JPS63164396A - Structure and method for double-sided continuity of flexible circuit substrate - Google Patents

Structure and method for double-sided continuity of flexible circuit substrate

Info

Publication number
JPS63164396A
JPS63164396A JP31164586A JP31164586A JPS63164396A JP S63164396 A JPS63164396 A JP S63164396A JP 31164586 A JP31164586 A JP 31164586A JP 31164586 A JP31164586 A JP 31164586A JP S63164396 A JPS63164396 A JP S63164396A
Authority
JP
Japan
Prior art keywords
conductive
double
flexible circuit
sided
circuit wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31164586A
Other languages
Japanese (ja)
Inventor
川上 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP31164586A priority Critical patent/JPS63164396A/en
Publication of JPS63164396A publication Critical patent/JPS63164396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、可撓性回路基板の両面に形成された回路配線
パターンの導通技術に関するもので、特にはスルーホー
ルメッキ手段を用いることなく表裏相互の所要の回路配
線パターン間に導通構造を施しながら工程の連続化を行
えるようにした可撓性回路基板の両面導通構造及びその
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a technology for conducting circuit wiring patterns formed on both sides of a flexible circuit board. The present invention relates to a double-sided conductive structure for a flexible circuit board and a method therefor, which enables continuity of processes while providing a conductive structure between required circuit wiring patterns.

「従来の技術」 この種の可撓性回路基板に於ける従来の両面導通手法と
しては、可撓性絶縁ベース材の両面に銅箔等の導電箔を
一様に接合した積層体11を用意し、これを任意の寸法
に裁断してその′複数枚12を第3図の如く重ね合せた
後、表裏両回路配線パターン間で導通を与えるべき個所
に合致するようにNCドリルで個々にスルーホール13
を穿設し、次いで第4図のように各積層体11に対して
無電解スルーホールメッキ工程に付してスルーホール1
3へのメッキを被着させる。このようなスルーホールメ
ッキ処理工程により、可撓性絶縁ベース材14の両面に
接合された導電箔15.16の全面及びスルーホール1
3の内周面に一様なスルーホールメッキ17を施して表
裏の導電箔15.16に対してスルーホール13を介し
て導通を与え、また、このスルーホールメッキ17によ
る導通を更に確実化する為に、第5図の如く、次工程で
の電解メッキ処理によって電解メッキ層18を形成する
ものである。斯かるスルーホールメッキ処理を施した積
層体11には、次いでその両面に例えばリリースペーパ
ー付感光性フィルムを配設し、かつ、所要の回路配線パ
ターンを形成する為のマスクフィルムを用いて露光工程
に付した後、リリースペーパーの除来、所要の現像及び
エツチング工程を介して不要な感光性フィルムを除去シ
て第6図のようにスル呻ホール導通部を有する回路配線
パターン19.20を形成して両面型可撓性回路基板を
製造するものである。
"Prior Art" As a conventional double-sided conduction method for this type of flexible circuit board, a laminate 11 is prepared in which conductive foil such as copper foil is uniformly bonded to both sides of a flexible insulating base material. Then, after cutting this to any size and stacking the multiple sheets 12 as shown in Figure 3, they are individually drilled using an NC drill so that they match the locations where continuity should be provided between the front and back circuit wiring patterns. Hall 13
Then, as shown in FIG. 4, each laminate 11 is subjected to an electroless through-hole plating process to form through holes 1.
Apply plating to 3. Through such a through-hole plating process, the entire surface of the conductive foils 15 and 16 bonded to both sides of the flexible insulating base material 14 and the through-holes 1
A uniform through-hole plating 17 is applied to the inner circumferential surface of 3 to provide conduction to the conductive foils 15 and 16 on the front and back sides through the through-holes 13, and to further ensure conduction by the through-hole plating 17. Therefore, as shown in FIG. 5, an electrolytic plating layer 18 is formed by electrolytic plating in the next step. The laminate 11 that has been subjected to such through-hole plating treatment is then provided with, for example, a photosensitive film with a release paper on both sides thereof, and subjected to an exposure process using a mask film to form a desired circuit wiring pattern. After the release paper is removed, unnecessary photosensitive film is removed through necessary development and etching steps to form circuit wiring patterns 19 and 20 having through-hole conductive parts as shown in FIG. This method produces double-sided flexible circuit boards.

「発明が解決しようとする問題点」 スルーホールメッキ処理工程を伴う上記の如き従来の可
撓性回路の両面導通構造によれば、種々の要因によって
スルーホール導通の確保を図ることが困難であって信頼
性の点で問題となる場合が少ないという不都合があった
。第7図はその問題点を説明する為のものであって、先
ず、スルーホール13の内周面に汚れ或いはゴミの付着
又はスルーホール加工時の起伏等による欠陥部13Aを
残すと、このような部分には無電解スルーホールメッキ
17が適確に付着されず、その結果、電解メッキ層18
もその部分に析出されないか又は析出量に差を生じて局
部的にメッキ層18の薄い個所を発生して導通の不完全
部分を残すという虞がある。また、絶縁ベース材14と
導電箔15.16との間の接着剤による接合層21が十
分にキュアされない場合には、熱応力の作用を受けてス
ルーホールメッキ17には破断ストレスが加わり、この
メッキ17は元来それ程厚いものではない為、クラック
を生じるという問題も内在する。このような要因はいず
れもスルーホール導通構造の信頼性を損ねるものとなっ
て極めて好ましくない。
``Problems to be Solved by the Invention'' According to the above-mentioned conventional double-sided conductive structure of a flexible circuit that involves a through-hole plating process, it is difficult to ensure through-hole conduction due to various factors. This has the disadvantage that reliability is rarely a problem. FIG. 7 is for explaining the problem. First, if a defective portion 13A is left on the inner circumferential surface of the through hole 13 due to dirt or dust adhesion or undulations during through hole processing, such a problem will occur. The electroless through-hole plating 17 is not properly attached to the areas where the electrolytic plating layer 18 is formed.
There is a possibility that the plating layer 18 may not be deposited in that area, or the amount of deposition may be different, resulting in locally thinner areas of the plating layer 18 and leaving incompletely conductive areas. Furthermore, if the adhesive bonding layer 21 between the insulating base material 14 and the conductive foil 15, 16 is not sufficiently cured, the through-hole plating 17 is subjected to breakage stress due to the effect of thermal stress. Since the plating 17 is not originally that thick, there is also the inherent problem of cracking. All of these factors impair the reliability of the through-hole conduction structure and are extremely undesirable.

一方、スルーホール13に於ける上記の如き欠陥部13
Aに加えて、スルーホール加工時にパリ等を残すと、こ
れがメッキ処理後の突起19を形成する度合が高く、こ
のような突起19は感光性フィルム20に食い込むか又
はつき破るような該フィルム20の極薄領域を形成し、
このような部分はエツチング工程で過度にエツチングを
受けてエツチングミスの原因ともなる。
On the other hand, the above defective portion 13 in the through hole 13
In addition to A, if holes are left behind during through-hole processing, these will likely form protrusions 19 after plating, and such protrusions 19 will bite into or break through the photosensitive film 20. Forms an ultra-thin area of
Such portions may be excessively etched during the etching process, causing etching errors.

更に、上記のようなスルーホールメッキ手段による両面
導通手法によれば、感光性フィルム20の使用によって
も既述の問題を内包するので、液状の薄い感光性樹脂を
用いることは困難であり、従って、微細な回路配線パタ
ーンを形成する上でも種々の不都合があった。また、ス
ルーホールメッキ工程では、上記の如く無電解スルーホ
ールメッキ17による導通確保の為ニ電解メッキ層18
を更に設ける必要があるが、斯かるメッキ層18は導電
箔15.16に対する厚付は状態となり、これも微細な
回路配線パターンの形成上不利に作用する他、エツチン
グ工程で回路配線パターンの形状に細り又は太り等のエ
ツチングミスを生じる度合が少なくない。
Furthermore, according to the double-sided conduction method using through-hole plating as described above, the use of the photosensitive film 20 also involves the problems described above, so it is difficult to use a thin liquid photosensitive resin. However, there are various disadvantages in forming fine circuit wiring patterns. In addition, in the through-hole plating process, as described above, two electrolytic plating layers 18 are used to ensure continuity by the electroless through-hole plating 17.
However, the thickness of the plating layer 18 relative to the conductive foil 15 and 16 becomes unfavorable to the formation of a fine circuit wiring pattern, and the shape of the circuit wiring pattern is changed during the etching process. Etching errors such as thinning or thickening often occur.

「問題点を解決するための手段」 本発明は、上記の如きスルーホールメッキ手法による可
撓性回路基板の両面導通構造の有する不都合を解消して
導通信頼性の高い可撓性回路基板を連続的に製造可能な
可撓性回路基板の両面導通構造及びその製造方法を提供
するものである。その為に、本発明では、スルーホール
メッキ手段を使用することなく、可撓性回路基板の表裏
に形成される回路配線パターンに於ける所要個所の導通
部を導電性充填材と該充填材の外面及び表裏の両回路配
線パターン面に設けた電解メッキ層とで構成するように
したものである。このような可撓性回路基板の両面導通
方法は、回路基板の表裏両回路配線パターン間の所要個
所に設ける導通部に対応させて該導通部に必要なスルー
ホールをパンチプレスで一括的に設けられる。即ち、可
撓性絶縁ベース材の両面に導電箔を接合した長尺状の積
層体に両面導通用のスルーホールをパンチプレスで順次
的に一括して穿設した後、これらのスルーホールに導電
性充填材を連続的に充填処理し、次いで電解メッキ処理
工程で該充填材の両外面と両面の導電箔とに電解メッキ
層を施して充填材と導電箔との電気的接合を確保し、こ
れによって次工程に於けるフィルム状又は液状の感光層
の被着、露光及び現像に続くエツチング処理の各工程を
連続的に施し得るように準備される。
"Means for Solving the Problems" The present invention eliminates the disadvantages of the double-sided conductive structure of flexible circuit boards using the through-hole plating method as described above, and continuously produces flexible circuit boards with high continuity reliability. The present invention provides a double-sided conductive structure of a flexible circuit board that can be manufactured in a number of steps, and a method for manufacturing the same. Therefore, in the present invention, without using through-hole plating means, conductive portions at required locations in the circuit wiring pattern formed on the front and back surfaces of the flexible circuit board are formed using a conductive filler and the filler. It consists of an electrolytic plating layer provided on the outer surface and both the front and back circuit wiring pattern surfaces. In this double-sided conduction method for flexible circuit boards, through-holes necessary for conductive parts are formed at the same time using a punch press in correspondence with the conductive parts provided at required locations between the circuit wiring patterns on the front and back sides of the circuit board. It will be done. In other words, through-holes for both-side conduction are sequentially punched in one batch using a punch press in a long laminate in which conductive foil is bonded to both sides of a flexible insulating base material. continuous filling treatment with a conductive filler, and then applying an electrolytic plating layer to both outer surfaces of the filler and conductive foil on both sides in an electrolytic plating process to ensure electrical connection between the filler and the conductive foil, Thereby, preparations are made so that the subsequent steps of deposition of a film or liquid photosensitive layer, exposure and development, and subsequent etching treatment can be performed continuously.

「実施例」 以下、図示の実施例を参照しながら本発明を更に説明す
ると、第1図+11〜(4)は本発明に係る可撓性回路
基板の両面導通構造及びその方法に関する工程説明図で
あって、適宜なプラスチックフィルムからなる可撓性絶
縁ベース材1の両面に銅箔等の如き導電箔2,3を接合
した長尺状の積層体を用意し、これを例えば順次的に繰
り出して導通対応個所に同図(1)のようにパンチプレ
スで所要のスルーホール4を一括的に穿設処理する。こ
のスルーホール4の穿設工程後には、パンチプレスの金
型によるパリ等を生じた場合には適当な整面処理を施し
てパリを除去することが容易である。そして、このよう
なスルーホール4に対しては例えば第2図に示すように
ドクターナイフ等の部材9間に長尺状の積層体を矢印F
方向に挿通しながら、ドクターナイフ部材9に供給した
導電性充填材10をスルーホール4に順次的に充填する
ことによって、第1図(2)のように各スルーホール4
内に導電性充填材5を高能率に充填可能となる。
"Example" Hereinafter, the present invention will be further explained with reference to the illustrated embodiment. FIGS. A long laminate is prepared by bonding conductive foils 2 and 3 such as copper foil to both sides of a flexible insulating base material 1 made of a suitable plastic film, and this is rolled out one after another, for example. Then, the required through-holes 4 are punched all at once at the locations corresponding to conduction using a punch press as shown in FIG. 1 (1). After the process of drilling the through-holes 4, if any burrs or the like occur due to the die of the punch press, it is easy to remove the burrs by performing an appropriate surface preparation treatment. For such a through hole 4, for example, as shown in FIG.
By sequentially filling the through holes 4 with the conductive filler 10 supplied to the doctor knife member 9 while inserting the conductive filler in the direction, each through hole 4 is filled as shown in FIG.
The conductive filler 5 can be filled with high efficiency.

導電性充填材5は、銅系又は銀糸のペーストか若しくは
半田ペーストなど適宜のものを使用でき、その充填処理
後は、導電箔2,3面への不要な付着を除去できるよう
にブラシ整面その他の手段で盤面処理を施し、次いでこ
の充填材5を加熱又はUV照射手段等によって硬化させ
る。整面処理はこの硬化処理工程に施すこともできる。
As the conductive filler 5, an appropriate material such as copper-based or silver thread paste or solder paste can be used. After the filling process, the conductive foils 2 and 3 are smoothed with a brush so that unnecessary adhesion can be removed. The board surface is treated by other means, and then the filler 5 is hardened by heating or UV irradiation means. Surface smoothing treatment can also be performed during this hardening treatment step.

次に、同図(3)の如く、電解メッキ工程に移行させて
両導電箔2,3及び充填材5の露出外面に共通の電解メ
ッキ層6を適量の厚さで連続的に被着させて導電性充填
材5と両導電箔2.3との導通の確保を図ることとなる
。このメッキ層6は、従来のような無電解スルーホール
メッキに対する厚付は処理を要しないので、充填材5の
外面と両導電箔2,3との平面域に可及的に薄く設は得
るものである。
Next, as shown in FIG. 3 (3), an electrolytic plating process is carried out to continuously apply a common electrolytic plating layer 6 to an appropriate thickness on the exposed outer surfaces of both conductive foils 2 and 3 and the filler 5. This ensures continuity between the conductive filler 5 and both conductive foils 2.3. Since this plating layer 6 does not require thickening treatment for conventional electroless through-hole plating, it can be formed as thinly as possible on the plane area between the outer surface of the filler 5 and both conductive foils 2 and 3. It is something.

次いで、形成すべき回路配線パターンの形状及び密度等
に応じて、図示しないがフィルム状又は液状の感光性樹
脂をメッキ層6上に被着し、液状の感光性樹脂を用いる
場合には塗布処理後、乾燥させる。また、フィルム状の
感光性樹脂の場合には露光前にリリースペーパーを適宜
除去しておく。斯かる工程後には、常法に従って露光、
現像処理を施したのち、エツチング工程に付してパター
ンニング処理して不要となった感光性樹脂を除去するこ
とにより、第1図(4)の如き所要の導通部を有する回
路配線パターン7゜8を得ることができる。このような
各工程は、−頁連続的に行えるものであって、工程の管
理を容易化して信頼性の高い可撓性回路基板の両面導通
構造を高能率に具現できる。
Next, depending on the shape and density of the circuit wiring pattern to be formed, a film-like or liquid photosensitive resin (not shown) is deposited on the plating layer 6, and if a liquid photosensitive resin is used, a coating process is performed. After that, let it dry. Further, in the case of a film-like photosensitive resin, the release paper is appropriately removed before exposure. After this process, exposure and
After the development process, an etching process and patterning process are performed to remove unnecessary photosensitive resin, resulting in a circuit wiring pattern 7° having the required conductive parts as shown in FIG. 1 (4). You can get 8. Each of these steps can be performed continuously, making it easier to manage the steps and realizing a highly reliable double-sided conductive structure of a flexible circuit board with high efficiency.

「発明の効果」 本発明は、以上の構成を備えるので、従来の如きスルー
ホールメッキ用の透孔穿設処理をNCドリルで行うこと
なく、簡易なパンチプレスで一括連続的にスルーホール
を設けるものであって、長尺状の積層体を用いて工程の
連続化を図ることが容易である。従って、従来のように
短尺で扱う場合に問題となる手アカ、ゴミ等の不着要因
を低減でき、次工程移行毎の前処理も軽減可能となる。
"Effects of the Invention" Since the present invention has the above-described configuration, through-holes can be continuously formed all at once using a simple punch press without performing the conventional through-hole drilling process for through-hole plating using an NC drill. Therefore, it is easy to make the process continuous by using a long laminate. Therefore, it is possible to reduce the causes of non-adherence such as hand stains and dust, which are problems when handling short lengths as in the past, and it is also possible to reduce pre-treatment for each transition to the next process.

また、本発明では無電解メッキ処理を施す必要がない為
、電解メッキ層を厚付けする構造を採用することなく、
スルーホールに対する導電性充填材と両面の導電箔との
電気接続を補完する程度に可及的に薄く電解メッキ層を
設けることで十分であるので、メッキ工程の簡易低コス
ト化を図りながら微細な回路配線パターンの形成を容易
に達成できる。このように、本発明によれば、工程の連
続化を促進しながら、導通信頼性の高い両面型の可撓性
回路基板を好適な量産性で低コストに製造できるという
有利性がある。
In addition, since the present invention does not require electroless plating, there is no need to adopt a structure in which the electrolytic plating layer is thickened.
It is sufficient to provide an electrolytic plating layer as thin as possible to complement the electrical connection between the conductive filler for the through hole and the conductive foil on both sides, so it is possible to simplify the plating process and reduce the cost. Formation of circuit wiring patterns can be easily achieved. As described above, the present invention has the advantage that a double-sided flexible circuit board with high conductivity reliability can be manufactured at low cost with suitable mass productivity while promoting process continuity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(11〜(4)は本発明に係る可撓性回路基板の
両面導通構造を実施する為の概念的な工程図を示し、 第2図は導通部を形成する導電性充填材の充填手段の一
例を説明する図、 第3図は従来手法によってNCドリルでスルーホールを
穿設する状態の説明図、 第4図、第5@及び第6図は従来のスルーホールメッキ
による両面導通手段を説明する為の工程順毎の説明図、
そして、 第8図及び第9図は従来のスルーホールメッキによる導
通構造の問題点を説明する為の図である。 1  :  可撓性絶縁ベース材 2.3  :  導   電   箔 4 : スルーホール 5 : 導電性充填材 6  : 電解メッキ層 7.8:  回路配線パターン 出願人  日本メクトロン株式会社 第1図 第2図 第3図 第4図 に’55図 第6図 第7図 第8図 手続?甫正書(方式) 1、事件の表示 特願昭61−311645号 2、発明の名称 可撓性回路基板の両面導通構造及び方法3、補正をする
者 事件との関係 特許出願人 住  所   東京都港区芝大門1丁目12番15号名
 称  日本メクトロン株式会社 4、代理人 〒300−122置、(029g)74−
23516、補正の対象  明細書の図面の簡単な説明
の項(補正の内容) (1)  明細書第11頁下から第3行の「第8図及び
第9図は」を「第7図及び第8図は」と訂正します。 以  上
Fig. 1 (11 to (4)) shows a conceptual process diagram for implementing the double-sided conductive structure of the flexible circuit board according to the present invention, and Fig. 2 shows the process diagram of the conductive filler forming the conductive part. A diagram illustrating an example of a filling method. Figure 3 is an explanatory diagram of a state in which a through hole is drilled using an NC drill using a conventional method. Figures 4, 5 @, and 6 are double-sided conduction using conventional through hole plating. Explanatory diagrams for each process order to explain the means,
FIGS. 8 and 9 are diagrams for explaining the problems of the conventional through-hole plating conduction structure. 1: Flexible insulating base material 2.3: Conductive foil 4: Through hole 5: Conductive filler 6: Electrolytic plating layer 7.8: Circuit wiring pattern Applicant Nippon Mectron Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 '55 Figure 6 Figure 7 Figure 8 Procedure? 1. Indication of the case Japanese Patent Application No. 61-311645 2. Name of the invention Double-sided conductive structure and method for flexible circuit board 3. Relationship with the case of the person making the amendment Address of the patent applicant Tokyo 1-12-15 Shiba Daimon, Miyakominato-ku Name: Nippon Mectron Co., Ltd. 4, Agent: 300-122, (029g) 74-
23516, Subject of amendment Brief description of drawings in the specification (Contents of amendment) (1) Changed “Fig. 8 and 9” to “Fig. 7 and 9” in the third line from the bottom of page 11 of the specification. Figure 8 is corrected. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)可撓性絶縁ベース材の両面に所要の回路配線パタ
ーンを備え、該回路配線パターンの表裏の所要個所に導
通部を有する可撓性回路基板に於いて、上記導通部を、
導電性充填部材と該導電性充填部材の外面及び上記表裏
両回路配線パターン面に設けられた電解メッキ層とで構
成するようにしたことを特徴とする可撓性回路基板の両
面導通構造。
(1) In a flexible circuit board having a required circuit wiring pattern on both sides of a flexible insulating base material and having conductive parts at required locations on the front and back sides of the circuit wiring pattern, the conductive part is
1. A double-sided conductive structure for a flexible circuit board, comprising a conductive filling member and an electrolytic plating layer provided on the outer surface of the conductive filling member and on both the front and back circuit wiring pattern surfaces.
(2)可撓性絶縁ベース材の両面に導電箔を一様に接合
したシート状の積層体の所要個所にパンチプレスで順次
一括的にスルーホールを穿設し、これらのスルーホール
に導電性充填材を順次的に充填した後、該導電性充填材
及び上記両導電箔の外面に電解メッキ処理を施し、次い
で所要の回路配線パターンの形成工程に付すことを特徴
とする可撓性回路基板の両面導通方法。
(2) Through-holes are sequentially punched at required locations in a sheet-like laminate in which conductive foil is uniformly bonded to both sides of a flexible insulating base material, and these through-holes are conductive. A flexible circuit board characterized in that, after being sequentially filled with a filler, electrolytic plating is applied to the outer surfaces of the conductive filler and both of the conductive foils, and then subjected to a process of forming a required circuit wiring pattern. double-sided conduction method.
JP31164586A 1986-12-26 1986-12-26 Structure and method for double-sided continuity of flexible circuit substrate Pending JPS63164396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31164586A JPS63164396A (en) 1986-12-26 1986-12-26 Structure and method for double-sided continuity of flexible circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31164586A JPS63164396A (en) 1986-12-26 1986-12-26 Structure and method for double-sided continuity of flexible circuit substrate

Publications (1)

Publication Number Publication Date
JPS63164396A true JPS63164396A (en) 1988-07-07

Family

ID=18019768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31164586A Pending JPS63164396A (en) 1986-12-26 1986-12-26 Structure and method for double-sided continuity of flexible circuit substrate

Country Status (1)

Country Link
JP (1) JPS63164396A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946089A (en) * 1982-09-09 1984-03-15 東洋紙業株式会社 Method of producing printed circuit board
JPS62193197A (en) * 1986-02-19 1987-08-25 株式会社東芝 Manufacture of through-hole printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946089A (en) * 1982-09-09 1984-03-15 東洋紙業株式会社 Method of producing printed circuit board
JPS62193197A (en) * 1986-02-19 1987-08-25 株式会社東芝 Manufacture of through-hole printed wiring board

Similar Documents

Publication Publication Date Title
JP5317491B2 (en) Method for manufacturing printed wiring board
JPS63164396A (en) Structure and method for double-sided continuity of flexible circuit substrate
JPH0964514A (en) Production of printed wiring board
JPH1117340A (en) Method for forming blind through-hole
JP2741238B2 (en) Flexible printed wiring board and method of manufacturing the same
JPH118471A (en) Manufacture of multilevel interconnection board and mounting method of electronic component by using the multilevel interconnection board
JPS63137498A (en) Manufacture of through-hole printed board
JPS6347991A (en) Manufacture of printed circuit board
JPH0682924B2 (en) Manufacturing method of composite substrate
JPH0265194A (en) Manufacture of printed wiring board with thick film element
JPH0243797A (en) Manufacture of circuit board provided with through-hole
JPH07254770A (en) Manufacturing method of flexible printed wiring board
JPS5916930B2 (en) Method of manufacturing laminates
JP3665036B2 (en) Printed wiring board manufacturing method and printed wiring board
JPH0296389A (en) Double-side printed circuit board
JPS63209196A (en) Manufacture of printed wiring board
JP2002100851A (en) Method of manufacturing printed wiring board
JPS58121698A (en) Multilayer printed board
JPS6372189A (en) Manufacture of circuit board
JPS614295A (en) Method of producing printed circuit board
JPS61147595A (en) Manufacture of double side printed wiring board
JPH01209793A (en) Method of forming conductive part for both face of printed circuit substrate
JPS59184594A (en) Multilayer circuit board
JPS60175485A (en) Method of forming solder layer
JPH01278798A (en) Manufacture of rigid flexible wiring board