JPS6316574A - Electrolyte flow type secondary battery - Google Patents

Electrolyte flow type secondary battery

Info

Publication number
JPS6316574A
JPS6316574A JP61159959A JP15995986A JPS6316574A JP S6316574 A JPS6316574 A JP S6316574A JP 61159959 A JP61159959 A JP 61159959A JP 15995986 A JP15995986 A JP 15995986A JP S6316574 A JPS6316574 A JP S6316574A
Authority
JP
Japan
Prior art keywords
electrolyte
cell
reaction cell
secondary battery
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159959A
Other languages
Japanese (ja)
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61159959A priority Critical patent/JPS6316574A/en
Publication of JPS6316574A publication Critical patent/JPS6316574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the charging/discharging efficiency by providing monitoring cells on both sides of the electrolyte inlet and outlet of a reaction cell, and controlling the supply of the electrolyte to the reaction cell in responce to the starting voltage measured by the monitoring cell. CONSTITUTION:A monitoring cell 6 is provided on the electrolyte inlet side of a reaction cell 1, while a monitoring cell 7 is provided on the electrolyte outlet side. A judgment circuit 8 judges whether the difference of starting electric power between the monitoring cells 6, 7 is maintained at the predetermined value or not. The circuit 8 judges that an excessive electrode reaction has occurred in the reaction cell 1, if the difference is larger than the prescribed value, and gives control signals to a pump drive inverter 9 so as to increase the supply of electryte to the reaction cell 1. On the contrary the circuit 8 gives control signals for lowering the pump revolutions of supply pumps 4, 5 to the inverter 9 to reduce the aforesaid supply if the defference is smaller than the value. It is thus possible to improve the charging/discharging efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、反応セルに電解液を供給して充放電を行な
う電解液流通型2次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolyte flow type secondary battery that performs charging and discharging by supplying an electrolyte to a reaction cell.

[従来の技術] 電解液流通型2次電池としては、たとえばレドックスフ
ローm2次電池が知られいる。この種のレドックスフロ
ー型2次電池では、活物質を含む電解液が電解液タンク
と反応セルとの間を流通し充放電動作が行なわれている
。電解液としては、たとえば塩酸が用いられ、活物質と
しては、たとえばFeCl2およびCrCfL、が用い
られる。
[Prior Art] As an electrolyte flow type secondary battery, for example, a redox flow m secondary battery is known. In this type of redox flow type secondary battery, an electrolytic solution containing an active material flows between an electrolytic solution tank and a reaction cell to perform charging and discharging operations. As the electrolyte, for example, hydrochloric acid is used, and as the active material, for example, FeCl2 and CrCfL are used.

充電動作に際しては、Fe2+イオンがFe”÷イオン
に、Cr3+イオンがCrz+イオンに変化し、他方放
電動作では逆方向の電気化学反応が生じる。
During the charging operation, Fe2+ ions change to Fe"÷ions and Cr3+ ions change to Crz+ ions, while during the discharging operation, an electrochemical reaction occurs in the opposite direction.

このようなレドックスフロー型2次電池では、従来、電
解液の配管に流量計等を取付け、充放電動作の際常に一
定以上の流量を保つよう供給ボンブを無制御で稼動して
いる。したがって、反応セルへの電解液の供給量は常に
一定以上に保たれているが、充放電動作による活物質の
変化による粘度の変化分、流量は変動している。
In such a redox flow type secondary battery, a flow meter or the like is conventionally attached to the electrolyte piping, and a supply bomb is operated without control so as to always maintain a flow rate above a certain level during charging and discharging operations. Therefore, although the amount of electrolyte supplied to the reaction cell is always kept above a certain level, the flow rate fluctuates due to the change in viscosity due to changes in the active material due to charging and discharging operations.

[発明が解決しようとする問題点] 第4図に、Fe−Cr系のレドックスフロー型2次電池
における充電深度と有効活物質の量との関係を示す。こ
こで、充電深度とは、充電状態を示す指標であり、電解
液がFe−Cr系の場合、6極の電解液中に存在するp
eZ +、Fe! +、Cr”、Cr2+の全イオンに
対する有効活物質の割合を示す。ここで、有効活物質は
、反応セルにおける電極反応の反応物質となるものであ
り、充電時における有効活物質は正極でFe”、負極で
Cr’+イオン、放電時における有効活物質は正極でF
e3+、負極でCr2+イオンである。
[Problems to be Solved by the Invention] FIG. 4 shows the relationship between the depth of charge and the amount of effective active material in a Fe-Cr redox flow secondary battery. Here, the depth of charge is an index indicating the state of charge, and when the electrolyte is Fe-Cr-based, the p
eZ +, Fe! The ratio of the effective active material to the total ions of +, Cr", and Cr2+ is shown. Here, the effective active material is the reactant of the electrode reaction in the reaction cell, and the effective active material during charging is Fe at the positive electrode. ”, Cr'+ ions at the negative electrode, and F at the positive electrode are effective active materials during discharge.
e3+ and Cr2+ ions at the negative electrode.

第4図に示されるように、有効活物質は、充電の際には
充電深度が高まり充電が進むにつれて減少し、放電の際
には放電が進むにつれて、すなわち充電深度が低下する
につれて減少する。充電または放電が進行し、電極反応
に寄与すべき有効活物質が少なくなると、反応に必要な
有効活物質が確保できなくなり、電極反応の効率が低下
し充放電効率が低下するため、通常、適当な充電深度の
範囲、たとえば充電深度15〜85%の範囲で充放電が
行なわれている。
As shown in FIG. 4, during charging, the effective active material decreases as the depth of charge increases and charging progresses, and during discharging, the effective active material decreases as the discharge progresses, that is, as the depth of charge decreases. As charging or discharging progresses and the effective active material that should contribute to the electrode reaction decreases, it becomes impossible to secure the effective active material necessary for the reaction, and the efficiency of the electrode reaction and charge/discharge efficiency decreases. Charging and discharging are performed within a range of depth of charge, for example, a depth of charge of 15% to 85%.

第5図に、通常のポンプに制御を加えない場合の稼動範
囲を充電深度15〜85%に設定した場合の単位時間あ
たり反応セルに供給される有効活物質の量と充電深度と
の関係を示す。第5図は、充電の場合についてのみ示し
ている。反応セルに供給される有効活物質の量は、充電
深度85%のときに最も少ない。従来の2次電池では、
上述のように常に反応セルへの電解液供給量をほぼ一定
にしているため、この有効活物質の量の最も少ない状態
を基準とし、この状態においても充電反応が十分に行な
われるよう電解液を供給している。
Figure 5 shows the relationship between the amount of effective active material supplied to the reaction cell per unit time and the depth of charge when the operating range of a normal pump without any control is set to a depth of charge of 15 to 85%. show. FIG. 5 shows only the case of charging. The amount of effective active material supplied to the reaction cell is lowest at a depth of charge of 85%. In conventional secondary batteries,
As mentioned above, since the amount of electrolyte supplied to the reaction cell is always kept almost constant, the state with the lowest amount of effective active material is used as the reference, and the amount of electrolyte is adjusted so that the charging reaction can be sufficiently carried out even in this state. supplying.

したがって、充電深度が80%未満の状態では、第5図
に領域Bで示される部分の活物質の量のみが有効に電極
反応に寄与し、領域A(ハツチングで示す)で示される
部分の活物質は電極反応に寄与していないことになる。
Therefore, when the depth of charge is less than 80%, only the amount of active material in the area shown in FIG. This means that the substance does not contribute to the electrode reaction.

このように、従来のレドックスフロー型2次電池では、
電極反応に寄与し得ない過剰の電解液を供給しているた
め、供給ポンプによるエネルギ損失が増大し、電池全体
としての充放電効率の低下が余儀なくされていた。
In this way, in conventional redox flow type secondary batteries,
Since an excessive amount of electrolyte that cannot contribute to the electrode reaction is supplied, energy loss due to the supply pump increases, and the charging/discharging efficiency of the battery as a whole is forced to decline.

この発明の目的は、かかる問題点を解消し、充放電効率
の向上が図られ、さらに稼動する充電深度範囲を広くす
ることで電池容量を大きくできる電解液流通型2次電池
を提供することにある。
The purpose of the present invention is to provide an electrolyte flow type secondary battery that solves these problems, improves charging and discharging efficiency, and can increase battery capacity by widening the operating depth of charge range. be.

[問題点を解決するための手段] この発明の電解液流通型2次電池は、反応セルの電解液
入口側と出口側の両方にモニタ用セルが設けられており
、該モニタ用セルで測定された起電圧に応じて反応セル
への電解液の供給量を調整する制御手段を備えている。
[Means for Solving the Problems] The electrolyte flow type secondary battery of the present invention is provided with a monitor cell on both the electrolyte inlet side and the outlet side of the reaction cell, and the monitor cell performs measurement. The reaction cell is equipped with a control means for adjusting the amount of electrolyte supplied to the reaction cell in accordance with the generated electromotive voltage.

[作用] この発明の電解液流通型2次電池では、反応セルの電解
液入口側と出口側の両方にモニタ用セルが設けられてお
り、該モニタ用セルで発生する起電圧はネルンストの式
に従うものであるため、該モニタ用セル内を流通する電
解液中の有効活物質の量に対応している。したがって、
この起電圧から反応セル入口側および出口側の有効活物
質の量を検知することができ、反応セルにおける有効活
物質量の変化に対応して、反応セルへ電解液を供給する
よう制御手段で調整することができる。
[Function] In the electrolyte flow type secondary battery of the present invention, a monitor cell is provided on both the electrolyte inlet side and the outlet side of the reaction cell, and the electromotive force generated in the monitor cell is calculated according to the Nernst equation. Therefore, it corresponds to the amount of effective active material in the electrolyte flowing through the monitoring cell. therefore,
The amount of effective active material on the inlet and outlet sides of the reaction cell can be detected from this electromotive force, and the control means can be used to supply electrolyte to the reaction cell in response to changes in the amount of effective active material in the reaction cell. Can be adjusted.

[実施例] 第1図は、この発明の一実施例を示す概略構成図である
。反応セル1の電解液入口側にはモニタセル6が設けら
れており、反応セル1の電解液出口側にはモニタ用セル
フが設けられている。反応セル1には、該モニタ用セル
6.7および配管を介して電解液タンク2,3がそれぞ
れ接続されている。電解液入口側の配管には供給ポンプ
4,5がそれぞれ取付けられている。反応セル1は、通
常、発生電圧を高めるため複数の単位セルを積み重ね直
列に接続した多段接続型のものが用いられる場合が多い
[Embodiment] FIG. 1 is a schematic diagram showing an embodiment of the present invention. A monitor cell 6 is provided on the electrolyte inlet side of the reaction cell 1, and a monitoring self is provided on the electrolyte outlet side of the reaction cell 1. Electrolyte tanks 2 and 3 are connected to the reaction cell 1 via the monitoring cell 6.7 and piping, respectively. Supply pumps 4 and 5 are respectively attached to the pipes on the electrolyte inlet side. The reaction cell 1 is usually of a multi-stage connection type in which a plurality of unit cells are stacked and connected in series in order to increase the generated voltage.

モニタ用セル6.7には、起電圧を判別回路8に伝送す
るための接続線が取付けられている。判別回路8とポン
プ駆動用インバータ9との間には、判別回路8からの制
御信号を伝送するための接続線が取付けられている。ま
た、ポンプ駆動用インバータ9と供給ポンプ4,5との
間には、ポンプ駆動用の電力を伝えるための接続線が取
付けられている。
A connection line for transmitting the electromotive voltage to the discrimination circuit 8 is attached to the monitor cell 6.7. A connection line for transmitting a control signal from the discrimination circuit 8 is installed between the discrimination circuit 8 and the pump driving inverter 9. Further, a connection line for transmitting electric power for driving the pumps is installed between the pump driving inverter 9 and the supply pumps 4 and 5.

充放電の際、供給ポンプ4.5が駆動し、電解液タンク
2,3内の電解液を反応セル1に供給する。この際、反
応セル1に供給される電解液は、モニタ用セル6の内部
を通り供給される。モニタ用セル6では、反応セル1に
供給される電解液中の有効活物質の濃度に応じた起電圧
が発生する。
During charging and discharging, the supply pump 4.5 is driven to supply the electrolyte in the electrolyte tanks 2 and 3 to the reaction cell 1. At this time, the electrolytic solution supplied to the reaction cell 1 is supplied through the inside of the monitoring cell 6. In the monitoring cell 6, an electromotive voltage is generated depending on the concentration of effective active material in the electrolytic solution supplied to the reaction cell 1.

電極反応後反応セル1から排出される電解液は、モニタ
用セルフの内部を通り、配管から再び電解液タンク2#
 3内に戻される。モニタ用セルフでは、反応セル1か
ら排出される電解液中の有効活物質の濃度に応じた起電
圧が発生する。モニタ用セル6およびモニタ用セルフの
起電圧は、それぞれ接続線中を伝送され判別回路8に送
られる。
After the electrode reaction, the electrolyte discharged from the reaction cell 1 passes through the monitoring cell and returns to the electrolyte tank 2# from the piping.
It will be returned within 3. In the monitoring self, an electromotive voltage is generated depending on the concentration of effective active material in the electrolytic solution discharged from the reaction cell 1. The electromotive voltages of the monitor cell 6 and the monitor self are transmitted through connection lines and sent to the discrimination circuit 8, respectively.

判別回路8では、モニタ用セル6の起電力とモニタ用セ
ルフの起電力の差が、設定値に保たれているか否かを判
断する。起電圧の差が、設定値よりも大きな場合には、
反応セル1への電解液の供給量が少ないため反応セル1
内で過剰の電極反応が起こっている。したがって、この
場合には、反応セル1への電解液の供給量を多くするよ
う制御信号がポンプ駆動用インバータ9に与えられ、こ
れにより、供給ポンプ4,5のポンプ回転数が増加し反
応セル1への電解液供給量が高められる。
The determination circuit 8 determines whether the difference between the electromotive force of the monitor cell 6 and the electromotive force of the monitor self is maintained at a set value. If the difference in electromotive voltage is larger than the set value,
Because the amount of electrolyte supplied to reaction cell 1 is small, reaction cell 1
Excessive electrode reaction is occurring inside. Therefore, in this case, a control signal is given to the pump drive inverter 9 to increase the amount of electrolyte supplied to the reaction cell 1, thereby increasing the pump rotational speed of the supply pumps 4 and 5 and increasing the amount of electrolyte supplied to the reaction cell 1. The amount of electrolyte supplied to No. 1 is increased.

逆に、起電圧の差が設定値よりも小さな場合には、反応
セル1への電解液供給量が過大である。したがって、判
別回路8から、供給ポンプ4.5のポンプ回転数を低下
させる制御信号がポンプ駆動用インバータ9に与えられ
、これにより供給ポンプ4.5のポンプ回転数が低下し
反応セル1への電解液供給量が少なくなる。
Conversely, if the difference in electromotive voltage is smaller than the set value, the amount of electrolyte supplied to the reaction cell 1 is excessive. Therefore, a control signal for lowering the pump rotation speed of the supply pump 4.5 is given to the pump drive inverter 9 from the discrimination circuit 8, thereby reducing the pump rotation speed of the supply pump 4.5 and increasing the rotation speed to the reaction cell 1. Electrolyte supply amount decreases.

特に、反応セル1への電解液供給量が少ない場合には、
充放電反応以外の副反応が反応セル1内で生じる。した
がって、電解液供給量の調整は、このような副反応の抑
制にも有効なものとなる。
Especially when the amount of electrolyte supplied to reaction cell 1 is small,
Side reactions other than charge/discharge reactions occur within the reaction cell 1. Therefore, adjusting the amount of electrolyte supplied is also effective in suppressing such side reactions.

第1図の実施例では、電解液供給量を、g整するため供
給ポンプの回転数を調整して制御しているが、バルブ操
作等の他の手段で電解液供給量を調整してもよい。また
、以上説明したモニタ用セルによる制御手段は、他の電
解液供給量制御手段と併用して設けることも可能である
In the embodiment shown in Fig. 1, the electrolyte supply amount is controlled by adjusting the rotation speed of the supply pump in order to adjust the g, but the electrolyte supply amount may also be adjusted by other means such as valve operation. good. Further, the control means using the monitor cell described above can be provided in combination with other electrolyte supply amount control means.

なお、2次電池の充電深度は、電解液入口側と出口側の
両方に設けられたモニタ用セルのそれぞれの起電圧の値
から検知することができる。
Note that the depth of charge of the secondary battery can be detected from the electromotive voltage values of the monitoring cells provided on both the electrolyte inlet side and the outlet side.

第2図は、この発明に用いられるモニタ用セルの一例を
示す分解斜視図である。第2図に示すモニタ用セルは、
反応セル内の単位セルに類似した構造を有するもので、
隔膜11の両側には、カーボンクロス12.13が設け
られている。さらに、カーボンクロス12.13の外側
にはグラファイト板14.15が設けられ、該グラファ
イト板14.15により隔膜11、カーボンクロス12
゜13が挾持されている。
FIG. 2 is an exploded perspective view showing an example of a monitoring cell used in the present invention. The monitor cell shown in Figure 2 is
It has a structure similar to a unit cell in a reaction cell,
Carbon cloth 12.13 is provided on both sides of the diaphragm 11. Further, a graphite plate 14.15 is provided on the outside of the carbon cloth 12.13, and the graphite plate 14.15 connects the diaphragm 11 and the carbon cloth 12.
゜13 is being held.

カーボンクロス12.13は、その内部を流れる電解液
の流体抵抗をできるだけ小さくするため横長の形状を有
している。該カーボンクロス12゜13は、それぞれ枠
体16および枠体17によって支持されている。該枠体
16.17とカーボンクロス12.13との間には、ス
リット16C116dおよびスリット17c、17dが
形成されている。スリット16c、16dには、電解液
を供給し排出するための切欠16a、16bが形成され
ている。スリット17c、17dにも同様に、電解液を
供給し排出するための切欠17a、17bが形成されて
いる。
The carbon cloths 12 and 13 have a horizontally elongated shape in order to minimize the fluid resistance of the electrolytic solution flowing inside the carbon cloths. The carbon cloths 12 and 13 are supported by a frame 16 and a frame 17, respectively. A slit 16C116d and slits 17c and 17d are formed between the frame body 16.17 and the carbon cloth 12.13. Cutouts 16a and 16b for supplying and discharging electrolyte are formed in the slits 16c and 16d. Similarly, cutouts 17a and 17b for supplying and discharging the electrolyte are formed in the slits 17c and 17d.

グラファイト板14.15は、枠体18.19によりそ
れぞれ支持されている。枠体18において切欠16a、
16bが対応する位置には、電解液を流入し流出するた
めの流入口18aおよび流出口18bが形成されている
。枠体19における切欠17a、17bに対応する位置
にも、電解液を流入し流出するための流入口17aおよ
び流出口19bが形成されている。流入口18a、19
aおよび流出口18b、19bには、それぞれ電解液の
配管が接続される。
The graphite plates 14.15 are each supported by a frame 18.19. A notch 16a in the frame 18,
An inlet 18a and an outlet 18b for inflowing and outflowing the electrolytic solution are formed at positions corresponding to 16b. An inlet 17a and an outlet 19b are also formed in the frame 19 at positions corresponding to the notches 17a and 17b, through which the electrolytic solution flows in and out. Inflow ports 18a, 19
Electrolyte piping is connected to a and the outflow ports 18b and 19b, respectively.

第2図に矢印で示されるように、電解液の一方は、流入
口18aから切欠16aを通りカーボンクロス12に供
給され、切欠16b、流出口18bを通り排出される。
As shown by the arrow in FIG. 2, one of the electrolytes is supplied from the inlet 18a to the carbon cloth 12 through the notch 16a, and is discharged through the notch 16b and the outlet 18b.

電解液の他方も、流入口19as切欠17aを通り、カ
ーボンクロス13に供給され、切欠17b1流出口19
bを通り排出される。
The other electrolyte also passes through the inlet 19as notch 17a, is supplied to the carbon cloth 13, and is supplied to the carbon cloth 13 through the notch 17b1 and the outlet 19.
It is discharged through b.

モニタ用セルで発生する起電圧は、グラファイト板14
.15をそれぞれ端子として取出すことができる。モニ
タ用セルとしては、できるだけ流体抵抗を小さくするこ
とが好ましく、そのため、カーボンクロスの形状は、電
解液の流通方向に短く、電解液の流通方向と垂直方向に
長いことが好ましい。また、電解液が通りやすいように
、編み目の粗いカーボンクロスを用いることが推奨され
る。
The electromotive force generated in the monitor cell is transferred to the graphite plate 14.
.. 15 can be taken out as terminals. As a monitoring cell, it is preferable to minimize the fluid resistance. Therefore, the shape of the carbon cloth is preferably short in the direction of flow of the electrolyte solution and long in the direction perpendicular to the direction of flow of the electrolyte solution. It is also recommended to use coarsely woven carbon cloth to allow the electrolyte to pass through easily.

第3図は、この発明に用いられるモニタ用セルの他の例
を示す断面図である。モニタ用セル20内には、隔膜2
1が設けられており、該隔膜21は隔膜支持部材22.
23により支持されている。
FIG. 3 is a sectional view showing another example of the monitoring cell used in the present invention. Inside the monitor cell 20, there is a diaphragm 2.
1 is provided, and the diaphragm 21 is provided with a diaphragm support member 22 .
Supported by 23.

隔膜21の両側には、グラファイト棒24,25の端面
がそれぞれ対向して配置されている。隔膜21とグラフ
ァイト棒24.25の端面との間には、電解液が流通す
ることのできる隙間が形成されている。
On both sides of the diaphragm 21, end faces of graphite rods 24 and 25 are arranged to face each other. A gap is formed between the diaphragm 21 and the end faces of the graphite rods 24, 25, through which the electrolyte can flow.

充放電動作の際、モニタ用セル20に流入した電解液の
一部は、第3図に矢印で示すように、隔1m1121と
グラファイト棒24.25の端面との間を通りモニタ用
セル20から排出される。したがって、グラフフィト棒
24,25には、電解液中の有効活物質の濃度に対応し
た起電圧が発生する。
During charging and discharging operations, a portion of the electrolytic solution that has flowed into the monitoring cell 20 passes between the 1 m 1121 gap and the end face of the graphite rod 24.25 and exits from the monitoring cell 20, as shown by the arrow in FIG. be discharged. Therefore, an electromotive voltage is generated in the graphite rods 24 and 25 that corresponds to the concentration of effective active material in the electrolytic solution.

第3図に示す実施例のように、この発明に用いられるモ
ニタ用セルには、必ずしもカーボンクロスが設けられて
いる必要はない。なお、起電圧をモニタするに際し、電
圧計に流れる微小電流によって起電圧の値が大きく変化
しない程度であればモニタ用セルの内部抵抗を大きくす
ることができる。
As in the embodiment shown in FIG. 3, the monitor cell used in the present invention does not necessarily need to be provided with carbon cloth. Note that when monitoring the electromotive voltage, the internal resistance of the monitoring cell can be increased as long as the value of the electromotive voltage does not change significantly due to the minute current flowing through the voltmeter.

モニタ用セルを第2図および第3図に例示して説明した
が、この発明に用いられるモニタ用セルとしてはこれら
のものに限定されることなく、隔膜を介して電極として
の1対の導電部材が設けられているものであればいかな
るものも用いることができる。
Although the monitor cell has been explained by illustrating it in FIGS. 2 and 3, the monitor cell used in this invention is not limited to these cells, and a pair of conductive cells as electrodes are connected to each other via a diaphragm. Any device can be used as long as it is provided with a member.

[発明の効果] この発明の電解液流通型2次電池では、電解液入口側と
出口側の両方にモニタ用セルが設けられており、該モニ
タ用セルの起電圧を検出して充電深度を検出するととも
に、反応セル内での有効活物質量の変化を検出すること
ができる。また、この発明の電解液流通型2次電池では
、反応セルへの電解液の供給量を調整する制御手段が設
けられており、該モニタ用セルで検出された充電深度お
よびを動滑物質量の変化に対応して反応セルへの電解液
供給量を調整することができる。これによってζ供給ポ
ンプのエネルギ損失を低減し、2次電池システム全体と
しての充放電効率を改善することができる。
[Effects of the Invention] In the electrolyte flow type secondary battery of the present invention, a monitoring cell is provided on both the electrolyte inlet side and the outlet side, and the depth of charge is determined by detecting the electromotive voltage of the monitoring cell. At the same time, it is possible to detect a change in the amount of effective active material within the reaction cell. Further, the electrolyte flow type secondary battery of the present invention is provided with a control means for adjusting the amount of electrolyte supplied to the reaction cell, and the charging depth and the amount of moving sliding material detected by the monitoring cell are adjusted. The amount of electrolyte supplied to the reaction cell can be adjusted in response to changes in the amount of electrolyte. This reduces energy loss in the ζ supply pump and improves the charging and discharging efficiency of the secondary battery system as a whole.

また、この発明の電解液流通型2次電池では、電解液中
の有効活物質の量に応じて反応セルへの電解液供給量を
調整することができるため、たとえば従来充電深度15
〜85%で稼動していたものを゛、電池システム効率の
増加を招かずに充電深度10〜90%で稼動させること
が可能になる。
In addition, in the electrolyte flow type secondary battery of the present invention, the amount of electrolyte supplied to the reaction cell can be adjusted according to the amount of effective active material in the electrolyte.
Those operating at ~85% can now be operated at depths of charge of 10-90% without incurring an increase in battery system efficiency.

このように充電深度の広い範囲で稼動することができる
と、電解液を有効に使用することができるため、従来と
同じ充放電量を設計するにあたり、従来よりも少ない電
解液量とすることができる。
Being able to operate over a wide range of charge depths allows effective use of electrolyte, which means that when designing the same amount of charge and discharge as before, it is possible to use a smaller amount of electrolyte than before. can.

このことから、電解液タンクの寸法を従来より小さくす
ることができ、2次電池全体としての寸法を小型化する
ことが可能になる。
Therefore, the size of the electrolyte tank can be made smaller than before, and the size of the secondary battery as a whole can be made smaller.

なお、実施例においては電解液流通型2次電池としてレ
ドックスフロー型2次電池を例示して説明したが、この
発明の電解液流通型2次電池は、反応セルに電解液を供
給して充放電を行なうタイプのものであればその他のも
のにも幅広く利用され得るものである。
In the examples, a redox flow type secondary battery was explained as an example of an electrolyte flow type secondary battery, but the electrolyte flow type secondary battery of the present invention is charged by supplying an electrolyte to a reaction cell. It can be widely used for other types of devices that generate electric discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す概略構成図である
。第2図は、この発明に用いられるモニタ用セルの一例
を示す分解斜視図である。第3図は、この発明に用いら
れるモニタ用セルの他の例を示す断面図である。第4図
は、Fe−Cr系のレドックスフロー型2次電池におけ
る有効活物質の量と充電深度との関係を示す図である。 第5図は、Fe−Cr系のレドックスフロー)J12次
電池の充電時における単位時間あたりの反応セルに供給
される有効活物質の量と充電深度との関係を示す図であ
る。 図において、1は反応セル、2,3は電解液タンク、4
.5は供給ポンプ、6.7はモニタ用セル、8は判別回
路、9はポンプ駆動用インバータを示す。 第1図 第2図 第3図 22j 第4図 第f図
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is an exploded perspective view showing an example of a monitoring cell used in the present invention. FIG. 3 is a sectional view showing another example of the monitoring cell used in the present invention. FIG. 4 is a diagram showing the relationship between the amount of effective active material and the depth of charge in a Fe-Cr based redox flow type secondary battery. FIG. 5 is a diagram showing the relationship between the amount of effective active material supplied to the reaction cell per unit time and the depth of charge during charging of a Fe-Cr based redox flow J1 secondary battery. In the figure, 1 is a reaction cell, 2 and 3 are electrolyte tanks, and 4 is a reaction cell.
.. 5 is a supply pump, 6.7 is a monitoring cell, 8 is a discrimination circuit, and 9 is a pump driving inverter. Figure 1 Figure 2 Figure 3 Figure 22j Figure 4 Figure f

Claims (3)

【特許請求の範囲】[Claims] (1)反応セルに電解液を供給して充放電を行なう電解
液流通型2次電池において、 前記反応セルの電解液入口側と出口側の両方に設けられ
るモニタ用セルと、 該モニタ用セルで測定された起電圧に応じて前記反応セ
ルへの電解液の供給量を調整する制御手段とを備えるこ
とを特徴とする、電解液流通型2次電池。
(1) In an electrolyte flow type secondary battery that performs charging and discharging by supplying an electrolyte to a reaction cell, a monitoring cell provided on both the electrolyte inlet side and the outlet side of the reaction cell, and the monitor cell An electrolyte flow type secondary battery, comprising: a control means for adjusting the amount of electrolyte supplied to the reaction cell according to the electromotive voltage measured in the electromotive force.
(2)前記制御手段が反応セルへ電解液を供給する供給
ポンプの回転数を調整するものであることを特徴とする
、特許請求の範囲第1項記載の電解液流通型2次電池。
(2) The electrolyte flow type secondary battery according to claim 1, wherein the control means adjusts the rotation speed of a supply pump that supplies electrolyte to the reaction cell.
(3)前記電解液流通型2次電池がレドックスフロー型
2次電池であることを特徴とする、特許請求の範囲第1
項または第2項記載の電解液流通型2次電池。
(3) Claim 1, wherein the electrolyte flow type secondary battery is a redox flow type secondary battery.
The electrolyte flow type secondary battery according to item 1 or 2.
JP61159959A 1986-07-07 1986-07-07 Electrolyte flow type secondary battery Pending JPS6316574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159959A JPS6316574A (en) 1986-07-07 1986-07-07 Electrolyte flow type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159959A JPS6316574A (en) 1986-07-07 1986-07-07 Electrolyte flow type secondary battery

Publications (1)

Publication Number Publication Date
JPS6316574A true JPS6316574A (en) 1988-01-23

Family

ID=15704906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159959A Pending JPS6316574A (en) 1986-07-07 1986-07-07 Electrolyte flow type secondary battery

Country Status (1)

Country Link
JP (1) JPS6316574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150863A (en) * 1986-12-15 1988-06-23 Mitsui Eng & Shipbuild Co Ltd Operating method for redox flow type cell
EP1551074A1 (en) * 2002-04-23 2005-07-06 Sumitomo Electric Industries, Ltd. Method for operating redox flow battery and redox flow battery cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150863A (en) * 1986-12-15 1988-06-23 Mitsui Eng & Shipbuild Co Ltd Operating method for redox flow type cell
EP1551074A1 (en) * 2002-04-23 2005-07-06 Sumitomo Electric Industries, Ltd. Method for operating redox flow battery and redox flow battery cell stack
EP1551074A4 (en) * 2002-04-23 2007-10-10 Sumitomo Electric Industries Method for operating redox flow battery and redox flow battery cell stack
AU2003227443B2 (en) * 2002-04-23 2008-06-12 Sumitomo Electric Industries, Ltd. Method for operating redox flow battery and redox flow battery cell stack
US8221911B2 (en) 2002-04-23 2012-07-17 Sumitomo Electric Industries, Ltd. Method for operating redox flow battery and redox flow battery cell stack

Similar Documents

Publication Publication Date Title
US8980484B2 (en) Monitoring electrolyte concentrations in redox flow battery systems
US7927731B2 (en) Redox flow cell
US10388978B2 (en) Methods for determining state of charge and calibrating reference electrodes in a redox flow battery
KR101809332B1 (en) Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
US8933701B2 (en) Mass distribution indication of flow battery state of charge
KR102219191B1 (en) Redox flow battery system, monitoring method for redox flow battery and control method for redox flow battery
CN105794021A (en) Method and apparatus for measuring transient state-of-charge using inlet/outlet potentials
KR20150095037A (en) Method and apparatus for evaluating redox flow battery
JP2002289240A (en) Technique for controlling efficiency of fuel cell system
US20130029185A1 (en) Electrochemical System Having a System for Determining a State of Charge
JP2006147374A (en) Method of operating vanadium redox flow battery system
CN116711110A (en) Redox flow battery with balancing unit
KR101942904B1 (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
US20240201271A1 (en) Determining state of charge, molarity and oxidation state in a flow battery and controlling a flow battery
JPH07192748A (en) Electrolyte flow-through type cell
JP2003303611A (en) Operating method of redox flow battery
JPS6316574A (en) Electrolyte flow type secondary battery
JPS6345761A (en) Flow rate controller of redox-flow cell
CN112470315B (en) Redox flow battery system
JP2003257467A (en) Method of operating redox flow battery
JP2021507449A (en) Redox flow battery and operating method
JPH0227666A (en) Redox flow type secondary battery
WO2023120449A1 (en) Redox flow battery
EP3723178A1 (en) Cell for electrochemically determining active species concentrations in redox flow batteries
US20240243328A1 (en) Systems and methods for maintaining electrolyte health