JPS6316510Y2 - - Google Patents

Info

Publication number
JPS6316510Y2
JPS6316510Y2 JP1982137347U JP13734782U JPS6316510Y2 JP S6316510 Y2 JPS6316510 Y2 JP S6316510Y2 JP 1982137347 U JP1982137347 U JP 1982137347U JP 13734782 U JP13734782 U JP 13734782U JP S6316510 Y2 JPS6316510 Y2 JP S6316510Y2
Authority
JP
Japan
Prior art keywords
fiber
longitudinal direction
structural material
fibers
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982137347U
Other languages
Japanese (ja)
Other versions
JPS5941529U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13734782U priority Critical patent/JPS5941529U/en
Publication of JPS5941529U publication Critical patent/JPS5941529U/en
Application granted granted Critical
Publication of JPS6316510Y2 publication Critical patent/JPS6316510Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 本考案は繊維補強構造材に関するものである。 従来において、金属例えばスチール製の構造材
の代りにFRP製の構造材を使用して軽量化を図
る試みはさかんに行われている。しかしながら、
FRP製構造材を用いた場合、引張り強度等につ
いては金属製のものに代替可能な強度が得られる
としても、曲げ応力に対抗する抗撓性については
金属製のものより大巾に劣つており、該構造材を
梁、腕木などの支持部材等として用いる様な場
合、この点に難点があり、より曲げ応力による撓
みが小さい材料を開発することが要望されてい
た。 本考案はこの様な現状にかんがみ、抗撓性にす
ぐれた繊維補強構造材を提供せんと種々検討せる
結果、とくに一方向の曲げ応力に対しすぐれた対
撓性を有する繊維補強材料を開発し、本考案をな
し得たものである。 すなわち本考案の要旨は、長繊維で補強された
合成樹脂よりなる、長手方向に対する垂直断面が
四角形の外形輪郭を有し、内部が中空の筒状長尺
体にして、対向する一対の筒壁部を補強する繊維
材料の30〜100%が長手方向に対して30〜60゜の角
度になる様に、そして残りの繊維は長手方向に略
平行となる様に配列され、上記一対の筒壁部より
他の部分を補強する繊維材料は長手方向に略平行
になる様に配列されてなることを特徴とする繊維
補強構造材に存する。本考案構造材は上記の通
り、長繊維で補強された合成樹脂より構成される
ものであり、そして長繊維としては従来より合成
樹脂成形体を補強するのに用いられた長繊維が用
いられてよく、例えばガラス繊維、炭素繊維、金
属繊維、ボロン繊維、アラミド繊維等が用いられ
るが、炭素繊維が強度及び軽量性の点から特に好
適である。又、合成樹脂としては、種類に特に制
限されることはなく、どの様な合成樹脂も上記長
繊維が分散されて成形され得るものであれば用い
られ得るが、エポキシ樹脂、ポリエステル樹脂、
フエノール樹脂等熱硬化型の合成樹脂を用いるの
が、成形体中に長繊維を均一に分散させる点で好
ましい。 そして本考案構造材における長繊維の使用量
は、該長繊維の含有率が50〜75容量%となる範囲
で用いるのが通常好ましい。 以下図面により本考案構造材について説明す
る。第1図は本考案構造材の一例を示す断面図で
あり、この様に本考案構造材3は長手方向に対す
る垂直断面が四角形の外形輪郭を有し、内部が中
空になされた筒状長尺体の形状を有するものであ
る。図中1,1′は構造材3における対向する一
対の筒壁部、2,2′は該一対の筒壁部1,1′以
外の部分である。 そして、上記一対の筒壁部1,1′を補強する
長繊維材料のうちの30〜100%が構造材の長手方
向に対して30〜60゜の角度好ましくは略45゜の角度
になる様に配列され、残りの繊維は該長手方向に
略平行となる様に配列されるのである。 なお、本考案においては、上記において、構造
材の長手方向に対して30〜60゜の角度に配列され
る繊維の約半分が長手方向に正の角度になり、残
りの約半分が負の角度となり、互いに交叉する様
に配列されるのが繊維による補強効果を十分発揮
させる上で好ましい。 第2図は、筒壁部1を補強する長繊維の配列の
仕方を示す模型図であり、4は長手方向に対しθ
の角度、4′は長手方向に対し−θの角度で夫々
交叉する様に配列された長繊維、5は長手方向に
略平行に配列された長繊維である。 又、構造材3における上記一対の筒壁部1,
1′以外の部分2,2′の長繊維は該構造材3の長
手方向に略平行になる様に配列されるのである。
上記の如き構造の本考案構造材を製造するには、
第1図に示される一対の筒壁部1,1′及びそれ
以外の部分2,2′を別々に例えばプレス成型法
等により作つておき、これらを組みたてて接合部
を接着剤により強固に接着することにより製造し
てもよく、又は本考案の通りに長繊維を配列させ
た合成樹脂含浸繊維材料を金型内に配置し、これ
を加熱加圧して一体的に成型することにより製造
してもよい。又、本考案構造材における繊維材料
の含有率が50〜75容量%と高い方が強度的にすぐ
れるのであるが、この様に高い繊維含有率のもの
を製造するには、一方向に揃えられた長繊維に硬
化性合成樹脂を含浸させることにより予め用意し
たプリプレグシートを本考案通りの繊維方向とな
る様に積層して用いるのが良い。 本考案の繊維補強構造材は上述の通りの構造の
ものであり、とくに、対向する一対の筒壁部を補
強する繊維材料の方向及び該一対の筒壁部以外の
部分を補強する繊維材料の方向がそれぞれ特定の
方向に規制されたものであるので、該構造材の垂
直断面における上記一対の筒壁面に対し平行方向
にかけられる曲げ応力すなわち第1図の上方又は
下方からかけられる曲げ応力に対しすぐれた抗撓
性を示し、該応力による撓みが従来の繊維補強構
造材に比して非常に少いものである。 従つて、本考案構造材は特定方向からの応力に
よる撓みが少なくかつ軽量であることが要求され
る梁、腕木等の支持部材の用途に用いられて好適
なるものである。 実施例 1〜4 HMタイプの炭素繊維(東邦レーヨン社製)と
エポキシ樹脂よりなり、炭素長繊維が一方向に配
列された炭素繊維プリプレグシートを多数枚積層
し、加熱下でプレス成型により、巾47mm、厚さ4
mm、長さ400mmにして繊維含有率60体積%の板状
部材1,1′及び巾55mm、厚さ4mm、長さ400mmに
して上記と同じ繊維含有率の板状部材2,2′を
用意した。 なお、板状部材1,1′については、炭素繊維
の30%が該部材長手方向に対する角度θが45゜に
なる様に、第2図に示される繊維4,4′の如く
に傾けられそして該30%のうちの半分ずつが互い
に±θの角度で交互する様に配置され、残りの70
%の炭素繊維が第2図の繊維5の如くに上記長手
方向に揃えられたもの(実施例1)、炭素繊維の
50%が同様に、該部材長手方向に対し45゜の角度
に傾けられ、該50%のうちの半分ずつが互いに交
互する様に配置され、残りの50%の炭素繊維が上
記長手方向に揃えられたもの(実施例2)、炭素
繊維の80%が同様に、長手方向に対して45゜に傾
けられて同様に配置され、残りの20%が長手方向
に揃えられたもの(実施例3)、炭素繊維の全て
が長手方向に対して45゜に傾けられて同様に配置
されたもの(実施例4)の4通りを用意した。 そして、上記板状部材1,1′及び2,2′を第
1図の通りに組合せて接着剤で固着して、外面に
おける一辺の長さが55mm、内面における一辺の長
さが47mmにして長さが400mmの断面4角形の筒状
造材料3を4通り用意した。(実施例1〜4) 次に、用意した各構造材の一端から10cmの部分
を固定して水平に保持した状態(長さ300mmの片
持ちはり)で他端の先端に50Kgの荷重をかけ、該
先端における撓み量をダイヤルゲージで測定し
た。その結果は第1表に示される通りであつた。 比較例 1 板状部材1,1′におけるすべての炭素繊維の
方向を該部材の長手方向に揃えること以外は実施
例1と同様にして板状部材1,1′及び2,2′を
作り、以下実施例1と同様にして筒状構造材3を
用意し、該構造材についての撓み量を測定した。
その結果は第1表に示される通りであつた。 比較例 2 実施例1で用意されたものと同じ寸法の筒状構
造材をスチール(SS41)から作り、これについ
【表】
[Detailed Description of the Invention] The present invention relates to a fiber reinforced structural material. In the past, many attempts have been made to reduce weight by using structural members made of FRP instead of structural members made of metal, such as steel. however,
When using FRP structural materials, even if the tensile strength etc. can be obtained as a substitute for metal materials, the resistance to bending stress is significantly inferior to metal materials. When such structural materials are used as supporting members for beams, arms, etc., this is a problem, and there has been a demand for the development of materials that are less susceptible to bending due to bending stress. In view of the current situation, this invention was developed as a result of various studies to provide a fiber-reinforced structural material with excellent flexibility, and as a result, we developed a fiber-reinforced material that has particularly excellent flexibility against bending stress in one direction. , this invention was made possible. In other words, the gist of the present invention is to form a long cylindrical body made of synthetic resin reinforced with long fibers, which has a rectangular external profile in a vertical cross section with respect to the longitudinal direction, and is hollow inside, and has a pair of opposing cylindrical walls. 30 to 100% of the fiber material reinforcing the section is arranged at an angle of 30 to 60 degrees with respect to the longitudinal direction, and the remaining fibers are arranged substantially parallel to the longitudinal direction. The fiber-reinforced structural material is characterized in that fiber materials reinforcing other parts are arranged substantially parallel to the longitudinal direction. As mentioned above, the structural material of the present invention is composed of a synthetic resin reinforced with long fibers, and the long fibers used in the past are the long fibers that have been used to reinforce synthetic resin molded bodies. For example, glass fibers, carbon fibers, metal fibers, boron fibers, aramid fibers, etc. are often used, but carbon fibers are particularly suitable from the viewpoint of strength and lightness. The synthetic resin is not particularly limited in type, and any synthetic resin can be used as long as it can be molded with the long fibers dispersed therein, but examples include epoxy resin, polyester resin,
It is preferable to use a thermosetting synthetic resin such as a phenol resin in order to uniformly disperse the long fibers in the molded article. The amount of long fibers used in the structural material of the present invention is usually preferably within a range where the content of the long fibers is 50 to 75% by volume. The structural material of the present invention will be explained below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the structural material of the present invention, and as shown, the structural material 3 of the present invention has a cylindrical long shape with a rectangular external profile in a vertical section to the longitudinal direction and a hollow interior. It has the shape of a body. In the figure, 1 and 1' are a pair of opposing cylindrical wall portions of the structural member 3, and 2 and 2' are portions other than the pair of cylindrical wall portions 1 and 1'. Then, 30 to 100% of the long fiber material reinforcing the pair of cylindrical walls 1 and 1' is formed at an angle of 30 to 60 degrees with respect to the longitudinal direction of the structural material, preferably at an angle of approximately 45 degrees. The remaining fibers are arranged substantially parallel to the longitudinal direction. In addition, in the present invention, in the above, about half of the fibers arranged at an angle of 30 to 60 degrees with respect to the longitudinal direction of the structural material are at a positive angle in the longitudinal direction, and about half are at a negative angle. Therefore, it is preferable that the fibers be arranged so as to cross each other in order to fully exhibit the reinforcing effect of the fibers. FIG. 2 is a model diagram showing the arrangement of long fibers reinforcing the cylinder wall 1, where 4 is θ with respect to the longitudinal direction.
The long fibers 4' are arranged so as to cross each other at an angle of -θ with respect to the longitudinal direction, and the long fibers 5 are arranged substantially parallel to the longitudinal direction. Further, the pair of cylindrical wall portions 1 in the structural member 3,
The long fibers of portions 2 and 2' other than 1' are arranged so as to be substantially parallel to the longitudinal direction of the structural material 3.
To manufacture the structural material of the present invention having the above structure,
The pair of cylindrical wall parts 1, 1' and the other parts 2, 2' shown in Fig. 1 are made separately by, for example, a press molding method, and then assembled and the joints are firmly secured with adhesive. It may be manufactured by adhering to the material, or it may be manufactured by placing a synthetic resin-impregnated fiber material with long fibers arranged in a mold according to the present invention, and molding it integrally by heating and pressurizing it. You may. In addition, the higher the content of fiber material in the structural material of the present invention is between 50 and 75% by volume, the better the strength, but in order to manufacture products with such a high fiber content, it is necessary to align Prepreg sheets prepared in advance by impregnating long fibers with a curable synthetic resin are preferably used by laminating them in the fiber direction according to the present invention. The fiber-reinforced structural material of the present invention has the structure as described above, and in particular, the direction of the fiber material reinforcing a pair of opposing cylindrical walls and the direction of the fiber material reinforcing parts other than the pair of cylindrical walls. Since the directions are each regulated in a specific direction, the bending stress applied in the parallel direction to the pair of cylindrical wall surfaces in the vertical cross section of the structural material, that is, the bending stress applied from above or below in Figure 1. It exhibits excellent flexural strength and deflects much less due to stress than conventional fiber-reinforced structural materials. Therefore, the structural material of the present invention is suitable for use in support members such as beams and cross arms, which are required to be lightweight and have little deflection due to stress from a specific direction. Examples 1 to 4 A large number of carbon fiber prepreg sheets made of HM type carbon fiber (manufactured by Toho Rayon Co., Ltd.) and epoxy resin, in which long carbon fibers are arranged in one direction, are laminated and press-molded under heat to achieve width. 47mm, thickness 4
Prepare plate-like members 1 and 1' with a fiber content of 60% by volume and a length of 400 mm, and plate-like members 2 and 2' with a width of 55 mm, a thickness of 4 mm, and a length of 400 mm and the same fiber content as above. did. Regarding the plate-shaped members 1 and 1', 30% of the carbon fibers are tilted so that the angle θ with respect to the longitudinal direction of the member is 45 degrees, as in the fibers 4 and 4' shown in FIG. Half of the 30% are arranged alternately at an angle of ±θ, and the remaining 70%
% of carbon fibers are aligned in the longitudinal direction as in fiber 5 in FIG. 2 (Example 1),
50% are similarly inclined at an angle of 45° with respect to the longitudinal direction of the member, halves of the 50% are arranged alternating with each other, and the remaining 50% of carbon fibers are aligned in the longitudinal direction. (Example 2), 80% of the carbon fibers were similarly arranged at an angle of 45° to the longitudinal direction, and the remaining 20% were aligned longitudinally (Example 3). ), and one in which all the carbon fibers were arranged in the same manner at an angle of 45 degrees with respect to the longitudinal direction (Example 4) were prepared. Then, the plate members 1, 1' and 2, 2' were assembled as shown in Figure 1 and fixed with adhesive, so that the length of one side on the outer surface was 55 mm and the length of one side on the inner surface was 47 mm. Four types of cylindrical building materials 3 with a rectangular cross section and a length of 400 mm were prepared. (Examples 1 to 4) Next, a 10 cm portion from one end of each of the prepared structural members was fixed and held horizontally (a cantilever beam with a length of 300 mm), and a load of 50 kg was applied to the tip of the other end. The amount of deflection at the tip was measured using a dial gauge. The results were as shown in Table 1. Comparative Example 1 Plate members 1, 1' and 2, 2' were made in the same manner as in Example 1 except that the directions of all the carbon fibers in the plate members 1, 1' were aligned in the longitudinal direction of the members, Thereafter, a cylindrical structural material 3 was prepared in the same manner as in Example 1, and the amount of deflection of the structural material was measured.
The results were as shown in Table 1. Comparative Example 2 A cylindrical structural member with the same dimensions as that prepared in Example 1 was made from steel (SS41), and the [Table]

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案構造材の一例を示す断面図、第
2図は第1図の筒壁部1における長繊維の配列の
仕方を示す模型図である。 1,1′……対向する一対の筒壁部、2,2′…
…他の部分、3……構造材、4,4′,5……繊
維。
FIG. 1 is a sectional view showing an example of the structural material of the present invention, and FIG. 2 is a model diagram showing how the long fibers are arranged in the cylindrical wall portion 1 of FIG. 1. 1, 1'... A pair of opposing cylinder wall parts, 2, 2'...
...Other parts, 3... Structural material, 4, 4', 5... Fiber.

Claims (1)

【実用新案登録請求の範囲】 1 長繊維で補強された合成樹脂よりなる、長手
方向に対する垂直断面が四角形の外形輪郭を有
し、内部が中空の筒状長尺体にして、対向する
一対の筒壁部を補強する繊維材料の30〜100%
が長手方向に対し30〜60゜の角度になる様に、
そして残りの繊維は長手方向に略平行となる様
に配列され、上記一対の筒壁部より他の部分を
補強する繊維材料は長手方向に略平行になる様
に配列されてなることを特徴とする繊維補強構
造材。 2 長手方向に対し30〜60゜の角度に配列される
繊維材料の半分が同じ方向に、残りの半分が上
記方向に交叉するよう配列されたものである第
1項又は第2項記載の繊維補強構造材。 3 合成樹脂が熱硬化性樹脂である第1項、第2
項又は第3項記載の繊維補強構造材。 4 長繊維が炭素長繊維である第1項、第2項又
は第3項記載の繊維補強構造材。
[Claims for Utility Model Registration] 1. A cylindrical elongated body made of synthetic resin reinforced with long fibers and having a rectangular outer profile in a vertical cross-section with respect to the longitudinal direction and a hollow interior. 30-100% of the fiber material reinforcing the cylinder wall
so that it is at an angle of 30 to 60 degrees with respect to the longitudinal direction.
The remaining fibers are arranged substantially parallel to the longitudinal direction, and the fiber material reinforcing the other portions of the pair of cylinder walls is arranged substantially parallel to the longitudinal direction. Fiber-reinforced structural material. 2. The fiber according to item 1 or 2, wherein half of the fiber materials arranged at an angle of 30 to 60 degrees with respect to the longitudinal direction are arranged in the same direction and the other half are arranged in a manner that intersects the above direction. Reinforced structural material. 3 Items 1 and 2 where the synthetic resin is a thermosetting resin
Fiber-reinforced structural material according to item 1 or 3. 4. The fiber-reinforced structural material according to item 1, 2, or 3, wherein the long fibers are carbon long fibers.
JP13734782U 1982-09-09 1982-09-09 Fiber reinforced structural material Granted JPS5941529U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13734782U JPS5941529U (en) 1982-09-09 1982-09-09 Fiber reinforced structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13734782U JPS5941529U (en) 1982-09-09 1982-09-09 Fiber reinforced structural material

Publications (2)

Publication Number Publication Date
JPS5941529U JPS5941529U (en) 1984-03-17
JPS6316510Y2 true JPS6316510Y2 (en) 1988-05-11

Family

ID=30308531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13734782U Granted JPS5941529U (en) 1982-09-09 1982-09-09 Fiber reinforced structural material

Country Status (1)

Country Link
JP (1) JPS5941529U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230499B2 (en) * 2018-12-27 2023-03-01 東レ株式会社 laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435781B2 (en) * 1974-10-16 1979-11-05
JPS5720896A (en) * 1980-07-11 1982-02-03 Hochiki Co Concentrated monitoring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632559Y2 (en) * 1977-04-14 1981-08-03
JPS5435781U (en) * 1977-08-15 1979-03-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435781B2 (en) * 1974-10-16 1979-11-05
JPS5720896A (en) * 1980-07-11 1982-02-03 Hochiki Co Concentrated monitoring device

Also Published As

Publication number Publication date
JPS5941529U (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US4370390A (en) 3-D Chopped-fiber composites
US4789577A (en) Multichannel structures made of composites, processes and semifinished products for the manufacture thereof
CN101189118A (en) Method for manufacturing a reinforced shell for forming component parts for aircraft and shell for component parts for aircraft
US4665678A (en) Lightweight constructions of increased strength and dimensional stability
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
US5552214A (en) Unidirectional prepreg and carbon fiber reinforced composite materials comprising pitch-based carbon fibers and polyacrylonitrile-based carbon fibers
EP3081373B1 (en) Composite material structure
JPS6143579B2 (en)
JPS6316510Y2 (en)
US5916682A (en) Carbon fiber reinforced composite material
CN103010321B (en) A kind of lightweight flat bed trailer car body and manufacture method thereof
US7939158B2 (en) Double walled structural reinforcement
JPH10156982A (en) Fiber-reinforced composite molding and its manufacture
JPS6316511Y2 (en)
JPH07329199A (en) Cylindrical molding of fiber-reinforcing composite material
US11383828B2 (en) Landing gear of rotorcraft
JP2017125600A (en) Spring structure
JPS6010840Y2 (en) Composite tensile structure
JPH04255306A (en) Large pillar and its manufacture
JPS5938895B2 (en) plate-like complex
JP2681552B2 (en) Fiber reinforced resin tubular structural member
JP5273978B2 (en) Fiber reinforced resin hollow body
JPH0462260B2 (en)
JP3989124B2 (en) Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same
KR20240088337A (en) Sheet-type fiber-reinforced composite having heterogeneous properties and mehtod for manufacturing the same