JPS63164176A - Organic secondary cell - Google Patents

Organic secondary cell

Info

Publication number
JPS63164176A
JPS63164176A JP61311549A JP31154986A JPS63164176A JP S63164176 A JPS63164176 A JP S63164176A JP 61311549 A JP61311549 A JP 61311549A JP 31154986 A JP31154986 A JP 31154986A JP S63164176 A JPS63164176 A JP S63164176A
Authority
JP
Japan
Prior art keywords
electrolyte solution
high polymer
conductive
cross
linkage type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61311549A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
山田 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61311549A priority Critical patent/JPS63164176A/en
Publication of JPS63164176A publication Critical patent/JPS63164176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To maintain the form with no fear of solution leakage, and to improve the electrical performance, by laminating the first conductive high polymer membrane electrode, a cross-linkage type high polymer film including electrolyte solution, and the second conductive high polymer membrane electrode, between the first and the second conductive foils for collection purpose, and composing an ion conductive medium fo a specific cross-linkage type high polymer and a specific electrolyte solution. CONSTITUTION:In an organic secondary cell with a cross-linkage type high polymer as an ion conductive medium, the first conductive high polymer membrane electrode 2, a cros-linkage type high polymer film 3 including electrolyte solution, and the second conductive high polymer membrane electrode 4 are laminated and formed between the first and the second conductive foils 1a and 1b. In this case, the ion conductive medium is composed of the cross-linkage type high polymer to absorb a lot of electrolyte solution, and the electrolyte solution absorbed to the cross-linkage type high polymer. Therefore, an organic secondary cell in which the form can be maintained with no fear of solution leakage, no separation is necessary, the production process is simple, and moreover, the electrical property such as output density and energy density are almost equal to that of the cell using only an electrolyte solution, can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、架橋高分子をイオン伝導媒体とする有機二次
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an organic secondary battery using a crosslinked polymer as an ion conductive medium.

[従来の技術] 周知の如く、有機二次電池のイオン伝導体として電解質
溶液そのものを用いるのが一般的である。
[Prior Art] As is well known, an electrolyte solution itself is generally used as an ion conductor in an organic secondary battery.

例えば、日本電装(株)の公開特許59−49161で
はイオン伝導体としてLIC104をノロピレンカーゴ
ネート中に溶解したものなどを使用している。電解質溶
液そのものを用いる場合は出力密度、エネルギー密度と
いった電池特性がよくなるが、他方■漏液の恐れがある
、■有機二次電池を製作する場合に、構成作業が複雑化
し、製作コストが高くなる、■電池形状が制限さnる、
といつ次デメリットが生じる。
For example, Nippondenso Co., Ltd.'s published patent No. 59-49161 uses LIC104 dissolved in nolopyrene cargo as an ionic conductor. When using the electrolyte solution itself, battery characteristics such as power density and energy density are improved, but on the other hand, there is a risk of leakage, and when manufacturing an organic secondary battery, the construction work becomes complicated and the manufacturing cost increases. ,■Battery shape is limited,
When does the next disadvantage occur?

また、イオン伝導体として固体電解質を用いている例は
少ないが、例えばC0に、Chiang (Natlo
nalBureau of 5tandards 1 
米国)の論文(Polym@r 。
Furthermore, although there are few examples of using a solid electrolyte as an ion conductor, for example, Chiang (Natlo
nalBureau of 5standards 1
USA) paper (Polym@r.

Vol、22.1454(1981))によれば、イオ
ン伝導体としてIリエチレンオキサイ陣a I複合体を
用いているが、動作温度として85℃を用いている。ま
た、(株)東芝の公開特許58−75779では?リビ
ニリデンフルオライドなど高分子樹脂に、過塩素酸リチ
ウムなど電解質を包含したものがある。固体電解質を用
いる場合は電解質溶液の場合と逆で、一般的に出力密度
、エネルギー密度といつ之電池特性は比較的劣るが漏液
の恐扛がなく、ま之有機二次電池の作製工程が簡単とな
り、汎用性が増す。
Vol. 22.1454 (1981)), an I-lyethylene oxide group a I complex is used as the ionic conductor, and the operating temperature is 85°C. Also, what about Toshiba Corporation's published patent 58-75779? Some polymer resins such as ribinylidene fluoride contain electrolytes such as lithium perchlorate. When using a solid electrolyte, it is the opposite of using an electrolyte solution; generally, the output density, energy density, and battery characteristics are relatively inferior, but there is no fear of leakage, and the manufacturing process of organic secondary batteries is improved. It's easier and more versatile.

[発明が解決しようとする問題点] しかしながら、従来の有機二次電池によれば、以下の欠
点を有する。即ち、従来の有機二次電池のイオン伝導体
として電解質溶液又は固体電解質が用いらnている。し
かるに、電解質溶液を用いる場合には、漏液の恐nがあ
り、また有機二次電池の作製工程が複雑になる、といっ
た欠点がある。
[Problems to be Solved by the Invention] However, conventional organic secondary batteries have the following drawbacks. That is, an electrolyte solution or a solid electrolyte is used as an ionic conductor in conventional organic secondary batteries. However, when an electrolyte solution is used, there are drawbacks such as a risk of leakage and a complicated manufacturing process of the organic secondary battery.

こnらの欠点は固体電解質を用いることにより解mする
が、固体電解質ではイオン伝導率が低く、出力密度、エ
ネルギー密度といった電池特性が比較的劣るという友欠
点がある。
These drawbacks can be solved by using a solid electrolyte, but solid electrolytes have the disadvantages of low ionic conductivity and relatively poor battery characteristics such as output density and energy density.

本発明は上記事情に鑑みてなさnたもので、漏液の恐t
がなく形状を保持しうるとともに、セパレータが不要、
作製工程が簡単であり、シかも出力密度、エネルギー密
度といつ次電気特性が電解質溶液のみを用い7′21.
#h合とほぼ同等な有機二次電池を提供することを目的
とする。
The present invention was made in view of the above circumstances, and eliminates the risk of liquid leakage.
In addition to being able to maintain its shape without any separation, there is no need for a separator.
The fabrication process is simple, and the output density, energy density, and electrical properties can be improved using only an electrolyte solution.
The purpose is to provide an organic secondary battery that is almost equivalent to the #h combination.

[問題点を解決する之めの手段] 本発明は、架橋高分子をイオン伝導媒体とする有機二次
電池において、集電用の第1・第2導電箔間に第1導電
性高分子膜電極、電解質溶液含有架橋高分子フィルム及
び第2導電性高分子膜電極を積層してなう、かつ前記イ
オン伝導媒体が、電解質溶液を多量に吸収しうる架橋高
分子及びこの架橋高分子によシ吸収さnた電解質溶液か
ら構成されることを要旨とする。
[Means for Solving the Problems] The present invention provides an organic secondary battery using a crosslinked polymer as an ion conductive medium, in which a first conductive polymer film is provided between first and second conductive foils for current collection. An electrode, a crosslinked polymer film containing an electrolyte solution, and a second conductive polymer membrane electrode are laminated, and the ion conductive medium includes a crosslinked polymer capable of absorbing a large amount of an electrolyte solution, and a crosslinked polymer made of this crosslinked polymer. The gist is that the electrolyte solution is composed of an absorbed electrolyte solution.

[作用] イオン伝導率を増すために適度の電解質溶液を取り込む
ことが可能であるが、イオン伝導媒体の構成要素の一つ
である架橋高分子の要求特性は漏液の恐nをもたらさず
、形状を保持しうろことである。一般的に、架橋密度が
増してカルボキシル基、スルホン基などの極性基濃度が
減少すると、架橋高分子の電解質溶液の取り込み量が減
少する。
[Function] It is possible to incorporate an appropriate amount of electrolyte solution to increase ionic conductivity, but the required characteristics of the crosslinked polymer, which is one of the constituent elements of the ion conductive medium, do not cause any fear of leakage. They are scales that hold their shape. Generally, when the crosslink density increases and the concentration of polar groups such as carboxyl groups and sulfone groups decreases, the amount of electrolyte solution taken up by the crosslinked polymer decreases.

逆に、架橋密度が減少し極性基濃度が増加すると、架橋
高分子の電解質溶液の取シ込み量が増加し、場合により
形状保持が困難となる。そこで、架橋密度と極性基濃度
とをコントロールして、適度の架橋密度と極性基濃度と
を有する架橋高分子を調製する。この架橋高分子に電解
質溶液を含浸させて所期の要求特性を満足するイオン伝
導媒体を調製する。
Conversely, when the crosslinking density decreases and the polar group concentration increases, the amount of electrolyte solution taken up by the crosslinked polymer increases, making it difficult to maintain the shape in some cases. Therefore, a crosslinked polymer having appropriate crosslink density and polar group concentration is prepared by controlling the crosslink density and polar group concentration. This crosslinked polymer is impregnated with an electrolyte solution to prepare an ion-conducting medium that satisfies desired characteristics.

[実施例] 以下、本発明の一実施例を図を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中の1m、lbは、夫々集電用の第1導電箔、第2導
電箔である。こnら導電箔1h、lb間には第1導電性
高分子膜電極(正極)2、電解質溶液含有架橋高分子フ
ィルム3及び第2導電性高分子膜電極(負極)4が夫々
順次積層さnている。
1 m and lb in the figure are a first conductive foil and a second conductive foil for current collection, respectively. A first conductive polymer membrane electrode (positive electrode) 2, an electrolyte solution-containing crosslinked polymer film 3, and a second conductive polymer membrane electrode (negative electrode) 4 are sequentially laminated between these conductive foils 1h and 1b. There are n.

ま几、前記導電箔1*、lbには夫々リード線5゜5が
接続され、例えば印加電圧2〜6V、周囲温度20〜3
0℃で充電する。一方、放電は[iIIえば100Ω〜
IOMΩの負荷を接続して起こさせる。
A lead wire 5°5 is connected to each of the conductive foils 1* and lb, for example, at an applied voltage of 2 to 6 V and an ambient temperature of 20 to 3 V.
Charge at 0℃. On the other hand, the discharge is [iII, 100Ω~
Connect the IOMΩ load and wake it up.

こうし念充放電の繰返しは可能である。なお、特性(出
力密度、エネルギー密度)は電解質溶液含有架橋高分子
の膨潤度に依存し、膨潤度が増すと特性は向上する傾向
にある。
It is possible to repeatedly charge and discharge in this way. Note that the properties (output density, energy density) depend on the degree of swelling of the crosslinked polymer containing the electrolyte solution, and as the degree of swelling increases, the properties tend to improve.

次に、上記構造の有機二次電池の各部材の調整等につい
て説明する。
Next, the adjustment of each member of the organic secondary battery having the above structure will be explained.

即ち、まず、塊状重合法、溶液重合法、イオン重合法な
ど通常の手法を用いて、ビニル基を二個以上含むモノマ
ーとビニル型モノマーとを適当な割合で共重合すること
により、三次元架橋高分子を調製する。三次元架橋高分
子における電解質溶液の含有率を高める必要があるとき
に轄、三次元架橋高分子に適当な極性基を導入する。こ
のようにして調製した電解質溶液含有三次元架橋高分子
をイオン伝導媒体とし、導電性高分子を電極とする有機
二次電池の電池特性(出力密度、エネルギー密度)を電
解質溶液のみをイオン伝導媒体とした場合の電池特性と
比較してみると、両者はぼ同等となる。
That is, first, three-dimensional crosslinking is achieved by copolymerizing a monomer containing two or more vinyl groups and a vinyl type monomer in an appropriate ratio using a conventional method such as bulk polymerization, solution polymerization, or ionic polymerization. Prepare the polymer. When it is necessary to increase the content of electrolyte solution in a three-dimensionally crosslinked polymer, an appropriate polar group is introduced into the three-dimensionally crosslinked polymer. The battery characteristics (output density, energy density) of an organic secondary battery using the electrolyte solution-containing three-dimensional cross-linked polymer prepared in this way as an ion-conducting medium and a conductive polymer as an electrode were evaluated using only the electrolyte solution as an ion-conducting medium. When comparing the battery characteristics in the case of

次に、各部材の調整について具体的に説明する。Next, the adjustment of each member will be specifically explained.

ill  1!を解質溶液含有架橋高分子の調製a) 
 ステラ7’l(スチレン−ジビニルベンゼン共重合体
の合成) まず、モノマーであるスチレン15〜30y−1架橋剤
ジビニルベンゼン1〜101F、重合開始剤(過酸化ベ
ンゾイルま几は2,2′−アゾビスイソブチロニトリル
)0.1〜0.41を互いに溶解させる。
ill 1! Preparation of crosslinked polymer containing solute solution a)
Stella 7'l (synthesis of styrene-divinylbenzene copolymer) First, the monomer styrene 15-30y-1, the crosslinking agent divinylbenzene 1-101F, the polymerization initiator (benzoyl peroxide or 2,2'-azo bisisobutyronitrile) from 0.1 to 0.41 are dissolved in each other.

つづいて、この溶液をガラス板状に流延した後、窒素雰
囲気下50〜70℃に設定した恒温槽に10〜20 h
r放装することによシ重合フィルムを調製する。必要に
応じさらに100〜120℃で1〜4hr、後硬化させ
る。
Subsequently, this solution was cast into a glass plate shape, and then placed in a constant temperature bath set at 50 to 70°C under a nitrogen atmosphere for 10 to 20 hours.
A polymerized film is prepared by irradiation. If necessary, it is further post-cured at 100 to 120°C for 1 to 4 hours.

b)  ステラf2(スチレン−ジビニルベンゼン共重
合体のスルホン化) まず、ステップlで調製したスチレン−ジビニルベンゼ
ン共M合体フィルム1?とテトラクロルエタン10〜3
0?を       50〜60℃に30〜(5Q m
in加熱し、フィルムを膨潤させる。
b) Stella f2 (sulfonation of styrene-divinylbenzene copolymer) First, the styrene-divinylbenzene co-M polymer film 1 prepared in step 1? and tetrachloroethane 10-3
0? 30~(5Q m
in to swell the film.

つづいて、これを室温まで冷却し九後、クロルスルホン
酸15〜30iPを少しずつ加えて、室温で3〜6 h
r攪拌する。その後HC1が発生しなくなるまで氷酢酸
を加え、多量の水中に注ぐ。次いで、このフィルムをア
セトン、水で洗浄して乾燥する。
Subsequently, this was cooled to room temperature, after which 15 to 30 iP of chlorosulfonic acid was added little by little, and the mixture was incubated at room temperature for 3 to 6 hours.
r Stir. Then add glacial acetic acid until no more HC1 is generated and pour into a large amount of water. The film is then washed with acetone and water and dried.

なお、必要に応じ、スチレンーゾビニルペンゼ、ン共重
体フィルムのスルホン酸基濃度を増す九め(、発煙硫酸
とともに140〜150℃で適当な時間加熱し、その後
同様に洗浄、乾燥を行なう。
If necessary, the sulfonic acid group concentration of the styrene-zovinylpenze copolymer film can be increased by heating with fuming sulfuric acid at 140 to 150°C for an appropriate period of time, and then washing and drying in the same manner. .

C)  ステラ7’3(スルホン化スチレン−ジビニル
ベンゼン共重合体フィル、ムへの電解質溶液含有)まず
、水などの極性溶媒、ま次は混合溶媒(水を含有したア
セトニトリルなどの有機溶媒)に過塩素酸リチウムなど
の電解質を溶解させて、電解質IWg、を調製する。こ
こで、電解質溶液濃度は0.02〜0.2M、液温は2
0〜30℃である。この電解質溶液中に、ステップ2で
調製したスルホン化スチレン−ジビニルベンゼン共重合
体フィルムを浸漬し、膨潤平衡に達するまで電解質溶液
を含有させる。膨潤度は1.5〜3であり、フィルム状
の形状を保持している。
C) Stella 7'3 (sulfonated styrene-divinylbenzene copolymer film, containing electrolyte solution) First, in a polar solvent such as water, and then in a mixed solvent (organic solvent such as acetonitrile containing water). Electrolyte IWg is prepared by dissolving an electrolyte such as lithium perchlorate. Here, the electrolyte solution concentration is 0.02 to 0.2M, and the liquid temperature is 2
The temperature is 0 to 30°C. The sulfonated styrene-divinylbenzene copolymer film prepared in step 2 is immersed in this electrolyte solution to contain the electrolyte solution until a swelling equilibrium is reached. The degree of swelling is 1.5 to 3 and maintains a film-like shape.

(2)高分子電電の作製 / IJピロール、?リチオフェン、ポリ(3−メチル
チオフェン)などの導電性高分子を電解重合法により調
製し、有機二次電池の電極材に適用する。電解重合法の
条件として、モノマーはピロール、チオフェン、3−メ
チルチオフェンで0.02〜0.2M、支持電解質は過
塩素酸リチウムまたは過塩素酸テトラエチルアンモニウ
ムで0.03〜0.09M。
(2) Preparation of polymer electrolyte/IJ pyrrole, ? Conductive polymers such as lithiophene and poly(3-methylthiophene) are prepared by electrolytic polymerization and applied to electrode materials for organic secondary batteries. As conditions for the electrolytic polymerization method, the monomers are pyrrole, thiophene, and 3-methylthiophene at 0.02 to 0.2M, and the supporting electrolyte is lithium perchlorate or tetraethylammonium perchlorate at 0.03 to 0.09M.

極性溶媒としてプロピレンカーゲネート、アセトニトリ
ル、ま次はベンゾニトリル、電解用電極としてITO皮
膜ガラス板または白金板を用い、電解電圧6〜10v1
重合温度20〜30℃、重合時間1〜4 hrで電解重
合を実施し正極上に重合膜、すなわちポリピロール、ポ
リチオフェン、またはポリ(3−メチルチオフェン)を
形成する。このようにして形成さtL7を重合膜をプロ
ピレンカーゲネートなどの極性溶媒に浸漬して、20〜
30℃で−6〜−1OVの負電圧を重合膜に1〜A h
r印加して脱ドーピングを行なう。
Propylene cargenate and acetonitrile are used as polar solvents, benzonitrile is used as a polar solvent, and an ITO-coated glass plate or platinum plate is used as an electrode for electrolysis, and the electrolysis voltage is 6 to 10v1.
Electrolytic polymerization is performed at a polymerization temperature of 20 to 30° C. and a polymerization time of 1 to 4 hours to form a polymer film, that is, polypyrrole, polythiophene, or poly(3-methylthiophene) on the positive electrode. The thus formed tL7 was immersed in a polar solvent such as propylene cargenate for 20 to 20 minutes.
A negative voltage of -6 to -1 OV was applied to the polymer film at 30°C for 1 to A h.
Dedoping is performed by applying r.

(3)集電用金属箔の蒸着 まず、上記(2)で調製し次脱ドーピング導電性高分子
膜をITO皮膜ガラス板または白金板の電解用電極から
引き剥がす。つづいて、こnを40〜80℃で真空乾燥
させる。次いで、導電性高分子膜の片面を真空蒸着法に
よシ、金、アルミニウムなどの金属箔を蒸着する。
(3) Vapor deposition of metal foil for current collection First, the dedoped conductive polymer film prepared in (2) above is peeled off from an ITO-coated glass plate or platinum plate electrode for electrolysis. Subsequently, this product is vacuum dried at 40 to 80°C. Next, a metal foil such as gold or aluminum is deposited on one side of the conductive polymer film by vacuum deposition.

(4)  イオン伝導媒体フィルムの調整適度な架橋密
度と極性基(スルホン基など)濃度を有する架橋高分子
フィルムに、過塩素酸リチウムなどの電解質を溶解させ
次極性溶媒を含浸させて膨潤度を2〜3倍とし、固液複
合体としてのイオン伝導媒体フィルムを調製する。
(4) Adjustment of ion-conducting medium film A cross-linked polymer film with appropriate cross-link density and polar group (sulfone group, etc.) concentration is dissolved in an electrolyte such as lithium perchlorate, and then impregnated with a polar solvent to adjust the degree of swelling. 2 to 3 times and prepare an ion conductive medium film as a solid-liquid composite.

上記実施例に係る有機二次電池によnば、適度な架橋密
度と親溶液性を有する架橋高分子に電解質溶液を取り込
んだ固液複合体をイオン伝導媒体として用いることによ
り、過度の圧縮応力を印加しない限シ、漏液の恐れがな
く形状を保持しうる。
According to the organic secondary battery according to the above embodiment, excessive compressive stress can be avoided by using a solid-liquid composite in which an electrolyte solution is incorporated into a crosslinked polymer having appropriate crosslinking density and lyophilicity as an ion conductive medium. As long as no pressure is applied, the shape can be maintained without fear of leakage.

ま次、モノ4レータが不要であるとともに、有機二次電
池の作製工程が簡単で汎用性が増す。しかも、膨潤度2
〜3の前記高分子フィルム3を用いた二次電池の特性値
は、電解質溶液のみを用い次場合とほぼ同等となる。
Secondly, there is no need for a mono-quartet, and the manufacturing process of the organic secondary battery is simple, increasing its versatility. Moreover, the degree of swelling is 2
The characteristic values of the secondary battery using the polymer film 3 of No. 3 to 3 are almost the same as those of the following cases using only the electrolyte solution.

[発明の効果コ 以上評述し之如く本発明によれば、漏液の恐nがなく形
状を保持し得、かつセ・!レータが不要、作製工程が簡
単であり、しかも出力密度、エネルギー密度といつ次電
気特性が電解質溶液のみを用い次場合とほぼ同等な有機
二次電池を提供できる。
[Effects of the Invention] As described above, according to the present invention, the shape can be maintained without fear of liquid leakage, and the shape can be maintained without fear of liquid leakage. It is possible to provide an organic secondary battery that does not require a battery, has a simple manufacturing process, and has almost the same output density, energy density, and electrical characteristics as those using only an electrolyte solution.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る有機二次電池の説明図であ
る。 1m、lb・・・導電箔、3・・・電解質溶液含有架橋
高分子フィルム、2,4・・・411性高分子膜電極、
5 ・・・ リ −  ド 線。 出願人復代理人  弁理士 鈴 江 武 彦手続補正書 昭和  年62FJ5.29 特許庁長官  黒 1)明 雄 殿 1、事件の表示 特願昭61−311549号 2、発明の名称 有機二次電池 3、補正をする者 事件との関係  特許出願人 (820)  三菱重工業株式会社 4、復代理人 東京都千代田区霞が関3丁目7番2号 UBEビル〒1
00  Is話 03 (502)3181 (大代表
)″Vよ+、)I”−・ 7、補正の内容 (1)明細書箱1頁15行目及び第4頁2行口において
「架橋高分子」とあるを、「電解質溶液含有架橋高分子
」と訂正する。 (2)明細書箱4頁11行目の「イオン伝導率」以下1
5行目の「保持しうることである。」までの文章を下記
の如(訂正する。 記 「イオン伝導媒体の構成要素の一つである架橋高分子の
要求特性は、イオン伝導率を増すために適度の電解質溶
液を取り込むことが可能であることと、漏液の恐れをも
たらさず形状を保持しうることである。」 (3)明細書第9頁4行口においてrO,03〜0.0
9MJとあるをrO,01〜0.09MJと訂正する。 (4)明細書同頁8行目において「6〜10V」とある
を「4〜10V」と訂正する。 (5)  明細書同頁14行目において「−6〜−IO
VJとあるを「−4〜−10■」と訂正する。 (6)明細書箱10頁3行目において「調整」とあるを
「調製」と訂正する。
The figure is an explanatory diagram of an organic secondary battery according to an embodiment of the present invention. 1 m, lb...conductive foil, 3...crosslinked polymer film containing electrolyte solution, 2,4...411 polymer membrane electrode,
5... Lead wire. Applicant Sub-Attorney Patent Attorney Takehiko Suzue Procedural Amendment 62FJ5/29/1929 Commissioner of the Patent Office Kuro 1) Akio Yu 1, Indication of Case Patent Application No. 1983-311549 2, Title of Invention Organic Secondary Battery 3 , Relationship with the case of the person making the amendment Patent applicant (820) Mitsubishi Heavy Industries, Ltd. 4, sub-agent UBE Building 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo 1
00 Is story 03 (502) 3181 (Main representative) ``Vyo+,)I''-・ 7. Contents of amendment (1) In the description box, page 1, line 15 and page 4, line 2 at the beginning, ``Crosslinked polymer " should be corrected to read "crosslinked polymer containing electrolyte solution." (2) “Ionic conductivity” on page 4, line 11 of the statement box, 1 below.
The sentence up to ``It is possible to maintain.'' in the 5th line is corrected as follows. (3) At the beginning of page 9, line 4 of the specification, it is possible to take in an appropriate amount of electrolyte solution, and it is possible to maintain the shape without causing any fear of leakage.'' (3) At the beginning of page 9, line 4 of the specification, .0
9MJ is corrected to rO, 01-0.09MJ. (4) In the 8th line of the same page of the specification, "6 to 10 V" is corrected to "4 to 10 V." (5) In line 14 of the same page of the specification, "-6 to -IO
Correct the text "VJ" to "-4~-10■". (6) In the third line of page 10 of the specification box, the word "adjustment" is corrected to "preparation."

Claims (1)

【特許請求の範囲】[Claims] 架橋高分子をイオン伝導媒体とする有機二次電池におい
て、集電用の第1、第2導電箔間に第1導電性高分子膜
電極、電解質溶液含有架橋高分子フィルム及び第2導電
性高分子膜電極を積層してなり、かつ前記イオン伝導媒
体が、電解質溶液を多量に吸収しうる架橋高分子及びこ
の架橋高分子により吸収された電解質溶液から構成され
ることを特徴とする有機二次電池。
In an organic secondary battery using a cross-linked polymer as an ion-conducting medium, a first conductive polymer film electrode, a cross-linked polymer film containing an electrolyte solution, and a second conductive polymer are placed between the first and second conductive foils for current collection. An organic secondary comprising layered molecular membrane electrodes, and wherein the ion conductive medium is composed of a crosslinked polymer capable of absorbing a large amount of electrolyte solution and an electrolyte solution absorbed by the crosslinked polymer. battery.
JP61311549A 1986-12-25 1986-12-25 Organic secondary cell Pending JPS63164176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311549A JPS63164176A (en) 1986-12-25 1986-12-25 Organic secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311549A JPS63164176A (en) 1986-12-25 1986-12-25 Organic secondary cell

Publications (1)

Publication Number Publication Date
JPS63164176A true JPS63164176A (en) 1988-07-07

Family

ID=18018573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311549A Pending JPS63164176A (en) 1986-12-25 1986-12-25 Organic secondary cell

Country Status (1)

Country Link
JP (1) JPS63164176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014528A1 (en) * 1992-01-17 1993-07-22 Yuasa Corporation Secondary battery
WO1993014529A1 (en) * 1992-01-21 1993-07-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014528A1 (en) * 1992-01-17 1993-07-22 Yuasa Corporation Secondary battery
US6248479B1 (en) * 1992-01-17 2001-06-19 Yuasa Corporation Secondary battery
WO1993014529A1 (en) * 1992-01-21 1993-07-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Cell

Similar Documents

Publication Publication Date Title
Song et al. Review of gel-type polymer electrolytes for lithium-ion batteries
US6413676B1 (en) Lithium ion polymer electrolytes
US8216723B2 (en) Polymer electrolyte and electrochemical device
JP2943792B1 (en) Proton conductive polymer battery and method for producing the same
White et al. Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors
CN101475699B (en) Preparation of proton conduction membrane
Li et al. A novel and shortcut method to prepare ionic liquid gel polymer electrolyte membranes for lithium-ion battery
JP2002134162A (en) Polymer battery
JPS63164176A (en) Organic secondary cell
Inganäs Electroactive polymer blends
KR102568421B1 (en) Membrane electrode assembly and zinc-bromide supercapattery comprising the same
JP3183280B2 (en) Electrodes and batteries
JP3144410B2 (en) Battery and capacitor using quinoxaline resin
Uktamaliyev et al. Ionic Conductivity and Dielectric Constant of a Solid Polymer Electrolyte Containing Salts Litf2 and Mgtf2
JPS618854A (en) Cell and its manufacturing method
CN112186240B (en) Electrode assembly and battery having the same
JPH103897A (en) Separator for battery
JPH08148163A (en) Battery and manufacture thereof
JPS63181273A (en) Manufacture of cell
Huang et al. Bacterial cellulose reinforced polymer electrolytes for lithium-ion batteries
JPS62296376A (en) Manufacture of polymer solid electrolyte battery
JPH02168578A (en) Electrochemical device and manufacture thereof
JPS63205063A (en) Manufacture of battery
Jaafar et al. Effect of graphene oxide on poly (methyl methacrylate)-grafted natural rubber polymer electrolytes
JP3734896B2 (en) Solid electrolyte and non-aqueous battery