JP2017125600A - Spring structure - Google Patents

Spring structure Download PDF

Info

Publication number
JP2017125600A
JP2017125600A JP2016018387A JP2016018387A JP2017125600A JP 2017125600 A JP2017125600 A JP 2017125600A JP 2016018387 A JP2016018387 A JP 2016018387A JP 2016018387 A JP2016018387 A JP 2016018387A JP 2017125600 A JP2017125600 A JP 2017125600A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
spring structure
spring
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016018387A
Other languages
Japanese (ja)
Inventor
亀幸 清家
Kameyuki Seike
亀幸 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016018387A priority Critical patent/JP2017125600A/en
Publication of JP2017125600A publication Critical patent/JP2017125600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic spring structure which is a fiber-reinforced plastic spring structure suitable for a softening measurement of shock and vibration related to an architectural structure/vehicle/conveyance, and having an uncomplicated shape so as to facilitate molding processing, and is excellent in durability and light-weight/compact, and includes various applicabilities in the application field.SOLUTION: In a fiber-reinforced plastic spring structure, the fiber-reinforced plastic spring structure is constituted of a fiber-reinforced plastic oval ring-shaped material, and the oval ring-shaped material unit comprises a continuous smooth curved surface shape.SELECTED DRAWING: Figure 1

Description

本発明は、建築物・乗物・運搬物等に関連する衝撃や振動の緩和対策として、軽量・コンパクトで優れた耐久性と多様な適用性を兼ね備えた繊維強化プラスチック製バネ構造体に関する。  The present invention relates to a fiber reinforced plastic spring structure that is lightweight, compact and has excellent durability and various applicability as a countermeasure for mitigating impacts and vibrations related to buildings, vehicles, transported goods, and the like.

従来から、衝撃や振動を緩和するための一般的な機械的要素技術として、金属製或いは繊維強化樹脂製で特定構造のバネ材が用いられている。  Conventionally, a spring material having a specific structure made of metal or fiber reinforced resin has been used as a general mechanical element technique for mitigating shock and vibration.

例えば、軽量化及び省スペース化が要求される自動車分野向けに、圧縮応力による破壊防止を可能にする片振りの曲げ荷重が加えられる繊維強化プラスチック製バネが提案されている(特許文献1)。  For example, a fiber-reinforced plastic spring to which a single-side bending load that enables prevention of breakage due to compressive stress is applied has been proposed for the automotive field where weight reduction and space saving are required (Patent Document 1).

また、鉄道車両台車用板バネとして、繊維強化プラスチック部材とコアー芯材部材の積層から成り、軽量とコスト低減、耐久性も向上する特定構造が提案されている(特許文献2)。  In addition, a specific structure has been proposed as a leaf spring for a railway vehicle bogie that is made of a laminate of a fiber reinforced plastic member and a core core member, and that is lightweight, reduces cost, and improves durability (Patent Document 2).

さらに、乗り物や貨物運搬物等の衝撃や振動の緩和策として、鋼鉄やステンレス等の金属製で複数の長尺状弾性片をそれぞれ円弧状に両極部を固定する構造体の、球状サスペンションが提案されている(特許文献3)。  Furthermore, as a measure to mitigate shocks and vibrations of vehicles and cargo, etc., a spherical suspension is proposed, which is a structure made of metal such as steel or stainless steel, in which a plurality of elongated elastic pieces are fixed to each pole in an arc shape. (Patent Document 3).

そして、防振・除振バネのニーズが高い産業分野において、他部品との取り付けし易い平坦状接続部を有する特定形状の炭素繊維強化樹脂製環状バネが提案されている(特許文献4)。  And in the industrial field | area with a high need of a vibration isolating and vibration isolating spring, the specific shape carbon fiber reinforced resin annular spring which has the flat connection part which is easy to attach with other components is proposed (patent document 4).

特開2011−241845JP2011-241845 国際公開番号WO20131/038673International Publication Number WO20131 / 038673 国際公開番号WO2011/125488International Publication Number WO2011-125488 実用新案登録第3183939号Utility Model Registration No. 3183939

然しながら、前記の従来技術において、特許文献1は、中立軸に対し非対称の片振り板状バネであることから、自動車分野等の特定用途以外で、特に、中立軸に対し対称となる耐衝撃や耐振及び振動減衰機能付与を必要とする用途分野に適用できないものだった。特許文献2の場合も大型で重い鉄道車両台車用の板バネであり、小型や軽い対象物の衝撃や振動の緩和対策に不適切なものであった。
また、特許文献3は、全体が連続した一体系でない金属製長尺片を組合わせた球状体なので、複雑な製作工程で生産効率が低くコスト増になり、負荷応力がバランス良く分散し難く、更に、軽量・コンパクト化が必要な用途に向かないものであった。特許文献4は、他の部品との取り付けを容易にすることが目的であり、環状バネ中に平坦状接続部を有するので、曲面と平坦面の境目に屈曲部分を形成するために、この部分に負荷応力が集中する傾向になり、耐久性に劣る一つの要因になることから、負荷応力がバランス良く分散し易くなる様に改善が必要であった。
However, in the above-mentioned prior art, since Patent Document 1 is a cantilever plate-like spring that is asymmetric with respect to the neutral axis, the shock resistance that is symmetric with respect to the neutral axis, in particular, except for specific applications in the automotive field, etc. It could not be applied to application fields that require vibration resistance and vibration damping functions. The case of Patent Document 2 is also a leaf spring for a large and heavy railway vehicle bogie, which is inappropriate for mitigating the impact and vibration of small and light objects.
In addition, since Patent Document 3 is a spherical body formed by combining long metal pieces that are not continuous as a whole, the production efficiency is low and the cost is increased in a complicated manufacturing process, and the load stress is difficult to disperse in a well-balanced manner. Furthermore, it is not suitable for applications that require light weight and compactness. Patent Document 4 has an object of facilitating attachment with other components, and has a flat connection portion in the annular spring, so that this portion is formed in order to form a bent portion at the boundary between the curved surface and the flat surface. Therefore, it is necessary to improve the load stress so that it can be easily distributed in a well-balanced manner.

本発明は、軽量・コンパクト化が可能な繊維強化プラスチック製であって、複雑形状でなく容易な成形加工を可能にすることで量産・低コスト化を有利にし、且つ、衝撃や振動の緩和対策用途に優れた耐久性と多様な適用性を兼ね備えたバネ構造体を提供することを目的とする。  The present invention is made of fiber-reinforced plastic that can be made lighter and more compact. It enables mass production and low cost by enabling easy molding without complicated shapes, and measures to reduce shock and vibration. An object of the present invention is to provide a spring structure having both excellent durability and various applicability.

上記の課題を解決するために、本発明では以下の構成を採用する。
(1)バネ構造体は繊維強化プラスチック製楕円環状物から構成され、該楕円環状物単体が連続した平滑曲面形状から成ることを特徴とするバネ構造体。
(2)前記の繊維強化プラスチック製楕円環状物単体は、幅が2mm〜200mm及び厚みが0.1mm〜15mm、かつ、外側面における長軸径が短軸径の1.2倍〜6倍である(1)に記載のバネ構造体。
(3)前記の繊維強化プラスチック製楕円環状物単体が、炭素繊維強化プラスチック製から成る(1)〜(2)に記載のバネ構造体。
(4)前記の繊維強化プラスチック製楕円環状物単体の内側面に減衰機能機器を組み込み固定して成る(1)〜(3)の何れかに記載のバネ構造体。
(5)前記の繊維強化プラスチック製楕円環状物単体を複数個以上で構成し、該楕円環状物単体の側面接点部位を相互に重ね合わせ固定して成る(1)〜(4)の何れかに記載のバネ構造体。
(6)上記(1)〜(3)の何れかに記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
(7)上記(4)に記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
(8)上記(5)に記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
(9)上記(1)〜(3)の何れかに記載のバネ構造体を複数個以上、及び減衰機能機器の複数個以上を併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
(10)上記(1)〜(3)の何れかに記載のバネ構造体を複数個以上、及び上記(4)に記載のバネ構造体を複数個以上併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
(11)上記(1)〜(3)の何れかに記載のバネ構造体を複数個以上、及び上記(5)に記載のバネ構造体を複数個以上併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。
In order to solve the above problems, the present invention adopts the following configuration.
(1) The spring structure is composed of an elliptical annular body made of fiber reinforced plastic, and the elliptical annular body itself has a continuous smooth curved surface shape.
(2) The above-mentioned fiber-reinforced plastic oval ring itself has a width of 2 mm to 200 mm, a thickness of 0.1 mm to 15 mm, and a major axis diameter on the outer surface of 1.2 to 6 times the minor axis diameter. The spring structure according to (1).
(3) The spring structure according to any one of (1) to (2), wherein the fiber-reinforced plastic elliptical annular body is made of carbon fiber-reinforced plastic.
(4) The spring structure according to any one of (1) to (3), wherein a damping functional device is incorporated and fixed on the inner side surface of the fiber-reinforced plastic elliptical annular body.
(5) Any one of (1) to (4), wherein a plurality of the above-mentioned elliptical annular bodies made of fiber reinforced plastic are composed of a plurality, and the side contact portions of the elliptical annular bodies are overlapped and fixed to each other. The spring structure described.
(6) A seismic isolation unit using a plurality of the spring structures according to any one of (1) to (3) described above and being assembled and fixed between flat plate shapes having high rigidity.
(7) A seismic isolation unit using a plurality of the spring structures described in (4) above and being assembled and fixed between flat plate shapes having high rigidity.
(8) A seismic isolation unit using a plurality of the spring structures described in (5) above and being assembled and fixed between flat plate shapes having high rigidity.
(9) A plurality of the spring structures according to any one of the above (1) to (3) and a plurality of the damping functional devices are used together, and they are assembled and fixed between flat plate shapes having high rigidity. A seismic isolation unit.
(10) A plurality of the spring structures according to any one of (1) to (3) above and a plurality of the spring structures according to (4) above are used in combination, and a flat plate shape with high rigidity is used. A seismic isolation unit built in between and fixed.
(11) A plurality of the spring structures according to any one of (1) to (3) and a plurality of the spring structures according to (5) above are used in combination, and a flat plate shape with high rigidity is used. A seismic isolation unit built in between and fixed.

上述した様に本発明のバネ構造体は、複雑形状でない連続した平滑曲面の繊維強化プラスチック製楕円環状物単体から構成されるので、軽量・コンパクト化を可能にし、量産・低コスト化も有利になる。更に、負荷応力がバランス良く分散し易くなる方向になり耐久性向上に繋がる。また、減衰機能機器や該楕円環状物単体の複数個以上を組合わせることで、衝撃や振動の緩和対策用途に多様な適用性が可能になる。  As described above, the spring structure of the present invention is composed of a continuous smooth curved fiber-reinforced plastic elliptical annular body that is not complex, so that it is lightweight and compact, and is advantageous in mass production and cost reduction. Become. Furthermore, the load stress tends to be dispersed in a well-balanced manner, leading to improved durability. In addition, by combining a plurality of damping functional devices and a plurality of the elliptical annular bodies alone, various applicability can be applied to shock and vibration mitigation measures.

以下、本発明に係る繊維強化プラスチック製楕円環状物単体は「楕円環状体」と略記する。
「楕円環状体」の(a)正面、(b)側面、(c)全容である。 「楕円環状体」と減衰機能機器から成るバネ構造体の全容である。 「楕円環状体」複数個以上のバネ構造体であり、(a)2個組合わせ、(b)及び(c)3個組合わせの全容である。 「楕円環状体」5個を組み合わせたバネ構造体の(a)平面、(b)正面、(c)側面である。 免震ユニットの(a)及び(b)側面、(c)全容である。
Hereinafter, the fiber-reinforced plastic ellipsoidal simple substance according to the present invention is abbreviated as “elliptical ring”.
(A) Front, (b) Side, (c) Whole of “Ellipsoidal ring”. The whole structure of a spring structure consisting of an "elliptical annular body" and a damping function device. “Elliptical annular body” is a plurality of spring structures, and (a) a combination of two, (b) and (c) a total of three combinations. These are (a) plane, (b) front, and (c) side of a spring structure combining five “elliptical annular bodies”. (A) and (b) side surface of the seismic isolation unit, (c) the whole picture.

以下、本発明に係る繊維強化プラスチック製楕円環状物単体は「楕円環状体」と略記し、本発明の実施形態例に関して図面を参照しながら説明する。  Hereinafter, the fiber-reinforced plastic elliptical simple substance according to the present invention is abbreviated as “elliptical annular body”, and an embodiment of the present invention will be described with reference to the drawings.

図1(a)(b)(c)(d)は、本発明のバネ構造体を構成する「楕円環状体」であり、全体的に連続した平滑曲面形状から成っていることが大きな特徴である。この複雑形状でない特定形状の「楕円環状体」を採用することで成形加工が容易になり、量産・低コスト化を有利にできる。また、屈曲部位のない曲面形状であることから、負荷応力がバランス良く分散し易くなる方向になり、本発明が目的とする耐久性向上に繋がる。  1 (a), (b), (c), and (d) are “elliptical annular bodies” that constitute the spring structure of the present invention, and are characterized by a generally continuous smooth curved surface shape. is there. By adopting an “elliptical annular body” having a specific shape that is not a complicated shape, molding is facilitated, and mass production and cost reduction can be advantageously performed. Moreover, since it is a curved surface shape without a bending part, it becomes the direction where load stress becomes easy to disperse | distribute with sufficient balance, and leads to the durable improvement which this invention aims at.

次に、バネ構造体を構成する「楕円環状体」の基本要素に関して具体的に述べる。「楕円環状体」の形状サイズは、各用途の負荷応力等に対する要求特性に応じて仕様を決めることになるが、好ましくは、幅が2mm〜200mm、厚みが0.1mm〜15mm、外側面における長軸径が短軸径の1.2倍〜6倍である。
より好ましくは、幅が4mm〜150mm、厚みが0.2mm〜10mm、外側面における長軸径が短軸径の1.4倍〜4倍である。
ここで、幅が2mm以下になると細幅過ぎてバネ構造体の強度性能保持が困難になり、200mm以上になると広幅過ぎてバネ構造体の撓み難くなりクッション性能保持がし難くなるので好ましくない。
また、厚みが0.1mm以下になると薄厚過ぎて弱くなりバネ構造体の強度性能保持が困難になり、15mm以上になると分厚過ぎてバネ構造体の撓み難くなりクッション性能保持が困難になるので好ましくない。
また、外側面における長軸径が短軸径の1.2倍以下になると円環状に近く広い湾曲になるので、バネ構造体の上下方向が長過ぎて狭い所への設置が難しく、また、撓み難くなるのでクッション性能が不十分になる。そして、6倍以上になると楕円環状が扁平で狭い湾曲になるので、撓み幅が狭く負荷応力に対する反発性が乏しくなりクッション性能保持が困難になるので好ましくない。
Next, the basic elements of the “elliptical annular body” constituting the spring structure will be specifically described. The shape size of the “elliptical annular body” is determined according to the required characteristics for the load stress of each application, but preferably the width is 2 mm to 200 mm, the thickness is 0.1 mm to 15 mm, and the outer surface is The major axis diameter is 1.2 to 6 times the minor axis diameter.
More preferably, the width is 4 mm to 150 mm, the thickness is 0.2 mm to 10 mm, and the major axis diameter on the outer surface is 1.4 to 4 times the minor axis diameter.
Here, if the width is 2 mm or less, it is too narrow to make it difficult to maintain the strength performance of the spring structure, and if it is 200 mm or more, it is too wide to make the spring structure difficult to bend and cushion performance is difficult to maintain.
Further, when the thickness is 0.1 mm or less, it is too thin and weak and it is difficult to maintain the strength performance of the spring structure. When the thickness is 15 mm or more, it is too thick and the spring structure is difficult to bend and it is difficult to maintain the cushion performance. Absent.
In addition, when the major axis diameter on the outer surface is 1.2 times or less of the minor axis diameter, it becomes a curved shape close to an annular shape, so the vertical direction of the spring structure is too long and difficult to install in a narrow place, Since it becomes difficult to bend, the cushion performance is insufficient. And if it becomes 6 times or more, the elliptical annular shape is flat and narrow, which is not preferable because the bending width is narrow and the resilience to load stress is poor, and it becomes difficult to maintain the cushion performance.

「楕円環状体」の原材料に関して、繊維強化プラスチック種は各用途の要求特性に応じて強化繊維種及びプラスチック種の組み合わせを適切に選択する。
強化繊維種としては、炭素繊維、ガラス繊維、アラミド繊維、高強度ポリエチレン繊維、等が挙げられ、これらの単独系又は併用系で使用できる。更に、平織、朱子織、綾織、すだれ織など織物基材のクロス状、マット状、ストランド状等、如何なる形状でも良いが、これらの単独系よりも物性バランスや外観品位を向上させる上で併用系にて使用することが好ましい。
この中で、高い強度・弾性率を有する炭素繊維は本発明におけるバネ構造体の高性能・高機能を確保するために有効であり、より好ましく使用できる。
また、炭素繊維は、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系等、いかなる種類でもよいが、強度・弾性率のバランスに優れたポリアクリロニトリル系炭素繊維がより好ましい。
次に、プラスチック種としては、通常のエポキシ、不飽和ポリエステル、フェノール、ビニルエステル、ポリイミドなどの熱硬化性樹脂や、ポリアミド、ポリエステル、ポリオフィレン、ABS、ポリエーテルエーテルケトンなどの熱可塑性樹脂が例示できる。この中で、熱硬化性樹脂が本発明におけるバネ構造体の要求特性を満たし、成形性・コスト面でも有利なエポキシ樹脂がより好ましく使用できる。
Regarding the raw material of the “elliptical annular body”, the fiber reinforced plastic type is appropriately selected from the combination of the reinforced fiber type and the plastic type according to the required characteristics of each application.
Examples of the reinforcing fiber type include carbon fiber, glass fiber, aramid fiber, high-strength polyethylene fiber, and the like, and these can be used alone or in combination. Furthermore, it may be any shape such as cloth, cloth, mat, strand, etc., such as plain weave, satin weave, twill weave, weave weave, etc. Is preferably used.
Among these, carbon fibers having high strength and elastic modulus are effective for securing the high performance and high function of the spring structure in the present invention, and can be used more preferably.
The carbon fiber may be of any type such as polyacrylonitrile, rayon, lignin, pitch, etc., but polyacrylonitrile carbon fiber having an excellent balance between strength and elastic modulus is more preferable.
Next, examples of plastics include thermosetting resins such as ordinary epoxy, unsaturated polyester, phenol, vinyl ester, and polyimide, and thermoplastic resins such as polyamide, polyester, polyolefin, ABS, and polyetheretherketone. it can. Among these, the thermosetting resin satisfies the required characteristics of the spring structure in the present invention, and an epoxy resin advantageous in terms of moldability and cost can be used more preferably.

また、「楕円環状体」の成形方法に関しては、通常のオートクレーブ法の他に、シートワインディング法、バキュームバック法、内圧成形法、レジントランスファー(RTM)法等の単独又は組み合わせにて成形できるが、成形性・外観品位の面で有利なオートクレーブ法が好ましい。
これらのうち、オートクレーブ法における「楕円環状体」成形工程の実施例としては、各用途の仕様設計及び要求特性に応じて製作した楕円環状金型(長軸径;110mm、短軸径;55mm、幅;20mm)に、使用するプラスチック種を強化繊維に含浸させた織物基材や一方向に揃えたプレプレグシートの中間材料を設計厚み2mmになる様に、同方向或いは異方向を交えて積層した後、オートクレーブ((株)羽生田鉄工所製、DL−2010)内に全体をセットし、加温130℃・加圧0.3MPa・時間2hrの条件下で処理した後、目的の「楕円環状体」成形品(幅;20mm、厚み2mm、長軸外径;112mm、短軸外径;57mm、長軸外径/短軸外径の比;1.96倍)を得た。
次に、この「楕円環状体」成形品における長軸径の側面部位を上下にして、下方を床面に設置し、上方から荷重100kgfを加えた時、短軸径方向が約10mm圧縮され変形したが、荷重100Kgfを除くと直ぐに元の形状に戻ったことから、バネ用途として基本的に使用できることを確認した。
また、上記のような成形工程で得られた「楕円環状体」成形品は、必要に応じて切削工程も加えて仕上げるなど、通常手段で容易に成形加工することができるが、特に、幅サイズのみ異なる場合、ある程度長い「楕円環状体」のものを成形しておき、その後に所定サイズに輪切りする手段は生産効率アップに繋がり、コスト低減に有効である。
また、耐候性、外観品位と意匠性を向上させるために、「楕円環状体」の表面にフェノール樹脂塗料、エポキシ樹脂塗料、ポリウレタン樹脂塗料、シリコン樹脂塗料、アクリル樹脂塗料、フッ素樹脂塗料などの塗料層或いはエポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル樹脂などゲルコート層が形成されていてもよい。
In addition, regarding the molding method of the “elliptical annular body”, in addition to a normal autoclave method, a sheet winding method, a vacuum back method, an internal pressure molding method, a resin transfer (RTM) method or the like can be molded alone or in combination, An autoclave method that is advantageous in terms of formability and appearance quality is preferred.
Among these, as an example of the “elliptical annular body” molding process in the autoclave method, an elliptical annular mold (major axis diameter: 110 mm, minor axis diameter: 55 mm, manufactured according to the specification design and required characteristics of each application) Width: 20mm), a woven base material impregnated with a plastic fiber to be used and an intermediate material of a prepreg sheet aligned in one direction are laminated with the same direction or different directions so that the design thickness is 2 mm Then, the whole was set in an autoclave (manufactured by Hanyuda Works, DL-2010), treated under the conditions of heating 130 ° C., pressurization 0.3 MPa, and time 2 hours, and then the target “elliptical ring shape” Body "molded product (width: 20 mm, thickness 2 mm, major axis outer diameter: 112 mm, minor axis outer diameter: 57 mm, ratio of major axis outer diameter / minor axis outer diameter: 1.96 times).
Next, when the side part of the major axis diameter in this “elliptical annular body” molded product is set up and down, the lower part is placed on the floor, and when a load of 100 kgf is applied from above, the minor axis diameter direction is compressed by about 10 mm and deformed. However, since it returned to its original shape as soon as the load of 100 kgf was removed, it was confirmed that it can be basically used as a spring application.
In addition, the “elliptical annular body” molded product obtained by the molding process as described above can be easily molded by ordinary means such as finishing by adding a cutting process if necessary. In the case where only the difference is made, a method of forming a long “elliptical annular body” and then cutting it into a predetermined size leads to an increase in production efficiency, which is effective for cost reduction.
In addition, in order to improve weather resistance, appearance quality and design, paint such as phenol resin paint, epoxy resin paint, polyurethane resin paint, silicon resin paint, acrylic resin paint, fluororesin paint on the surface of the "elliptical ring" A gel coat layer such as a layer or an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, or a polyester resin may be formed.

次に、本発明において「楕円環状体」を基本骨格にし、例えば、減衰機能機器の組み込みや「楕円環状体」の複数個以上を組合わせて固定する手段を採用することで、本発明の目的である衝撃や振動の緩和対策用途に多様な適用性を実現できる。ここで、上記の減衰機能機器は、各用途の仕様設計に適合可能な規格品であれば市販されている通常のダンパー機能を持つ製品を使用できる。また、上記の固定する手段は、ボルトナット、リベット、接着剤、結束等の通常方法を適用できる。  Next, in the present invention, an “elliptical annular body” is used as a basic skeleton, and for example, by incorporating means for attenuating an attenuation function device or using a means for fixing a plurality of “elliptical annular bodies” in combination. It is possible to realize various applicability for shock and vibration mitigation measures. Here, as the above-described attenuation function device, a commercially available product having a normal damper function can be used as long as it is a standard product that can be adapted to the specification design for each application. The fixing means may be a normal method such as a bolt nut, rivet, adhesive, or bundling.

以下、本発明におけるバネ構造体の具体的な実施形態を各々図で説明する。
図2は、「楕円環状体」の内側面に減衰機能機器を組み込み固定して成る一例のバネ構造体の全容であり、全体の能力・サイズは各用途の負荷応力に対する要求特性等に応じた仕様設計に基づき自由に決めることができる。
Hereinafter, specific embodiments of the spring structure according to the present invention will be described with reference to the drawings.
FIG. 2 shows the entire structure of an example spring structure in which a damping functional device is assembled and fixed on the inner surface of an “elliptical annular body”, and the overall capacity and size correspond to the required characteristics for load stress of each application. It can be decided freely based on the specification design.

図3は、「楕円環状体」複数個以上の側面接点部位を相互に重ね合わせ固定して成るバネ構造体の一例である。(a)は「楕円環状体」2個の交差状組み合わせた全容、(b)は「楕円環状体」3個の交差状組み合わせた全容、(c)は「楕円環状体」3個の外側面接合組み合わせた全容である。これらの組み合わせ方は全体の能力・サイズも含めて多種多様であり、各用途における要求特性、設置スペース、デザイン等々に対応して決めることができるので強みでもある。  FIG. 3 is an example of a spring structure in which a plurality of “elliptical annular bodies” are stacked and fixed to each other. (A) The whole of the “elliptical ring” combined with two intersecting shapes, (b) The whole of the “elliptical ring” combined with three, and (c) The three outer surfaces of “elliptical ring” It is the whole combination of joints. There are a variety of combinations of these, including the overall capability and size, and it is a strength because it can be determined according to the required characteristics, installation space, design, etc. for each application.

図4(a)(b)(c)は、「楕円環状体」5個を環状内面幅からはみ出さない様に組合わせ設計したバネ構造体の一例である。この例も各用途に多種多様に対応できるが、特に、設置スペースが狭いとか、特殊デザインが必要な場合などに適用できる。  4A, 4B, and 4C are examples of a spring structure that is designed by combining five “elliptical annular bodies” so as not to protrude from the annular inner surface width. This example can also be used in a variety of ways, but it can be applied especially when the installation space is small or a special design is required.

図5(a)(b)(c)は、「楕円環状体」と減衰機能機器の併用で各々2個を剛性が高い平面板形状間に組み込み固定した免震ユニットの一例である。
ここで使用する剛性が高い平面板形状種としては、金属製、木製、プラスチック製等の通常材料を適用できるが、特に、繊維強化プラスチック製が好ましく、その中でも軽量化・コンパクト化が可能な炭素繊維強化プラスチック製がより好ましい。
この免震ユニットは、本発明におけるバネ構造体の要素技術を基に構成されたものであり、上述の例と同様に各用途の仕様設計に準じて「楕円環状体」及び減衰機能機器を配置できる。更に、対象物のサイズと負荷応力が大きい衝撃や振動の緩和対策に対して広範囲に適用できるところが強みであり、例えば、該免震ユニットの単品を大掛かりなスケールにしなくても、取扱い易い小型や中型レベルの単品を複数個以上並べて使うことも可能であり、有効な手段となる。
FIGS. 5A, 5B, and 5C are examples of seismic isolation units in which two of each of the “elliptical annular body” and the damping function device are assembled and fixed between flat plate shapes having high rigidity.
As the flat plate shape type with high rigidity used here, ordinary materials such as metal, wood, plastic, etc. can be applied, but fiber reinforced plastic is particularly preferable, and carbon that can be reduced in weight and size is particularly preferable. More preferably, it is made of fiber reinforced plastic.
This seismic isolation unit is constructed based on the elemental technology of the spring structure in the present invention, and in the same way as in the above example, an “elliptical annular body” and a damping function device are arranged in accordance with the specification design for each application. it can. Furthermore, it is a strength that can be widely applied to shock and vibration mitigation measures with large object size and load stress.For example, it is easy to handle without requiring a large scale scale for a single seismic isolation unit. It is also possible to use a plurality of medium-sized single items side by side, which is an effective means.

本発明の繊維強化プラスチック製バネ構造体及び免震ユニットは、建築物、乗物、運搬物等々における衝撃や振動の緩和対策及び免震システムとして、小型スケールから大型スケールの対象物に対し多様な適用性があり、広範囲の用途に有用である。  The fiber reinforced plastic spring structure and seismic isolation unit of the present invention can be applied to a wide range of objects from small scales to large scales as a measure for shock and vibration mitigation and seismic isolation systems in buildings, vehicles, transported objects, etc. And is useful for a wide range of applications.

1:繊維強化プラスチック製楕円環状物単体
2:繊維強化プラスチック製楕円環状物単体の外側面
3:繊維強化プラスチック製楕円環状物単体の内側面
4:減衰機能機器
5:平面板形状材
6:固定部位
A:繊維強化プラスチック製楕円環状物単体の厚み
B:繊維強化プラスチック製楕円環状物単体の幅
C:繊維強化プラスチック製楕円環状物単体外側面の長軸径
D:繊維強化プラスチック製楕円環状物単体外側面の短軸径
1: Fiber-reinforced plastic elliptical ring simple substance 2: Outer surface of fiber-reinforced plastic elliptical ring simple substance 3: Inner side face of fiber-reinforced plastic elliptical circular ring simple substance 4: Damping function device 5: Flat plate shape material 6: Fixed Site A: Thickness of the fiber-reinforced plastic elliptical annular body B: Width of the fiber-reinforced plastic elliptical annular body C: Major axis diameter D of the outer surface of the fiber-reinforced plastic elliptical annular body D: Fiber-reinforced plastic elliptical annular body The short axis diameter of the single unit outer surface

Claims (11)

バネ構造体は繊維強化プラスチック製楕円環状物から構成され、該楕円環状物単体が連続した平滑曲面形状から成ることを特徴とするバネ構造体。  The spring structure is composed of an elliptical annular body made of fiber reinforced plastic, and the elliptical annular body itself has a continuous smooth curved surface shape. 前記の繊維強化プラスチック製楕円環状物単体は、幅が2mm〜200mm及び厚みが0.1mm〜15mm、かつ、外側面における長軸径が短軸径の1.2倍〜6倍である請求項1に記載のバネ構造体。  The fiber-reinforced plastic ellipsoidal simple substance has a width of 2 mm to 200 mm, a thickness of 0.1 mm to 15 mm, and a major axis diameter on the outer surface of 1.2 to 6 times the minor axis diameter. 2. The spring structure according to 1. 前記の繊維強化プラスチック製楕円環状物単体が、炭素繊維強化プラスチック製から成る請求項1〜2に記載のバネ構造体。  The spring structure according to claim 1, wherein the fiber-reinforced plastic elliptical annular body is made of carbon fiber-reinforced plastic. 前記の繊維強化プラスチック製楕円環状物単体の内側面に減衰機能機器を組み込み固定して成る請求項1〜3の何れかに記載のバネ構造体。  The spring structure according to any one of claims 1 to 3, wherein a damping functional device is assembled and fixed to an inner surface of the fiber-reinforced plastic elliptical annular body. 前記の繊維強化プラスチック製楕円環状物単体を複数個以上で構成し、該楕円環状物単体の側面接点部位を相互に重ね合わせ固定して成る請求項1〜4の何れかに記載のバネ構造体。  The spring structure according to any one of claims 1 to 4, wherein a plurality of the fiber-reinforced plastic elliptical annular bodies are composed of a plurality of pieces, and the side contact portions of the elliptical annular bodies are overlapped and fixed to each other. . 請求項1〜3の何れかに記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A seismic isolation unit comprising a plurality of spring structures according to any one of claims 1 to 3 and being assembled and fixed between flat plate shapes having high rigidity. 請求項4に記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A seismic isolation unit comprising a plurality of spring structures according to claim 4 and being assembled and fixed between flat plate shapes having high rigidity. 請求項5に記載のバネ構造体を複数個以上使用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A seismic isolation unit comprising a plurality of spring structures according to claim 5 and being assembled and fixed between flat plate shapes having high rigidity. 請求項1〜3の何れかに記載のバネ構造体を複数個以上、及び減衰機能機器の複数個以上を併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A seismic isolation unit comprising a plurality of spring structures according to any one of claims 1 to 3 and a plurality of damping functional devices in combination and fixed between flat plate shapes having high rigidity. 請求項1〜3の何れかに記載のバネ構造体を複数個以上、及び請求項4に記載のバネ構造体を複数個以上併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A plurality of the spring structures according to any one of claims 1 to 3 and a plurality of the spring structures according to claim 4 are used in combination and fixed between flat plate shapes having high rigidity. Seismic isolation unit. 請求項1〜3の何れかに記載のバネ構造体を複数個以上、及び請求項5に記載のバネ構造体を複数個以上併用し、剛性が高い平面板形状の間に組み込み固定して成る免震ユニット。  A plurality of the spring structures according to any one of claims 1 to 3 and a plurality of the spring structures according to claim 5 are used in combination and fixed between flat plate shapes having high rigidity. Seismic isolation unit.
JP2016018387A 2016-01-15 2016-01-15 Spring structure Pending JP2017125600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018387A JP2017125600A (en) 2016-01-15 2016-01-15 Spring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018387A JP2017125600A (en) 2016-01-15 2016-01-15 Spring structure

Publications (1)

Publication Number Publication Date
JP2017125600A true JP2017125600A (en) 2017-07-20

Family

ID=59364321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018387A Pending JP2017125600A (en) 2016-01-15 2016-01-15 Spring structure

Country Status (1)

Country Link
JP (1) JP2017125600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114428A1 (en) 2017-06-27 2018-12-27 Mizuno Corporation Sports Shoes
CN114770974A (en) * 2022-03-25 2022-07-22 中国舰船研究设计中心 High-fatigue-resistance conductivity controllable composite material vibration isolator and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114428A1 (en) 2017-06-27 2018-12-27 Mizuno Corporation Sports Shoes
CN114770974A (en) * 2022-03-25 2022-07-22 中国舰船研究设计中心 High-fatigue-resistance conductivity controllable composite material vibration isolator and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US11104097B2 (en) Composite structural article
US8956711B2 (en) High impact strength, elastic, composite, fibre, metal laminate
US9290212B2 (en) Carbon fiber prepreg-wrapped beam structures
US20090200721A1 (en) Motor vehicle spring comprising fiber composite material
US9759282B2 (en) Air spring
JP4595713B2 (en) Fiber reinforced plastic parts
US20170182741A1 (en) Systems and methods of producing a structural and non-structural homogeneous and hybrid composite panels, prepregs, hand layup panels with "basalt" fiber, various composite materials, and additives
KR20130007548A (en) Robot hand
KR101357654B1 (en) Suspension spring for shock absorber using carbon fiber reinforced plastic
JP2017125600A (en) Spring structure
CN103660456B (en) High-speed impact resistance composite material
JP2009078422A (en) Vibration-damping fiber-reinforced composite material
JP2016070389A (en) Vibration-damping structure and vibration-damping material
Gaikwad et al. Composite leaf spring for light weight vehicle-materials, manufacturing process, advantages & limitations
US20150226279A1 (en) Spring having a core structure
JP6961984B2 (en) Column structure
JP4971645B2 (en) Body structure and vehicle
JPH03234937A (en) Resin spring
US20160318432A1 (en) Composite member and seat shell
JP6709100B2 (en) Honeycomb structure and method for manufacturing the same
KR101584257B1 (en) Manufacturing Method of Wheel Using Uni-Directional Fiber Fabric and Wheel Manufactured by the Same
KR101794844B1 (en) Carbon Fiber Reinforced Plastic Roof-Panel
CN118283495A (en) Vibrating plate, vibrating diaphragm assembly and sound generating device
KR20220147397A (en) Composite pannel and method for manufacturing the same
JPS6316510Y2 (en)