JPS63165053A - Continuous casting method with few center segregation - Google Patents

Continuous casting method with few center segregation

Info

Publication number
JPS63165053A
JPS63165053A JP31059986A JP31059986A JPS63165053A JP S63165053 A JPS63165053 A JP S63165053A JP 31059986 A JP31059986 A JP 31059986A JP 31059986 A JP31059986 A JP 31059986A JP S63165053 A JPS63165053 A JP S63165053A
Authority
JP
Japan
Prior art keywords
slab
solidification
cooling
center segregation
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31059986A
Other languages
Japanese (ja)
Inventor
Hisao Yamazaki
久生 山崎
San Nakato
中戸 参
Kenji Saito
健志 斎藤
Masao Oguchi
征男 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31059986A priority Critical patent/JPS63165053A/en
Publication of JPS63165053A publication Critical patent/JPS63165053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce the center segregation by detecting the most end position of remained molten steel pool, operating solidification shinkage quantity and the compensating quantity by the surface temp. and next, adjusting water cooling zone length, cooling water quantity and cooling pattern. CONSTITUTION:A moving type rig 2 providing the most end detecting instrument 3 for remained molten metal pool is arranged at downstream side of pinch rolls 4, 9. The detecting 3 is composed of ultrasonic transmitter 11 and receiver 12 facing to both sides of the cast slab 1 and the most end position for remained molten metal is detected, while shifting the longitudinal direction of cast slab 1 through automatic driving carriage 13. The detected signal is inputted to a water quantity control device for cast slab water cooling zone, to obtain solidified profile. Next, by a heat conduction analysis program, the solidification shrinkage quantity and the surface temp. compensating it are calculated to adjust the spray nozzle 5. By optimumly controlling the cooling zone length, cooling water quantity and pattern, the center segregation of cast slab 1 is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳片の中心偏析を軽減する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for reducing center segregation of continuous slabs.

〔従来の技術〕[Conventional technology]

連続鋳造スラブやブルームの中心偏析を軽減するために
は、適正なロール間隔の設定とロール配列の整備あるい
は適正な2次冷却によりバルジングの発生を防止するこ
とが必要である。
In order to reduce the center segregation of continuously cast slabs and blooms, it is necessary to prevent the occurrence of bulging by setting an appropriate roll interval, arranging the rolls, or performing appropriate secondary cooling.

一方、溶鋼過熱度の低下、鋳型への冷却材の添加、鋳型
内溶鋼への電磁攪拌の適用、ストランド内での鋳片に対
する超音波の印加、さらにはストランド内での溶鋼への
電磁攪拌の適用、ロール軽圧下法などの方法により中心
偏析を軽減する技術が広く普及している。これらの方法
はいずれも鋳造組織を等軸重化して溶質の微細分散化を
図り中心偏析を軽減することを目的としている。
On the other hand, reduction of the degree of superheating of molten steel, addition of coolant to the mold, application of electromagnetic stirring to the molten steel in the mold, application of ultrasonic waves to the slab in the strand, and furthermore, application of electromagnetic stirring to the molten steel in the strand. Techniques to reduce center segregation by methods such as application and roll light reduction are widely used. All of these methods aim to make the cast structure equiaxed, to achieve fine dispersion of solutes, and to reduce center segregation.

溶鋼過熱度の低下は、等軸重化を図る上で有効ではある
が鋳造温度を狭い範囲に制御する必要があり、操業の安
定性を阻害するという欠点がある。
Although reducing the degree of superheating of molten steel is effective in achieving equiaxed weight, it requires controlling the casting temperature within a narrow range, which has the disadvantage of impeding operational stability.

冷却材の添加も等軸重化には有効であるが、冷却材の溶
は残りや、モールドスラグの巻き込みを誘起することが
あり、UT欠陥を生じ易いという欠点がある。
Addition of a coolant is also effective in achieving equiaxed loading, but the melting of the coolant may leave a residue or cause mold slag to be involved, which has the drawback of easily causing UT defects.

鋳片に超音波を印加することは原理的には有効であるが
実施技術として印加ロールの疲労の問題があり、実用化
が困難な欠点がある。
Applying ultrasonic waves to slabs is effective in principle, but as a practical technique, there is a problem of fatigue of the application roll, which makes it difficult to put it into practical use.

こうした点を考えると、鋳型内あるいはストランド内で
の電磁攪拌は実用上の欠点が少なく、また等軸重化には
効果があって、一般に普及している。しかし、電磁攪拌
により等軸重化が進むことによる中心偏析の軽減は傾向
的には認められるものの、攪拌を適用した連続鋳造ブル
ームを素材とする硬鋼線線材の破断率も電磁攪拌をかけ
ない素材から得た線材と比較して顕著な改善効果が認め
られてはいなかった。
Considering these points, electromagnetic stirring within the mold or within the strand has few practical drawbacks, is effective in equiaxed loading, and is generally popular. However, although there is a tendency for center segregation to be reduced due to the progress of equiaxed loading due to electromagnetic stirring, the rupture rate of hard steel wire rods made from continuously cast blooms that are subjected to stirring also decreases when electromagnetic stirring is not applied. No significant improvement effect was observed compared to wire rods obtained from raw materials.

例えば、鋳片サイズが400mm、X560mmの硬鋼
線線材用ブルーム鋳片では、軸心部に鋳込方向に沿って
ザク状のキャビティが断続的に形成され、さらに特徴的
なのは、軸心近傍にV偏析を伴なうことで、これは鋼塊
軸心部に発生するV偏析と形態を異にし、むしろ鋼塊で
の逆V偏析の形態を有する。V偏析は軸心を中心にして
幅約lQOmm程度の領域に発生し、中心偏析とこれに
隣接した負偏析帯とが鮮明に認められる。この例では、
負偏析の発生し始める領域は軸心から40 m mの範
囲である。すなわち軸心な中心とした80mmの幅の領
域でバルクの溶質移動があることが分る。
For example, in a bloom slab for hard steel wire with a slab size of 400 mm and a width of 560 mm, hollow-shaped cavities are formed intermittently along the casting direction at the axial center, and what is more characteristic is that the cavity is intermittently formed near the axial center. Accompanied by V segregation, this has a form different from the V segregation that occurs in the axial center of the steel ingot, and rather has the form of inverted V segregation in the steel ingot. The V segregation occurs in a region having a width of about 1QOmm centered on the axis, and the center segregation and the adjacent negative segregation zone are clearly recognized. In this example,
The region where negative segregation begins to occur is within a range of 40 mm from the axis. That is, it can be seen that there is bulk solute movement in an 80 mm wide region centered on the axis.

このような溶質濃化溶鋼の移動が生じるのは溶鋼プール
内残溶鋼の凝固収縮に伴う吸引力によって発生したもの
であることは、冶金的な観察と簡単な数値計算から明ら
かにすることができる。
It can be clarified from metallurgical observations and simple numerical calculations that this movement of solute-enriched molten steel is caused by the suction force associated with the solidification contraction of the remaining molten steel in the molten steel pool. .

従って、中心偏析を防止するには鋳片の軸心(スラブの
場合は厚さ中心)近傍における、溶鋼プール内残溶鋼の
凝固収縮に伴う吸引力によって発生した溶質濃化溶鋼の
移動を阻止することである。
Therefore, in order to prevent center segregation, it is necessary to prevent the movement of solute-enriched molten steel generated by the suction force caused by the solidification shrinkage of the remaining molten steel in the molten steel pool near the axis of the slab (thickness center in the case of slabs). That's true.

この方策として、特開昭52−104420や特開昭5
4−107831には、ロール軽圧下法による中心偏析
軽減法が開示されているが、この方法では、凝固収縮に
見合った圧下を連続的に実施することが至難である。す
なわち、圧下が少ない場合は、濃化溶鋼の下方への移動
を阻止することが不十分であり、圧下が過大な場合、濃
化残溶鋼の上方への移動をきたし、移動した上方部では
却って溶質濃度の増加を招くこととなる。
As a measure for this, Japanese Patent Application Laid-open No. 52-104420 and Japanese Patent Laid-open No. 52-104420
No. 4-107831 discloses a center segregation reduction method using a roll light reduction method, but with this method, it is extremely difficult to continuously implement a reduction commensurate with solidification shrinkage. In other words, if the reduction is small, it is insufficient to prevent the concentrated molten steel from moving downwards, and if the reduction is too large, the concentrated remaining molten steel will move upwards, and the moved upper part will be even worse. This will lead to an increase in solute concentration.

また、大規模な圧下装置を必要とする。Moreover, a large-scale rolling down device is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はスラブないしはブルームの連鋳鋳片において中
心偏析を解消し健全な素材鋳片を製造する方法を提供す
るものである。
The present invention provides a method for eliminating center segregation in continuously cast slabs or bloom slabs and producing sound slabs.

鋳片素材の中心偏析率のばらつきは鋳造条件の変化によ
る鋳片の残溶湯プールの鋳片長手方向最先端位置のばら
つきに大きく起因すると考えられている。
It is thought that the variation in the center segregation rate of the slab material is largely due to the variation in the tip position in the longitudinal direction of the remaining molten metal pool of the slab due to changes in casting conditions.

従って、鋳片素材の中心偏析率のばらつきを防止するた
めには鋳造中の残溶湯プールの最先端位置を確実に検知
する必要がある。
Therefore, in order to prevent variations in the center segregation rate of the slab material, it is necessary to reliably detect the leading edge position of the remaining molten metal pool during casting.

上記問題点を解決するための技術手段として、残溶鋼プ
ールの鋳込方向最先端より手前2〜15mの位置から残
溶湯プールの最先端位置まで鋳込方向に沿って、鋳片の
液芯核の凝固の進行に伴なう収縮量を鋳片表面の強制水
冷によって凝固殻を収縮変形させることにより補償すれ
ばよい(#顆間6O−201383)。
As a technical means to solve the above problem, the liquid core core of the slab is The amount of shrinkage accompanying the progress of solidification can be compensated for by shrinking and deforming the solidified shell by forced water cooling of the slab surface (#Intercondylar 6O-201383).

しかしながら鋳造時の残溶湯プールの最先端位置は、鋳
造条件、鋼種により変動するため、以下のような問題が
生じる。
However, the leading edge position of the remaining molten metal pool during casting varies depending on the casting conditions and the steel type, which causes the following problems.

(a)残溶湯プールの最先端位置が水冷終了点より後方
にある場合、水冷終了後の鋳片復熱による凝固殻の膨張
により、凝固界面に引張応力が生じ中心部に割れを生じ
るばかりでなく、濃化溶鋼の吸引により中心偏析を助長
する。
(a) If the leading edge of the remaining molten metal pool is behind the end point of water cooling, the expansion of the solidified shell due to recuperation of the slab after water cooling will generate tensile stress at the solidification interface and cause cracks in the center. The suction of concentrated molten steel promotes center segregation.

(b)残溶湯プールの最先端位置が水冷帯開始点に近い
場合、水冷による収縮効果が少なく凝固の進行に伴なう
収縮量を補償できない。
(b) When the leading edge position of the residual molten metal pool is close to the water cooling zone starting point, the shrinkage effect due to water cooling is small and the amount of shrinkage accompanying the progress of solidification cannot be compensated for.

〔問題点を解決するための手段〕[Means for solving problems]

以上のような問題点を解決するために、残溶湯プールの
最先端位置を例えば電磁超音波を用いた残溶湯プールの
最先端位置検出装置にて検知し、残溶湯プールの深さに
応じて鋳片の凝固収縮量および凝固収縮を補償すべき表
面温度を計算し、鋳片表面がこの温度になるように水冷
帯長さ、冷却水量および冷却パターンを調節し、未凝固
の体積収縮を凝固殻の収縮で補償する。
In order to solve the above problems, the leading edge position of the residual molten metal pool is detected using a residual molten metal pool position detection device that uses electromagnetic ultrasound, for example, and the position is detected according to the depth of the residual molten metal pool. Calculate the amount of solidification shrinkage of the slab and the surface temperature that should compensate for the solidification shrinkage, adjust the water cooling zone length, cooling water amount, and cooling pattern so that the slab surface reaches this temperature, and solidify the unsolidified volumetric shrinkage. Compensate by shrinking the shell.

〔作用〕[Effect]

第1図に本発明方法の構成図を示す。 FIG. 1 shows a block diagram of the method of the present invention.

鋳片はある一定の速度で鋳造されピンチロール4.9を
介して引き抜かれ、スプレィノズル5は鋳片凝固殻6を
収縮させ、残溶鋼プール8の凝固収縮を補償するために
設置したものである。こうして冷却した鋳片はローラテ
ーブル7によって搬送される。その時、ある鋳造速度以
上で鋳造した場合、残溶湯プール8の最先端位置はピン
チロール4,9より後流側に位置している。このことは
伝熱計算および鋲打ちにより確かめられている。
The slab is cast at a certain speed and pulled out through pinch rolls 4.9, and the spray nozzle 5 is installed to shrink the solidified slab shell 6 and compensate for the solidification shrinkage of the residual molten steel pool 8. be. The thus cooled slab is conveyed by a roller table 7. At that time, when casting is performed at a certain casting speed or higher, the leading edge position of the remaining molten metal pool 8 is located on the downstream side of the pinch rolls 4 and 9. This has been confirmed by heat transfer calculations and riveting.

本発明方法では、例えば第2図に示すように、鋳片1を
挟んで対向する超音波送信機11と受信機12を自動運
転台車13を備えた移動式リグ2により移動させながら
鋳片内の残溶湯プールの最先端位置を検出する検出装置
3をピンチロール4.9の後流に設置し、この検出装置
3を自動的に走査し、残溶湯プール8の最先端位置を検
知する。ただしこの装置で検出可能な残鋼の固相率は4
0%であることは確認している。検出された信号は鋳片
水冷帯の水量制御装置へ送られ、その中で伝熱解析プロ
グラムにより凝固プロフィールが求められる。この凝固
プロフィールを第3図に示すような回転放物体と考え、
以下の式を使って凝固収縮量および凝固収縮を補償すべ
き表面温度を計算し、その温度になるような鋳造方向の
水量密度分布を再度計算で求め鋳片を水冷する。
In the method of the present invention, for example, as shown in FIG. A detection device 3 for detecting the leading edge position of the residual molten metal pool 8 is installed downstream of the pinch roll 4.9, and this detection device 3 automatically scans to detect the leading edge position of the residual molten metal pool 8. However, the solid phase ratio of residual steel that can be detected with this device is 4
We have confirmed that it is 0%. The detected signal is sent to the water flow control device in the slab water cooling zone, where the solidification profile is determined using a heat transfer analysis program. Considering this solidification profile as a rotating paraboloid as shown in Figure 3,
The amount of solidification shrinkage and the surface temperature at which the solidification shrinkage should be compensated are calculated using the following formula, and the water volume density distribution in the casting direction that achieves that temperature is calculated again and the slab is water-cooled.

■ シェルプロフィールfstは回転放物体であると仮
定する。
■ Assume that the shell profile fst is a parabolic body of revolution.

■ 等固相率f4  、fL+1のシェルプロフィール
は異なる固相率間で合同である。
■ Shell profiles with equal solid fractions f4 and fL+1 are congruent between different solid fractions.

以上の仮定の下で鋳片がX【からX【+1まですすむ間
の体積収縮率ηは、 We D (xt+t −Xi )    −・−(1
)ここで、 η :凝固時の体積収縮率 β :凝固収縮率 fsL:1番目の領域の固相率 ■i:面xt  + X t+1  + fL  + 
f stで囲まれた体積 W :鋳片幅 D :鋳片長 である0次に鋳片の凝固殻を冷却し、凝固時の体積収縮
を補うためには次の(2)式が成りたたなければならな
い。
Under the above assumptions, the volumetric contraction rate η of the slab from X[ to X[+1] is We D (xt+t −Xi ) −・−(1
) Here, η: Volumetric contraction rate during solidification β: Solidification contraction rate fsL: Solid phase ratio in the first region ■i: Surface xt + X t+1 + fL +
Volume surrounded by f st W : Slab width D : Slab length 0 Order In order to cool the solidified shell of the slab and compensate for the volume contraction during solidification, the following equation (2) is established. There must be.

1m8ηnet −ηn       ・・・(2)こ
こで、 1m :凝固殻の収縮率 ηn :n層での凝固収縮率 ηn+1:。+1層での凝固収縮率 である。凝固収縮率ηmは次の(3)式で表わされ、上
記(1)式で求めた各層の体積収縮率の差を代入するこ
とにより、凝固殻の平均温度降下量ΔTを得る。
1m8ηnet -ηn (2) where, 1m: Contraction rate of solidified shell ηn: Solidification contraction rate of n layer ηn+1:. This is the solidification shrinkage rate at +1 layer. The solidification shrinkage rate ηm is expressed by the following equation (3), and the average temperature drop ΔT of the solidified shell is obtained by substituting the difference in the volume shrinkage rate of each layer determined by the above equation (1).

ここで、 L:鋳片軸心からfs=1までの距離 α:面膨張係数 ΔT:凝固殻の平均温度降下量 である、上記(3)式で求めた凝固殻の平均温度と鋳片
表面温度の関係は下記(4)式で表わされる(H,S 
CARSLAW、 J、C,JAEGER: ”Con
duction ofheat in 5okids″
、 0xford University Press
Here, L: Distance from the axis of the slab to fs = 1 α: Coefficient of surface expansion ΔT: Average temperature drop of the solidified shell, which is the average temperature of the solidified shell determined by equation (3) above, and the slab surface The temperature relationship is expressed by the following equation (4) (H, S
CARSLAW, J.C.JAEGER: ”Con
duction of heat in 5okids''
, Oxford University Press
.

5econd edition 195θP、!98〜
100 ) 、さらに表面温度がTaに保たれx/u=
1ではT1に保たれるとすると温度プロフィールは下記
(5)式の如く近似される。
5econd edition 195θP,! 98~
100), and the surface temperature is maintained at Ta, x/u=
1, the temperature profile is approximated as shown in equation (5) below.

従って、(5)式で求めたTaに鋳片表面温度を制御す
ることにより中心偏析の原因となる凝固時の体積収縮が
補償される。
Therefore, by controlling the surface temperature of the slab to Ta determined by equation (5), volume shrinkage during solidification, which causes center segregation, can be compensated for.

〔実施例〕〔Example〕

炭素含有量が0.8重量%の硬鋼線線材溶鋼を全湾曲型
の連鋳機によって、400X560mm2の断面サイズ
に、鋳造速度0.55m/min、2次冷却帯の水比0
.55u/kgで鋳込んだ、この鋳片は、直ちに150
X150mm2のビレットに圧延し、その後4.5 m
 mφの製品寸法の線材で圧延した。
Molten hard steel wire with a carbon content of 0.8% by weight was cast into a cross-sectional size of 400 x 560 mm2 by a fully curved continuous casting machine at a casting speed of 0.55 m/min and a water ratio of 0 in the secondary cooling zone.
.. This slab, cast at 55u/kg, immediately
Rolled into a billet of x150mm2, then 4.5m
A wire rod with a product size of mφ was rolled.

この鋳造の際、メニスカス(鋳型内湯面)から23mの
位置におけるピンチロール帯出口の表面温度は950℃
〜1000℃であった。また、伝熱計算や鋲打ち法によ
る実験によれば、本鋳造条件の場合、最終凝固位置はメ
ニスカスから34m程度と考えられる。しかしながら、
本方法に使用している残溶鋼プール検出装置での測定に
よれば、この位置より±2m程度クレータエンドが変動
する事が判っている。
During this casting, the surface temperature at the outlet of the pinch roll band at a position 23 m from the meniscus (molten metal surface in the mold) was 950°C.
The temperature was ~1000°C. Furthermore, according to heat transfer calculations and experiments using the riveting method, the final solidification position is considered to be approximately 34 m from the meniscus under the present casting conditions. however,
According to measurements with the residual molten steel pool detection device used in this method, it has been found that the crater end fluctuates by about ±2 m from this position.

鋳造時に、 1)ピンチロール出側より最終凝固位置まで各面冷却水
量を一定で強制冷却した場合(比較例)2)残溶湯プー
ルの最先端位置検出装置により残溶湯プールの最先端位
置を検出しつつ、その変動に応じて冷却条件を変更した
場合(実施例)3)水冷を行なわない場合(従来例) について鋳片の中心偏析、伸線時のカッピー破断率を比
較した。その結果を第1表に示す、ここで鋳片の中心偏
析率は600 mmi鋳片軸心部を30mmピッチで5
mmφドリルで掘削し、その切粉のC分析値を溶鋼C分
析値(Co )で割り付けた値で評価した。また、伸線
時のカッピー破断率は伸線材の単位長さを伸線する際に
生ずる破断回数(回/m)を表わす、ただし第1表では
水冷を行なわない場合を1.0とした場合の相対値で示
した。
During casting, 1) When forced cooling is performed at a constant amount of cooling water on each side from the pinch roll outlet side to the final solidification position (comparative example) 2) The leading edge position of the remaining molten metal pool is detected by the leading edge position detection device of the remaining molten metal pool However, the center segregation of the slab and the cuppy rupture rate during wire drawing were compared in cases where the cooling conditions were changed according to the fluctuations (Example) and 3) where water cooling was not performed (Conventional Example). The results are shown in Table 1, where the center segregation rate of the slab is 600 mm.
It was excavated with a mmφ drill, and the C analysis value of the chips was evaluated by the value assigned to the molten steel C analysis value (Co). In addition, the cuppy breakage rate during wire drawing represents the number of breaks (times/m) that occurs when drawing a unit length of wire drawing material. However, in Table 1, the case where water cooling is not performed is assumed to be 1.0. expressed as a relative value.

第1表から本発明法の場合、鋳片の中心偏析率のばらつ
きが小さくなり、カッピー破断率が減少することが認め
られる。
From Table 1, it can be seen that in the case of the method of the present invention, the variation in the center segregation rate of slabs becomes smaller and the cuppy fracture rate decreases.

第  1  表 〔発明の効果〕 本発明によれば、鋳片の中心偏析率とそのばらつきが減
少し、製品における中心偏析に起因するトラブルが解消
された。
Table 1 [Effects of the Invention] According to the present invention, the center segregation rate of slabs and its variation are reduced, and troubles caused by center segregation in products are eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例を説明する連鋳鋳片の部分
斜視図、第2図は実施例の検出装置の側面図、第3図は
凝固シェル断面模式図である。 1・・・鋳片、2・・・移動式リグ、3・・・検出装置
、4.9・・・ビンチロール、5・・・スプレィノズル
。 6・・・凝固殻、7・・・ローラテーブル、8・・・残
溶湯プール、it・・・超音波送信機、12・・・受信
機、13・・・自動運転台車
FIG. 1 is a partial perspective view of a continuously cast slab illustrating an embodiment of the method of the present invention, FIG. 2 is a side view of a detection device of the embodiment, and FIG. 3 is a schematic cross-sectional view of a solidified shell. DESCRIPTION OF SYMBOLS 1... Slab, 2... Mobile rig, 3... Detection device, 4.9... Vinci roll, 5... Spray nozzle. 6... Solidified shell, 7... Roller table, 8... Residual molten metal pool, IT... Ultrasonic transmitter, 12... Receiver, 13... Self-driving trolley

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造鋳片の残溶湯プールの鋳込方向最先端より
手前2〜15mの位置からプール最先端位置までの鋳片
表面を、鋳込方向に沿って、鋳片の液芯核の凝固の進行
に伴い、その凝固収縮による体積収縮量相当量以上の冷
却量で逐次強制冷却して鋳片凝固殻を収縮せしめ、鋳片
断面を減面して鋳造する際に、鋳込方向の残溶鋼プール
最先端を検知し、該検知に基づいて鋳片の凝固収縮量お
よび凝固収縮を補償すべき表面温度を計算し、該温度と
なるように水冷帯長さ、冷却水量および冷却パターンを
調節することを特徴とする中心偏析の少ない連続鋳造方
法。
1. The surface of the slab from a position 2 to 15 m before the leading edge of the remaining molten metal pool in the pouring direction of the continuously cast slab to the pool's leading edge position is examined along the casting direction to prevent solidification of the liquid core core of the slab. As the slab progresses, the solidified slab is sequentially forcedly cooled with a cooling amount equal to or more than the volumetric shrinkage due to the solidification shrinkage, and when the slab is cast with a reduced cross-section, the residual molten steel in the pouring direction is Detects the leading edge of the pool, calculates the amount of solidification shrinkage of the slab and the surface temperature to compensate for the solidification shrinkage based on the detection, and adjusts the length of the water cooling zone, the amount of cooling water, and the cooling pattern to reach the temperature. A continuous casting method with less center segregation.
JP31059986A 1986-12-25 1986-12-25 Continuous casting method with few center segregation Pending JPS63165053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31059986A JPS63165053A (en) 1986-12-25 1986-12-25 Continuous casting method with few center segregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31059986A JPS63165053A (en) 1986-12-25 1986-12-25 Continuous casting method with few center segregation

Publications (1)

Publication Number Publication Date
JPS63165053A true JPS63165053A (en) 1988-07-08

Family

ID=18007193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31059986A Pending JPS63165053A (en) 1986-12-25 1986-12-25 Continuous casting method with few center segregation

Country Status (1)

Country Link
JP (1) JPS63165053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275987A (en) * 2006-03-15 2007-10-25 Kobe Steel Ltd Light rolling method of cast steel slab in continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275987A (en) * 2006-03-15 2007-10-25 Kobe Steel Ltd Light rolling method of cast steel slab in continuous casting

Similar Documents

Publication Publication Date Title
US4519439A (en) Method of preventing formation of segregations during continuous casting
JP2727887B2 (en) Horizontal continuous casting method
CA1130981A (en) Continuous cast steel bar and the method to produce same
KR101277707B1 (en) Method for decreasing pin-hole defect in continuous casting process
JPS63165053A (en) Continuous casting method with few center segregation
JPH03155441A (en) Vertical continuous casting method and apparatus thereof
KR101185919B1 (en) Method for warning clogging of submerged entry nozzle
KR20120110585A (en) Device for controlling soft reduction of solidified shell and method therefor
RU2403121C1 (en) Method of continuous steel casting
JP3394730B2 (en) Continuous casting method of steel slab
JPS61189850A (en) Continuous casting method of steel slab
JPH0390261A (en) Continuous casting method
JPS60137562A (en) Continuous casting method for thin sheet
JPH0515956A (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
KR101443585B1 (en) Method for estimating clogging degree of submerged entry nozzle
KR101435115B1 (en) Method for reducing surface defect of slab
RU2184009C1 (en) Steel continuous casting method
JPH0346217B2 (en)
JPH0390263A (en) Continuous casting method
Pehlke Steel continuous casting
JPS6153143B2 (en)
JPH0390259A (en) Continuous casting method
JPS62148065A (en) Continuous casting method
EP0342020A2 (en) Method and apparatus for continuous strip casting