Subsequently, 0.01-0.4wt.% of org. carboxylic acid is added to raw water and DC voltage is applied in the first electrolytic cell wherein silver is provided as an anode to form silver ion-containing raw water. Further, this raw water is passed through both of the anode chamber and the cathode chamber of the second electrolytic cell to obtain raw water containing a silver ion at desired concn. Subsequently, the raw water is introduced into a treatment tank where a predetermined amount of NaCl is added to change silver to a water-soluble complex. By this method, silver ion water having strong acting effect at low concn. can be easily obtained.

Description

【発明の詳細な説明】 「技術分野」 本発明は、例えば食品の加工、流通における細菌による
弊害防止、農業における土壌改良、木賃汚濁防止による
環境衛生の向上、医療における消毒または治療等に使用
される長期安定銀イオン水の製造方法および製造装置に
関する。
Detailed Description of the Invention "Technical Field" The present invention can be used, for example, to prevent harmful effects caused by bacteria in food processing and distribution, improve soil in agriculture, improve environmental hygiene by preventing wood pollution, disinfection or treatment in medicine, etc. The present invention relates to a method and apparatus for producing long-term stable silver ion water.

「従来技術およびその問題点」 銀イオン水は、食品の細菌腐敗に起因する食中毒防止、
農業における土壌改良、医療における消毒治療水として
その効果が証明されつつあり、その幅広い利用か期待さ
れている。
"Prior art and its problems" Silver ion water can be used to prevent food poisoning caused by bacterial spoilage of food.
Its effectiveness as soil improvement in agriculture and disinfection treatment water in medicine is being proven, and its wide use is expected.

従来、銀イオン水は、カタディン法と呼ばれる方法によ
って製造されでおり、この方法は、陽極と陰極とを有し
陽極に銀を設けでなる電解室に、両電極間に電圧を印加
しつつ水を流通させることにより、銀をイオン化して溶
出させ、銀イオン水を得るものである。しかしながら、
このように銀を電気分解した場合、銀イオンは、水中に
含まれるCI−イオンと結合し、時間経過と共に沈澱し
Conventionally, silver ion water has been produced by a method called the Katadin method, in which water is poured into an electrolytic chamber that has an anode and a cathode, and the anode is made of silver, while applying a voltage between the two electrodes. By circulating the water, silver is ionized and eluted to obtain silver ion water. however,
When silver is electrolyzed in this way, silver ions combine with CI- ions contained in water and precipitate over time.

均一な銀イオン水が得られず、その効果も正確に特定さ
れないといった問題が生じていた。
Problems have arisen in that uniform silver ion water cannot be obtained and its effects cannot be accurately determined.

一方、本発明者らは、先に、陽極と陰極とを有し、陽極
に銀が設置すられた第1電解室に、電圧を印加しつつ濡
水を通して銀イオンを溶出させる工程と、陽極と陰極と
を有し、両電極の間に隔膜が形成され、陽極室と陰極室
とに区画された第2電解室の前記陽極室および/または
前記陰極室に、前記銀イオンを溶出させた濡水を通して
酸性の銀イオン本および/またはアルカリ性の銀イオン
水を得る工程とからなる銀イオン水の製造方法@提案し
ている(特願昭61−123.133号)、このように
しで得られる酸性またはアルカリ性の銀イオン水は、蛋
白質成分混在下においても蛋白質と結合しで失活するこ
とがなく、優れた作用効果を示すものであったが、この
銀イオン水においでも時間の経過と共に水中のCI−イ
オンと結合して沈澱を起こすため、均一な銀イオン水を
得ることが困難であり、製品の安定化が望まれていた。
On the other hand, the present inventors first conducted a step of eluting silver ions through wet water while applying a voltage to a first electrolytic chamber having an anode and a cathode, in which silver was installed at the anode, and and a cathode, a diaphragm is formed between both electrodes, and the silver ions are eluted into the anode chamber and/or the cathode chamber of a second electrolytic chamber partitioned into an anode chamber and a cathode chamber. A method for producing silver ion water consisting of a step of obtaining acidic silver ion water and/or alkaline silver ion water through wet water has been proposed (Japanese Patent Application No. 123/1983). The acidic or alkaline silver ion water used in this study has been shown to have excellent effects by binding to proteins and not being deactivated even in the presence of protein components. Because it combines with CI- ions in water and causes precipitation, it is difficult to obtain uniform silver ion water, and it has been desired to stabilize the product.

また、上記のようにして得られた銀イオン水においては
、例えば食品中の芽胞菌等の処理に際して、ある程度以
上の濃度が要求されるものであったため、より低濃度で
高い効果を示すより安全性の高い銀イオン水の開発が待
たれていた。
In addition, the silver ion water obtained as described above requires a certain level of concentration, for example, when treating spore bacteria in foods, so it is safer to use silver ion water that is highly effective at lower concentrations. The development of silver ion water with high oxidation properties has been awaited.

「発明の目的」 本発明の目的は、長期間に亙り安定して均一な銀イオン
濃度を保持し、かつ、比較的低濃度で蛋白質混在下にお
いても細菌等の標的物質においで高い作用効果をもたら
し得る銀イオン木を製造可能とする長期安定銀イオン水
の製造方法および製造装置を提供することを目的とする
"Objective of the Invention" The object of the present invention is to maintain a stable and uniform silver ion concentration over a long period of time, and to have high effects on target substances such as bacteria even at relatively low concentrations and in the presence of proteins. An object of the present invention is to provide a method and apparatus for producing long-term stable silver ion water that can produce silver ion wood.

「発明の構成」 本発明の銀イオン水の製造方法は、 a)濡水を脱イオン処理して源水中のイオン性物′j4
を低減させ、 b)減イオン化された濡水に菅機カルボン酸IFr添加
し、 c)fil極と陰極とを有し、陽極に銀が設けられてな
るII+電解室に、直流電圧を印加しつつ有機カルボン
酸を添加された濡水を通して銀イオンを溶出させ、 d)III極と陰極とを有し、両電極の間に隔膜が形成
され、陽極室と陰極室とに区画された第2電解室に直流
電圧を印加しつつ前記銀イオンを溶出させた濡水を少な
くとも陰極室側に通し、e)前記陰極室を通した濡水に
NaCltr添加して銀を可溶性錯体として水中に存在
させることを特徴とする。
"Structure of the Invention" The method for producing silver ion water of the present invention includes: a) deionizing wet water to remove ionic substances in the source water;
b) Adding IFr Kanki carboxylic acid to the deionized wet water; c) Applying a DC voltage to a II+ electrolytic chamber having a fil electrode and a cathode, and having silver as an anode. d) a second electrode having a III electrode and a cathode, with a diaphragm formed between the two electrodes and partitioned into an anode chamber and a cathode chamber; While applying a DC voltage to the electrolytic chamber, the wet water from which the silver ions have been eluted is passed through at least the cathode chamber side, and e) NaCltr is added to the wet water that has passed through the cathode chamber so that silver is present in the water as a soluble complex. It is characterized by

また、本発明の銀イオン水の製造装置は、イオン交換物
質を充填したイオン交換室と、有機カルボン酸を添加す
る第1濁合槽ど、陽極と陰極とを有し陽極に銀が設けら
れた第1電解室と、陽極と陰極とを有し両電極間に隔膜
が形成され陽極室と陰極室とに区画された第2電解室と
、NaClを添加する第2混合槽とを備え、少なくとも
濡水を前記イオン交換室から、第1混合槽、M1電解室
、第2電解室の陰極室および第2混合室を通して流出さ
せる流路を有することを特徴とする。
Furthermore, the apparatus for producing silver ion water of the present invention includes an ion exchange chamber filled with an ion exchange substance, a first turbidity tank for adding an organic carboxylic acid, an anode and a cathode, and the anode is provided with silver. a second electrolytic chamber having an anode and a cathode with a diaphragm formed between the two electrodes and partitioned into an anode chamber and a cathode chamber, and a second mixing tank for adding NaCl, It is characterized by having a flow path that allows at least wet water to flow out from the ion exchange chamber through the first mixing tank, the M1 electrolytic chamber, the cathode chamber of the second electrolytic chamber, and the second mixing chamber.

以下、本発明を好ましい態様を挙げてざらに詳しく説明
する。
Hereinafter, the present invention will be explained in detail by citing preferred embodiments.

本発明の銀イオン水の製造方法においては、使用される
原水は、まず、a)の工程で脱イオン処理される。一般
に、水道、井戸水などの各種の原水中には、Ca”+イ
オン、M92+イオン、Na+イオン等の陽イオン、H
CO−イオン、5O4−イオン、CI−イオン、シリカ
コロイド状有機酸等の陰イオンなどのイオン性物質が含
まれており、その電気伝導度が80〜450μU /c
rn’であることからも明らかなように、原水の成分か
一定化されず均一な原水が得られない、安定した、かつ
、均一な銀イオン水を得るためには、原水の成分を一定
化する必要があり、例えばイオン交換樹脂等のイオン交
換物質に源水を通すことにより、陽イオン、陰イオンを
所定量まで除去し、原水の成分の一定化を図る必要かあ
る。この場合、減イオン化処理堵の原水の電気伝導度は
、30〜150 uU/crrr、より好ましくは40
〜80μU /crn’であることが望まれる。減イオ
ン化処理徒の原水の電気伝導度が30uU/cn(未満
では必要微量元素の必要量を満たさず、ざらに有機カル
ボン酸によって電解をより可能にするために、酸味が強
くなるという不都合が生じ、減イオン化処理稜の原水の
電気伝導度が150 uc/rn’を超えるとCI−と
^9+との反応がおこり、白濁してコロイド化するとい
う不都合が生じる。
In the method for producing silver ion water of the present invention, the raw water used is first deionized in step a). In general, various types of raw water such as tap water and well water contain cations such as Ca''+ ions, M92+ ions, Na+ ions, H
Contains ionic substances such as CO- ions, 5O4- ions, CI- ions, anions such as silica colloidal organic acids, and has an electrical conductivity of 80 to 450 μU/c.
As is clear from the fact that rn', the ingredients of raw water cannot be stabilized and uniform raw water cannot be obtained.In order to obtain stable and uniform silver ion water, it is necessary to keep the ingredients of raw water constant. For example, it is necessary to pass the source water through an ion exchange material such as an ion exchange resin to remove cations and anions to a predetermined amount and to stabilize the components of the source water. In this case, the electrical conductivity of the deionized raw water is 30 to 150 uU/crrr, more preferably 40
~80 μU/crn' is desired. If the electrical conductivity of the raw water used for deionization treatment is less than 30 uU/cn (less than 30 uU/cn), the required amount of trace elements will not be met, and the organic carboxylic acid will make electrolysis more possible, resulting in the inconvenience of a strong sour taste. If the electric conductivity of the raw water in the deionized ridge exceeds 150 uc/rn', a reaction between CI- and ^9+ will occur, resulting in the inconvenience of clouding and colloidal formation.

脱イオンされた原水には、次に、b)工程において有機
カルボン酸が添加される。上記のごとく原水中のイオン
を除去すると、電気伝導度が低下しこのままでは電気分
解を順調にすすめることが困難である。したがって、電
離性化合物@添加して原水の電気伝導度を高め、電気分
解を容易とする必要があるが、本発明の製造方法におい
ては、電M性化合物として、有機カルボン酸、特に好ま
しくは酢酸を使用する。有機カルボン酸、例えば酢酸は
水中で電離してカルボキシル基イオンCH3COO−と
ヒドロキシル基イオンH”! !しるが、これらのイオ
ンは次のC)工程においで電気分解により生じる銀イオ
ンに対して沈澱反応を起こすことがなく、しかも最後の
e)工程において銀イオンに作用して錯体を形成するの
に寄与する。このような有機カルボン酸の脱イオンされ
た原水への添加量は、原水に対して0.01〜0.4重
量%が好ましく、0.06重量%前後とすることが最も
好ましい。
An organic carboxylic acid is then added to the deionized raw water in step b). When the ions in the raw water are removed as described above, the electrical conductivity decreases, making it difficult to proceed with electrolysis smoothly. Therefore, it is necessary to add an ionizable compound @ to increase the electrical conductivity of raw water and facilitate electrolysis. However, in the production method of the present invention, an organic carboxylic acid, particularly preferably acetic acid use. Organic carboxylic acids, such as acetic acid, ionize in water to form carboxyl group ions CH3COO- and hydroxyl group ions H''! However, these ions are precipitated against silver ions generated by electrolysis in the next step C). It does not cause any reaction, and moreover, it acts on silver ions in the final step e) and contributes to the formation of a complex.The amount of such organic carboxylic acid added to deionized raw water is It is preferably 0.01 to 0.4% by weight, most preferably around 0.06% by weight.

有機カルボン酸の添加量が0.01重量%未満では電解
条件の調整が困難という不都合が生じ、有機カルボン酸
の添加量が0.4重量%を超えると酸味を感じるという
不都合が生じる。
If the amount of organic carboxylic acid added is less than 0.01% by weight, it will be difficult to adjust the electrolytic conditions, and if the amount of organic carboxylic acid added is more than 0.4% by weight, a sour taste will be felt.

このようにして有機カルボン酸を添加された原水は、次
に、C)工程において、陽極と陰極とを有し、陽極に銀
が設けられた第1電解室に直流電圧を印加しつつ通され
、原水中に銀イオンが溶出される。続いて、銀イオンを
含む原水は、次のd)工程において、陽極と陰極とを有
し、両電極間に隔膜が形成され、陽極室と陰極室とに区
画された第2電解室に直流電圧を印加しつつ、少なくと
もその陰極室側に通されたイオン水を次の工程に流すこ
とが重要である。こうして陰極室から取出された原水中
には、A9(OH)2−イオン、CH3COO−イオン
等が溶解していると考えられる。なお、第1電解室より
得られた銀イオンを含む原水を第2電解室の陽極室と陰
極室との両方に同時に通してもよく、その場合、陽極室
からは酸性のA9◆イオンが溶解した原水が得られる。
The raw water to which the organic carboxylic acid has been added in this way is then passed through a first electrolytic chamber having an anode and a cathode, the anode of which is provided with silver, while applying a DC voltage, in step C). , silver ions are eluted into the raw water. Next, in the next step d), the raw water containing silver ions is supplied with a direct current to a second electrolytic chamber that has an anode and a cathode, a diaphragm is formed between both electrodes, and is divided into an anode chamber and a cathode chamber. It is important to flow the ionized water passed through at least the cathode chamber side to the next step while applying a voltage. It is considered that A9(OH)2- ions, CH3COO- ions, etc. are dissolved in the raw water taken out from the cathode chamber in this way. Note that the raw water containing silver ions obtained from the first electrolytic chamber may be passed through both the anode chamber and the cathode chamber of the second electrolytic chamber at the same time, in which case acidic A9◆ ions will be dissolved from the anode chamber. raw water is obtained.

しかし、酸性のA9+イオン等が溶解した原水を製造す
る必要がないときは、陽極室には、通常の無処理の原水
を導入し、そのまま系外へ流出古せてもよい、また、こ
のような電気分解工程においては、第1電解室における
電圧、電流および原水の流量を調整することによって、
所望の銀イオン濃度を得ることができ、銀イオン濃IK
を高めでも根粒コロイドが生しることはない、これは、
M1電解室で銀イオン濃度を調整し、その銀イオン化さ
れたちの18第2電解室でより安定な状態にするためで
ある。
However, when there is no need to produce raw water in which acidic A9+ ions etc. are dissolved, ordinary untreated raw water may be introduced into the anode chamber and flowed out of the system as is. In the electrolysis process, by adjusting the voltage, current and flow rate of raw water in the first electrolysis chamber,
A desired silver ion concentration can be obtained, and silver ion-concentrated IK
Even if the temperature is high, nodule colloids will not form.This is because
This is to adjust the silver ion concentration in the M1 electrolytic chamber and bring the silver ionized particles into a more stable state in the second electrolytic chamber.

このようにして得られたA9(OH)2−イオンおよび
CH,COO−イオンが溶解した原水は、次に、e)工
程において処理槽に導入され、NaClを所定量添加さ
れる。添加されたNaClは、原水中のA9(OH)2
−イオンおよびCH3COO−イオンと反応し、銀が水
に可溶牲の錯体に変化し、原水のPHは一旦はPH3,
8に下がり、徐々に上がって最終的にはPH4,2程度
になる。このときの反応は、未だ詳細には解明されでい
ないが、最終的に、原水中には、A9CH3COO−1
^9C12−1^9C132−などの錯体が形成され、
これらが安定しで溶解した状態となっていると考えられ
る。なお、e)工程におけるNaClの添加量は、原水
に対して1〜10重置%とすることが好ましく、添加量
が1重量%未溝ではAlClの白濁と沈殿が生じ、コロ
イド粒子が見られるという不都合が生じ、添加量が10
重量%を超えると基量過多による沈殿が生じるという不
都合が生じる。
The raw water in which the A9(OH)2- ions and CH, COO- ions thus obtained are then introduced into a treatment tank in step e), and a predetermined amount of NaCl is added thereto. The added NaCl is A9(OH)2 in the raw water.
- ions and CH3COO- ions, silver changes into a water-soluble complex, and the pH of the raw water changes from PH3 to
The pH drops to 8, then gradually rises to about 4.2. The reaction at this time has not yet been elucidated in detail, but eventually A9CH3COO-1
Complexes such as ^9C12-1^9C132- are formed,
It is thought that these are in a stable and dissolved state. In addition, the amount of NaCl added in step e) is preferably 1 to 10% by weight relative to the raw water, and if the amount added is less than 1% by weight, clouding and precipitation of AlCl will occur, and colloidal particles will be observed. This caused the inconvenience that the addition amount was 10
If it exceeds % by weight, there will be a problem that precipitation will occur due to excessive amount of base.

こうして得られた銀イオン水は、原水中に銀をAqCH
3COO−、A9C12−1A9C1s2−などの錯体
としで溶解させているので、凝集沈澱などが起こりにく
く長期間安定しで保存することができる。しかも、従来
の銀イオン水に含まれている一価の銀イオンは、一般に
不安定で光の作用で反応しハロゲン化現象が生じるか、
本発明によって得られた銀イオン水は、光を照射しでも
全く反応せず、長期間安定して保存できることが明らか
となった。また、A9÷イオンやAc+(0)1)z−
イオンなどが溶解した従来の銀イオン水に比べると、そ
の静菌作用も強くなっている。すなわち、本発明で得ら
れた銀イオン水を例えば生体中に投与した場合、体内の
細胞外液中の多量のCI−イオンと調和しながら、錯塩
の状態が保持されつつ標的となる細胞の細胞膜または細
菌に到達し、低濃度においでも高い静菌作用をもたらす
のである。また、食品中における含水率30%程度にお
いて存在する国体に対しても、本発明によって得られた
銀イオン水の効果は顕著で、人体に対して全く安全な濃
度においで優れた静菌効果を得ることができる。ざらに
、また、本発明で得られた銀イオン水中には、有機カル
ボン酸が含まれでおり、有機カルボン酸は芽胞菌を発芽
させる作用を有しているので、発芽直復に芽胞菌を静菌
化させる作用も優れでいる。
The silver ion water obtained in this way is made by adding silver to AqCH in the raw water.
Since it is dissolved as a complex such as 3COO-, A9C12-1A9C1s2-, coagulation and precipitation are unlikely to occur, and it can be stored stably for a long period of time. Moreover, the monovalent silver ions contained in conventional silver ion water are generally unstable and react with the action of light, causing halogenation.
It has been revealed that the silver ion water obtained by the present invention does not react at all even when irradiated with light and can be stored stably for a long period of time. Also, A9÷ ion or Ac+(0)1)z-
Compared to conventional silver ion water, which has ions dissolved in it, its bacteriostatic action is stronger. That is, when the silver ion water obtained by the present invention is administered into a living body, for example, it harmonizes with a large amount of CI- ions in the extracellular fluid of the body, maintains its complex salt state, and destroys the cell membrane of the target cell. Alternatively, it reaches bacteria and has a high bacteriostatic effect even at low concentrations. In addition, the silver ion water obtained by the present invention has a remarkable effect on Kokutai, which exists at a water content of about 30% in food, and has excellent bacteriostatic effects at a concentration that is completely safe for the human body. Obtainable. In addition, the silver ion water obtained in the present invention contains organic carboxylic acid, and since organic carboxylic acid has the effect of germinating spore-forming bacteria, it is difficult for spore-forming bacteria to immediately recover from germination. It also has an excellent bacteriostatic effect.

以上説明したような本発明の長期安定銀イオン水の製造
方法は、上記した本発明の銀イオン水の製造装Mを用い
て好適に英施することが可能である1本発明の製造装置
においては、少なくとも原水をイオン交換室から第1混
合槽、第1電解室、第2電解室の陽極室および第2混合
槽を通して流出させる流路が形成されていればよいが、
上述したように同時に酸性のA9+イオン水を製造する
装置(こおいでは、原水をイオン交換室から第1混合槽
、第1電解室、第2電解室の陽極室を通して流出させる
流路も併せて設けられる。また、このような酸性のA9
+イオン水を製造しない装置においでは、原水を第2電
解室の陽極室を通して流出させる流路が併せて設けられ
る。もちろん、この双方の流路を1つの装置おいて設け
ることも可能である。
The method for producing long-term stable silver ion water of the present invention as described above can be suitably carried out using the above-described silver ion water production apparatus M of the present invention. It is sufficient that at least a flow path is formed that allows the raw water to flow out from the ion exchange chamber through the first mixing tank, the first electrolytic chamber, the anode chamber of the second electrolytic chamber, and the second mixing tank,
As mentioned above, the equipment that simultaneously produces acidic A9+ ionized water (this equipment also includes a flow path for flowing raw water from the ion exchange chamber through the first mixing tank, the first electrolytic chamber, and the anode chamber of the second electrolytic chamber). Also, such acidic A9
+ In an apparatus that does not produce ionized water, a flow path is also provided for causing the raw water to flow out through the anode chamber of the second electrolytic chamber. Of course, it is also possible to provide both flow paths in one device.

「発明の寅施例」 第1図には、本発明の銀イオン水の製造装置の一実施例
が示されている。
"Embodiment of the Invention" FIG. 1 shows an embodiment of the apparatus for producing silver ion water of the present invention.

この装置は、主としてイオン交換室11、M1混合槽1
2)g+電解室13、第2電解室14および第2混合槽
15から主としで構成されている。
This device mainly consists of an ion exchange chamber 11, an M1 mixing tank 1
2) It mainly consists of a g+ electrolytic chamber 13, a second electrolytic chamber 14, and a second mixing tank 15.

この装置において、第1の原水パイプ16は、途中に流
量計1718介してイオン交換室11に接続されている
。イオン交換室11は、アニオン交換室11aと、カチ
オン交換室11bとからなり、それぞれの内部にはアニ
オン交換樹脂およびカチオン交換樹脂が充填されている
In this device, the first raw water pipe 16 is connected to the ion exchange chamber 11 via a flow meter 1718 in the middle. The ion exchange chamber 11 consists of an anion exchange chamber 11a and a cation exchange chamber 11b, each of which is filled with an anion exchange resin and a cation exchange resin.

このイオン交換室11は、第1の原水パイプ16によっ
てM1混合槽12へ接続されるが、この途中にはEC(
電気伝導度)コントロール検出器18が設けられている
。第1混合室12には、また、酢酸液槽19より酢酸導
入パイプ20が途中に定量ポンプ21を介してのびでい
る。第1混合槽12は、ざらに第1の原水パイプ16に
よってM1電解室13に接続されるが、この途中にはま
たECコントロール検出器18が設けられている。
This ion exchange chamber 11 is connected to the M1 mixing tank 12 by a first raw water pipe 16, but there is an EC (
An electrical conductivity) control detector 18 is provided. In addition, an acetic acid introduction pipe 20 extends from the acetic acid liquid tank 19 into the first mixing chamber 12 via a metering pump 21 . The first mixing tank 12 is roughly connected to the M1 electrolytic chamber 13 by a first raw water pipe 16, and an EC control detector 18 is also provided along the way.

第1電解室13は、非導電材からなる底板22と、外周
を囲むステンレス製等の陰極板23と、非導電材からな
る蓋板24とで囲まれている。蓋板24には、陽極棒2
5が挿通されてその下端部が内部に延出されでいる。ま
た、陽極棒25には銀または銀合金26が装着されでい
る。また、蓋板24には、連結パイプ27.2日が接続
されであり、第1電解室j3内の水を導出できるように
なっている。なお、連結パイプ27にはバルブ29が設
けられ、連結パイプ28にはバルブ30が設けられてい
る。
The first electrolytic chamber 13 is surrounded by a bottom plate 22 made of a non-conductive material, a cathode plate 23 made of stainless steel or the like surrounding the outer periphery, and a lid plate 24 made of a non-conductive material. The cover plate 24 has an anode rod 2
5 is inserted, and its lower end extends inside. Moreover, silver or a silver alloy 26 is attached to the anode rod 25. Further, a connecting pipe 27.2 is connected to the lid plate 24, so that water in the first electrolytic chamber j3 can be drawn out. Note that the connecting pipe 27 is provided with a valve 29, and the connecting pipe 28 is provided with a valve 30.

一方、第2電解室14は、非導電材からなる底板31と
、外周を囲むステンレス製等の陰極板32と、非導電材
からなる蓋板33とで囲まれている。
On the other hand, the second electrolytic chamber 14 is surrounded by a bottom plate 31 made of a non-conductive material, a cathode plate 32 made of stainless steel or the like surrounding the outer periphery, and a lid plate 33 made of a non-conductive material.

蓋板33には、陽極板34が内部に延出されるように取
付けられでいる。そして、第2電解室14の内部には、
陽極板34を囲むように円筒状の隔11135が配置さ
れており、この隔膜35により、陽極室36と陰極室3
7とに区画されている。隔ll135は、陽イオンを陽
極室36から陰極室37に通過させ、陰イオンを陰極室
37から陽極室36に通過させ、それらを逆戻りさせな
い性質を有しでいる。
An anode plate 34 is attached to the cover plate 33 so as to extend inward. And inside the second electrolytic chamber 14,
A cylindrical partition 11135 is arranged to surround the anode plate 34, and this partition 35 separates the anode chamber 36 from the cathode chamber 3.
It is divided into 7. The partition 1135 has the property of allowing cations to pass from the anode chamber 36 to the cathode chamber 37, allowing anions to pass from the cathode chamber 37 to the anode chamber 36, and preventing them from returning.

底板31には、前述した連結パイプ27.28が接続さ
れでおり、連結パイプ27は上記陰極室37に連通され
、連結パイプ2日は上記陽極室36に連通されでいる。
The aforementioned connecting pipes 27 and 28 are connected to the bottom plate 31, and the connecting pipe 27 communicates with the cathode chamber 37, and the connecting pipe 2 communicates with the anode chamber 36.

また、蓋板33には、導出パイプ38.39が接続され
、導出パイプ38は陰極室31に通過され、導出パイプ
39は陽極室36に連通されている。なお、導出パイプ
38.39には、バルブ40.41が設けられている。
Further, lead-out pipes 38 and 39 are connected to the cover plate 33, and the lead-out pipe 38 passes through the cathode chamber 31, and the lead-out pipe 39 communicates with the anode chamber 36. Note that the outlet pipes 38 and 39 are provided with valves 40 and 41.

連結パイプ27のパルプ29と底板31との間には、第
2の源水パイプ42が流量計43、パルプ4418介し
て接続されている。また、連結パイプ28のパルプ30
と底板31との間には、第3の原本パイプ45が流量計
46、パルプ47ヲ介しで接続されでいる。
A second source water pipe 42 is connected between the pulp 29 of the connecting pipe 27 and the bottom plate 31 via a flow meter 43 and a pulp 4418. In addition, the pulp 30 of the connecting pipe 28
A third original pipe 45 is connected between the base plate 31 and the bottom plate 31 via a flow meter 46 and a pulp 47.

一方、導出パイプ38の導出048の下部には、NaC
lを添加するための第2混合槽15が設置されでおり、
また、第2混合槽15の下部には導出パイプ49が接続
されており、この途中にはバルブ50が設けられている
。第2混合槽15には、ざらにHa(l溶液槽51より
NaCl導入パイプ52が途中に定量ポシプ53を介し
で延びでいる。
On the other hand, at the bottom of the outlet 048 of the outlet pipe 38, NaC
A second mixing tank 15 is installed for adding l.
Further, a lead-out pipe 49 is connected to the lower part of the second mixing tank 15, and a valve 50 is provided in the middle of the lead-out pipe 49. In the second mixing tank 15, a NaCl introduction pipe 52 extends from the Ha(l solution tank 51) through a metering pump 53 in the middle.

この装置を用いて、銀イオン水を得るには、第1の源水
パイプ16を通して源水をイオン交換室11に導き、原
水中のアニオン、カチオンを所定値まで除去し、濡水の
電気伝導度を30〜150 uU/cr+(とする、こ
のように、脱イオンされた濡水は、イオン交換室11よ
り第1の源水パイプ16へ流出され、途中ECコントO
−ル検出器18により電気伝導度が所定値にあるかどう
かを管理されながらM11混槽12へ流入する。第1混
合槽12には、酢酸液槽19より酢酸導入パイプを通し
て一定量の酢酸が添加され、0.01〜0.4重量%の
濃度で原水中に混合される。どうして酢酸を添加混合さ
れた濡水は、途中ECコント0−ル検出器18により電
気伝導度が所定値にあるかどうかを管理されながら、第
1の源水バイア16を通り、第1電解室13に至る。
To obtain silver ion water using this device, source water is led to the ion exchange chamber 11 through the first source water pipe 16, anions and cations in the raw water are removed to a predetermined value, and the electrical conductivity of the wet water is The deionized wet water is discharged from the ion exchange chamber 11 to the first source water pipe 16, and is connected to the EC control O on the way.
The M11 mixture flows into the M11 mixed tank 12 while being controlled by the M11 metal detector 18 to check whether the electrical conductivity is at a predetermined value. A certain amount of acetic acid is added to the first mixing tank 12 from the acetic acid liquid tank 19 through an acetic acid introduction pipe, and mixed into the raw water at a concentration of 0.01 to 0.4% by weight. The wet water to which acetic acid has been added and mixed passes through the first source water via 16 and enters the first electrolytic chamber while being controlled by the EC control detector 18 to check whether the electrical conductivity is at a predetermined value. It reaches 13.

ここで、この装置を用いて酸性のA9◆イオン水も同時
に得ようとする場合には、パルプ29.30.40.4
1を開き、パルプ44.47を閉じで、第1の源水パイ
プ16から濡水を導入する。これにより、第1の原本パ
イプ16から導入された濡水は、第1電解室13で銀イ
オンか形成される。そして、銀イオンを含有する水の一
部は、連結パイプ28を通つて第2電解室14の陽極室
36に入り、陽極室36で形成された電気伝導度100
〜2000u Ll/Crn’の酸性のA9+イオン水
となって導出パイプ39から取出される。それと同時に
、銀イオンを含有する水の残部は、連結パイプ27壱通
つてM2電解室14の陰極室37に入り、陰極室37で
^9(OH)、−イオンやCH,COO−イオン等が溶
解した水となって導出パイプ38から取出される。
Here, when trying to obtain acidic A9◆ionized water at the same time using this device, pulp 29.30.40.4
1 is opened, pulp 44 and 47 are closed, and wet water is introduced from the first source water pipe 16. As a result, the wet water introduced from the first original pipe 16 forms silver ions in the first electrolytic chamber 13. A part of the water containing silver ions enters the anode chamber 36 of the second electrolytic chamber 14 through the connecting pipe 28, and the electrical conductivity formed in the anode chamber 36 is 100.
~2000u Ll/Crn' becomes acidic A9+ ion water and is taken out from the outlet pipe 39. At the same time, the remaining water containing silver ions enters the cathode chamber 37 of the M2 electrolytic chamber 14 through the connecting pipe 27, where ^9(OH), - ions, CH, COO- ions, etc. The dissolved water is taken out from the outlet pipe 38.

因に、第1電解室13を流れる全体の水の流量を4.5
I2/l1linとした場合にお1する第1電解室13
の電気仕事量と銀イオン濃度との関係を第2図に示す、
また、第2電解室14の電圧、電流および第2電解室1
4の陰極室37を流れる水の流量と、第2電解室14の
陰極室37から取出される水のPHとの関係を第3図に
示す。
Incidentally, the total flow rate of water flowing through the first electrolytic chamber 13 is 4.5
The first electrolytic chamber 13 that is 1 when set to I2/l1lin
Figure 2 shows the relationship between electrical work and silver ion concentration.
In addition, the voltage and current of the second electrolytic chamber 14 and the second electrolytic chamber 1
FIG. 3 shows the relationship between the flow rate of water flowing through the cathode chamber 37 of No. 4 and the pH of water taken out from the cathode chamber 37 of the second electrolytic chamber 14.

導出パイプ38から取出されたA9(OH)2−イオン
やCHsCOO−イオンが溶解した濡水は、第2混合槽
15中へ流入する。一方、NaCl溶液槽51よりNa
Cl導入パイプ52を通して一定量のNaClが流入さ
れでいる。したがって、上記濡水は、第2混合槽51に
て0.01〜0.4重量%のNaClと混合され、Na
令ビイオンよびCI−イオン等が原水中のA9(OH)
2−イオンやCH3COO−イオンと反応して、A9C
H3COO−1A9C12−1A9C13”−などの錯
体が形成される。それと共に、原水は一旦PH3,8ま
で低下し、ざらにPHは徐々に上かり、最終的にはPH
4,2程度になる。
Wet water in which A9(OH)2- ions and CHsCOO- ions are dissolved and taken out from the outlet pipe 38 flows into the second mixing tank 15. On the other hand, NaCl solution tank 51
A certain amount of NaCl has been introduced through the Cl introduction pipe 52. Therefore, the wet water is mixed with 0.01 to 0.4% by weight of NaCl in the second mixing tank 51, and
A9 (OH) such as bio-ion and CI-ion in raw water
Reacts with 2- ions and CH3COO- ions to form A9C
Complexes such as H3COO-1A9C12-1A9C13"- are formed. At the same time, the pH of the raw water once drops to 3.8, and then the pH gradually increases, and finally the pH
It will be about 4.2.

こうしで、銀の錯体が形成されたところで、パルプ50
を開き、導出バイブ49より所望の銀イオン水を取出す
After the silver complex is formed, pulp 50
is opened and the desired silver ion water is taken out from the extraction vibrator 49.

試験例 上記の装置lを用いて、PH4,2)銀イオン濃度が3
0ppb 、100ppb、500ppb、2ooop
pb 、lppmの銀イオン水を製造した。その徒、大
H!菌、ブドウ球菌(濃度108個/cm3)をそれぞ
れの溶液に1白金耳ずつ摂取し、0.1%ブイヨンを加
え、35℃で培養しながら経時的に菌の動態(生国数)
を測定した。その結果、大腸菌については、第4図の通
りである。
Test Example Using the above device, the pH was 4,2) Silver ion concentration was 3
0ppb, 100ppb, 500ppb, 2ooop
PB, lppm silver ion water was produced. That fellow, big H! One platinum loopful of bacteria and Staphylococcus (concentration 108 cells/cm3) was taken into each solution, 0.1% broth was added, and the dynamics of the bacteria (number of native countries) was measured over time while culturing at 35°C.
was measured. The results for E. coli are shown in Figure 4.

また、ブドウ球菌については、その発育の有無を溶液の
濁度で測定した結果、第5図に示す通りであった。この
ように、本発明の製造方法によって得られた銀イオン水
は顕著な静菌9作用を有することがわかった。
Regarding staphylococci, the presence or absence of growth was measured by the turbidity of the solution, and the results were as shown in FIG. Thus, it was found that the silver ion water obtained by the production method of the present invention has a remarkable bacteriostatic effect.

また、上記で使用した大腸菌とブドウ球菌の菌株を培養
し、上記と同様な実験を数回繰返したが、銀イオンに対
する耐性菌は現われず、最初と同じ静画作用が認められ
た。このように、この銀イオンの場合は、これまでの薬
品使用の常識である耐性菌発現が全く見られないという
特徴がある。
In addition, the E. coli and Staphylococcus strains used above were cultured and the same experiment as above was repeated several times, but no bacteria resistant to silver ions appeared and the same static image effect as the first was observed. As described above, this silver ion has the characteristic that no development of resistant bacteria is observed, which is common knowledge in conventional chemical use.

次に、銀イオン水を用い、下記のような条件でトマトを
水耕栽培した。
Next, tomatoes were grown hydroponically using silver ion water under the following conditions.

トマトの品種:ボンデローザ− 栽培室:無加温ガラス室内 培地=ロックウール、培養液循環式 培養液:「バイオアクア」 (商品名、■サンライク製
)を精製水にて1500倍に希釈した溶液 銀イオン水、 PH3にて2000倍に希釈した溶液昼
夜2時間毎に10分間給水した。
Tomato variety: Vonderosa - Cultivation room: Unheated glass indoor culture medium = Rock wool, circulating culture medium Culture medium: Silver solution made by diluting "Bio Aqua" (product name, ■Manufactured by Sunlike) 1500 times with purified water Ionized water, a solution diluted 2000 times with PH3, was supplied for 10 minutes every 2 hours day and night.

なお、上記において、銀イオン水を用いないで栽培した
ものをコントロールとした0両培養液の性状を第6図に
示す、また、両培養液を用いで栽培したトマトの成熟果
敢、平均成熟日数、最長成熟日数を第7図に示す。
In addition, in the above, the properties of the 0-Ryo culture solution, which was grown without using silver ion water as a control, are shown in Figure 6, and the ripeness and average maturation days of tomatoes grown with both culture solutions are shown in Figure 6. , the maximum number of days to maturity is shown in Figure 7.

このように、本発明の製造方法によって得られた銀イオ
ン本によりトマトの成熟が促進されることがわかる。
Thus, it can be seen that the silver ions obtained by the production method of the present invention promote the ripening of tomatoes.

さらに、本発明の製造方法によって得られた銀イオン水
の殺菌力を知るために、以下の芽胞テストを行なった。
Furthermore, in order to determine the bactericidal power of the silver ion water obtained by the production method of the present invention, the following spore test was conducted.

90℃の湯漬で10分間加熱した徒、まず、電解水の陰
極側の銀イオン水に酢酸0.06重量%を加え、そば粉
から検出したB、cereusに添加し、YCC培地で
37℃にて24時間培養し、発芽を確認した。また、8
.5ubutilis  (第1化学集品製の芽胞懸濁
液)に対しても同様の培養を行なった。
First, 0.06% by weight of acetic acid was added to the silver ion water on the cathode side of the electrolyzed water, added to B and cereus detected from buckwheat flour, and heated in YCC medium at 37°C. The seeds were cultured for 24 hours and germination was confirmed. Also, 8
.. Similar culture was performed for S. 5butilis (spore suspension manufactured by Daiichi Kagaku Shuhin).

上記芽胞を確認した猜に加熱せずに殺菌効果を知るため
に、菌濃度10”〜10@個/mlの培地に本発明の製
造方法により得られた銀濃度100pptl、lppm
の銀イオン本を加え10分M+1!触させた後の生菌数
を調べた。結果を第8図に示す。
In order to know the bactericidal effect without heating the spores in which the spores were confirmed, the silver concentration of 100 pptl, 1 ppm obtained by the production method of the present invention was added to a culture medium with a bacterial concentration of 10'' to 10 cells/ml.
Add the silver ion book and get 10 minutes M+1! The number of viable bacteria was determined after contact. The results are shown in FIG.

このように、8.cereus、8.5ubutili
sに対し本発明の製造方法によって得られた銀イオン水
は、顕著な殺菌作用を有することがわかった。
In this way, 8. cereus, 8.5ubutili
It was found that the silver ion water obtained by the production method of the present invention has a remarkable bactericidal effect against S.

ざらにまた、本発明の製造方法によって得られた銀イオ
ン水の耐熱性菌に対する殺菌力を調べるために、以下の
テストを行なった。まず、そば粉30%、小麦粉70%
からなる原料粉に30%の加水(井戸水)を入れてソバ
を作り、茹で水として各種の銀イオン水を用いて100
℃で3分間茹で、37℃で24時間培養された8、ce
reusに対する殺菌効果を調べたところ、第9図に示
すように、本発明による銀イオン水の効果が最も顕著で
あった。
In addition, the following tests were conducted to examine the bactericidal ability of the silver ion water obtained by the production method of the present invention against heat-resistant bacteria. First, 30% buckwheat flour and 70% wheat flour.
Add 30% water (well water) to raw material flour to make buckwheat, and use various silver ion waters as boiling water to make buckwheat.
8, ce boiled for 3 minutes at 37°C and incubated for 24 hours at 37°C.
When the bactericidal effect against S. reus was investigated, as shown in FIG. 9, the effect of the silver ion water according to the present invention was the most remarkable.

「発明の効果」 以上述べたように、本発明によれば、原水を予め脱イオ
ン処理し、有機カルボン酸を添加した徒、第1電解室で
銀イオンを溶出古せ、これを第2電解室の陰極室に導入
し、ざらにNaClを添加して可溶性の銀イオンの錯体
を形成するようにしたので、長期間安定した溶解状態を
維持し、かつ、低濃度で強い作用効果を有する銀イオン
水を容易に製造できる。
"Effects of the Invention" As described above, according to the present invention, raw water is deionized in advance and organic carboxylic acid is added thereto, silver ions are eluted in the first electrolytic chamber, and the silver ions are eluted in the second electrolytic chamber. The silver ions were introduced into the cathode chamber of the chamber, and NaCl was added to form a complex of soluble silver ions, which maintains a stable dissolved state for a long period of time and has strong effects at low concentrations. Ionized water can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の銀イオン水製造装置の一実施例を示す
断面図、第2図は上記装置を用い第1電解室を流れる全
体の水の流量を4.5β/minとした場合における第
1電解室の電気仕事量と銀イオン濃度との関係を示す図
表、第3図は上記装置Iを用いた場合における第2電解
室の電圧、電流および第2電解室の陽極室を流れる水の
流量と期2電解室の陽極室から取出される水のPHとの
関係を示す図表、第4図は上記装置で得られた銀イオン
水についで銀イオン濃度を変えた場合の大腸菌に対する
静菌効果を調べた結果を示す図表、第5図は上記試験に
おいてブドウ球菌の発育の有無を測定した結果を示す図
表、第6図は上記装置により製造した銀イオン水のit
験のためのトマトの栽培に使用した培養液の性状を示す
図表、N7図は上記栽培試験の結果を示す図表、第8図
および第9図は上記装置により製造した銀イオン水の殺
菌作用を調べた結果を示す図表である。 図中、11はイオン交換室、12は第1混合槽、13は
第1電解室、14はN2電解室、15はNaCl混合槽
、16は第1の原水パイプ、19は酢酸液槽、2oは酢
酸導入パイプ、23は陰極板、25は陽極棒、26は銀
および銀合金、27.28は連結パイプ、32は陰極板
、34は陽極板、35は隔膜、36はlll極室、37
は陰極室、38.39は導出パイプ、45は第3の源水
導入パイプ、49は導出パイプ、51はNaCl溶液槽
、52はNaCl導入パイプである。
Fig. 1 is a cross-sectional view showing an embodiment of the silver ion water production apparatus of the present invention, and Fig. 2 is a cross-sectional view showing an embodiment of the silver ion water production apparatus of the present invention, and Fig. 2 shows the case where the above apparatus is used and the total flow rate of water flowing through the first electrolytic chamber is 4.5β/min. A chart showing the relationship between the electrical work of the first electrolytic chamber and the silver ion concentration, and Figure 3 shows the voltage and current of the second electrolytic chamber and the water flowing through the anode chamber of the second electrolytic chamber when using the above device I. Figure 4 shows the relationship between the flow rate of water and the pH of the water taken out from the anode chamber of the period 2 electrolysis chamber. Figure 5 is a diagram showing the results of examining the bacterial effect. Figure 5 is a diagram showing the results of measuring the presence or absence of staphylococcus growth in the above test. Figure 6 is the IT of silver ion water produced by the above apparatus.
Figure N7 is a diagram showing the properties of the culture solution used for cultivating tomatoes for the experiment, Figure N7 is a diagram showing the results of the above cultivation test, and Figures 8 and 9 show the bactericidal action of the silver ion water produced by the above device. This is a chart showing the results of the investigation. In the figure, 11 is an ion exchange chamber, 12 is a first mixing tank, 13 is a first electrolysis chamber, 14 is a N2 electrolysis chamber, 15 is a NaCl mixing tank, 16 is a first raw water pipe, 19 is an acetic acid liquid tank, 2o is an acetic acid introduction pipe, 23 is a cathode plate, 25 is an anode rod, 26 is silver and silver alloy, 27.28 is a connecting pipe, 32 is a cathode plate, 34 is an anode plate, 35 is a diaphragm, 36 is a lll electrode chamber, 37
38 and 39 are the cathode chamber, 38 and 39 are the outlet pipes, 45 is the third source water introduction pipe, 49 is the outlet pipe, 51 is the NaCl solution tank, and 52 is the NaCl introduction pipe.

Claims (6)

【特許請求の範囲】[Claims] (1)a)源水を脱イオン処理して源水中のイオン性物
質を低減させ、 b)減イオン化された源水に有機カルボン酸を添加し、 c)陽極と陰極とを有し、陽極に銀が設けられてなる第
1電解室に、直流電圧を印加しつつ有機カルボン酸を添
加された源水を通して銀イオンを溶出させ、 d)陽極と陰極とを有し、両電極の間に隔膜が形成され
、陽極室と陰極室とに区画された第2電解室に直流電圧
を印加しつつ前記銀イオンを溶出させた源水を少なくと
も陰極室側に通し、e)前記陰極室を通した源水にNa
Clを添加して銀を可溶性錯体として水中に存在させる
ことを特徴とする長期安定銀イオン水の製造方法。
(1) a) Deionizing the source water to reduce ionic substances in the source water, b) adding an organic carboxylic acid to the deionized source water, and c) having an anode and a cathode, and an anode. d) silver ions are eluted through source water added with an organic carboxylic acid while applying a DC voltage to a first electrolytic chamber provided with silver, and d) having an anode and a cathode, with a e) passing the source water in which the silver ions have been eluted through at least the cathode chamber side while applying a DC voltage to a second electrolytic chamber in which a diaphragm is formed and divided into an anode chamber and a cathode chamber; e) through the cathode chamber; Na in the source water
A method for producing long-term stable silver ion water, which comprises adding Cl to cause silver to exist as a soluble complex in water.
(2)特許請求の範囲第1項において、前記源水を電気
伝導度30〜150μ■/cm^3となるまで脱イオン
処理する長期安定銀イオン水の製造方法。
(2) The method for producing long-term stable silver ion water according to claim 1, wherein the source water is deionized until the electrical conductivity becomes 30 to 150 .mu./cm^3.
(3)特許請求の範囲第1項または第2項において、前
記有機カルボン酸が酢酸である長期安定銀イオン水の製
造方法。
(3) The method for producing long-term stable silver ion water according to claim 1 or 2, wherein the organic carboxylic acid is acetic acid.
(4)特許請求の範囲第1項ないし第3項のいずれか一
つにおいて、前記有機カルボン酸の添加量が前記源水に
対して0.01〜0.4重量%である長期安定銀イオン
水の製造方法。
(4) In any one of claims 1 to 3, the long-term stable silver ion is characterized in that the amount of the organic carboxylic acid added is 0.01 to 0.4% by weight based on the source water. Water production method.
(5)特許請求の範囲第1項ないし第4項のいずれか一
つにおいて、前記NaClの添加量が前記源水に対して
1〜10重量%である長期安定銀イオン水の製造方法。
(5) The method for producing long-term stable silver ion water according to any one of claims 1 to 4, wherein the amount of NaCl added is 1 to 10% by weight based on the source water.
(6)イオン交換物質を充填したイオン交換室と、有機
カルボン酸を添加する第1混合槽と、陽極と陰極とを有
し陽極に銀が設けられた第1電解室と、陽極と陰極とを
有し両電極間に隔膜が形成され陽極室と陰極室とに区画
された第2電解室と、NaClを添加する第2混合槽と
を備え、少なくとも源水を前記イオン交換室から、第1
混合槽、第1電解室、第2電解室の陰極室および第2混
合室を通して流出させる流路を有することを特徴とする
長期安定銀イオン水の製造装置。
(6) An ion exchange chamber filled with an ion exchange substance, a first mixing tank in which an organic carboxylic acid is added, a first electrolytic chamber having an anode and a cathode, the anode of which is provided with silver, and an anode and a cathode. a second electrolytic chamber partitioned into an anode chamber and a cathode chamber with a diaphragm formed between both electrodes; and a second mixing tank for adding NaCl; 1
1. An apparatus for producing long-term stable silver ion water, comprising a mixing tank, a first electrolytic chamber, a cathode chamber of a second electrolytic chamber, and a flow path for flowing out through a second mixing chamber.
JP31479286A 1986-05-28 1986-12-26 Method and apparatus for making long-term stable silver ion water Granted JPS63166490A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31479286A JPS63166490A (en) 1986-12-26 1986-12-26 Method and apparatus for making long-term stable silver ion water
US07/050,437 US4755268A (en) 1986-05-28 1987-05-18 Process and apparatus for producing silver-ionic water
EP87304693A EP0247852A1 (en) 1986-05-28 1987-05-27 Process and apparatus for producing aqueous silver ion-containing solutions
BR8702748A BR8702748A (en) 1986-05-28 1987-05-28 PROCESS AND APPARATUS FOR THE PRODUCTION OF IONIC SILVER WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31479286A JPS63166490A (en) 1986-12-26 1986-12-26 Method and apparatus for making long-term stable silver ion water

Publications (2)

Publication Number Publication Date
JPS63166490A true JPS63166490A (en) 1988-07-09
JPH028799B2 JPH028799B2 (en) 1990-02-27

Family

ID=18057648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31479286A Granted JPS63166490A (en) 1986-05-28 1986-12-26 Method and apparatus for making long-term stable silver ion water

Country Status (1)

Country Link
JP (1) JPS63166490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152692A (en) * 1988-12-01 1990-06-12 Nittoku:Kk Apparatus for quantitatively ejecting beer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water

Also Published As

Publication number Publication date
JPH028799B2 (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US4755268A (en) Process and apparatus for producing silver-ionic water
CN101426734B (en) Process for producing a disinfectant by electrochemical activation (eca) of water, disinfectant produced in such a manner and use thereof
Patermarakis et al. Disinfection of water by electrochemical treatment
US3616355A (en) Method of generating enhanced biocidal activity in the electroylsis of chlorine containing solutions and the resulting solutions
CN100455519C (en) A swimming pool cleaning and sanitising system
JPH02111708A (en) Sterilizing water
TWI423921B (en) Preparation method of hypochlorite solution like molecule by ionic exchange and hypochlorite solution like molecule
EP2873651A1 (en) Sterile water generation device and sterilizing cleaning method
US20130220828A1 (en) Process and system for producing an anolyte fraction
JPH02149395A (en) Apparatus and method of preparing aqueous disinfectant
US8679304B2 (en) Apparatus for creating bioactive solution
Ignatov et al. Studying electrochemically activated naCl solutions of anolyte and catholyte by methods of non-Equilibrium energy spectrum (NES) and differential non-equilibrium energy spectrum (DNES)
JPS63166490A (en) Method and apparatus for making long-term stable silver ion water
Mohammadi et al. Production of a water disinfectant by membrane electrolysis of brine solution and evaluation of its quality change during the storage time
JP3363248B2 (en) Sterilized water, its production method and production equipment
Zhang et al. Physicochemical and antibacterial effects of sodium bicarbonate and brine water on the electrolysed water generated by a portable sanitising unit
Ignatov et al. Studying Electrochemically Activated NaCl Solutions of Anolyte and Catholyte by Methods of Non-Equilibrium Energy Spectrum (NES) and Differential Non-Equilibrium Energy Spectrum (DNES)
RU2308209C2 (en) Method of milk deoxidization for imparting physiologically active properties to the same
AT525645B1 (en) SHELF-STABLE SOLUTION COMPRISING HYPOCHLOROUS ACID OR HYPOCHLORITE
US20230248001A1 (en) Storage stable solution comprising hypochlorous acid and/or hypochlorite
JPS62279882A (en) Method and apparatus for making silver ion water
RU2635618C2 (en) Method for producing electroactivated aqueous sodium salt solutions
RU2722632C1 (en) Method of producing aqueous solutions with negative oxidation-reduction potential
Liato et al. Application of response surface methodology for the optimization of the production of electro-activated solutions in a three-cell reactor
JPH105764A (en) Production of acidic electrolyzed water and acidic electrolyzed water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees