JPS63162588A - Electroconductive porous silicon carbide sintered body and manufacture - Google Patents

Electroconductive porous silicon carbide sintered body and manufacture

Info

Publication number
JPS63162588A
JPS63162588A JP61310579A JP31057986A JPS63162588A JP S63162588 A JPS63162588 A JP S63162588A JP 61310579 A JP61310579 A JP 61310579A JP 31057986 A JP31057986 A JP 31057986A JP S63162588 A JPS63162588 A JP S63162588A
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
sintered
residual carbon
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61310579A
Other languages
Japanese (ja)
Other versions
JP2555333B2 (en
Inventor
松山 久好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61310579A priority Critical patent/JP2555333B2/en
Publication of JPS63162588A publication Critical patent/JPS63162588A/en
Application granted granted Critical
Publication of JP2555333B2 publication Critical patent/JP2555333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマエツチング装置の電極等に好適に用
いられる新規な導電性多孔質の炭化珪素焼結体並びにそ
の有効な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel conductive porous silicon carbide sintered body suitable for use in electrodes of plasma etching equipment, etc., and an effective method for producing the same.

(従来の技術) シリコンウェハー等の調製にあたってプラズマエツチン
グ法が採用されていることは周知の通りである。このプ
ラズマエツチング法は、AQ若しくはSiO□膜を形成
し且つ非エツチング部位を樹脂マスクしたシリコンウェ
ハーをプラス極に置き、一方マイナス極にはパンチング
加工した多孔性の金属板を装着し、減圧下でマイナス側
電極板の上記パンチング孔より塩素若しくはフッ素ガス
を供給しながら両極間に電圧を印加させ、プラズマイオ
ンにて上記AQ若しくはSiO□膜をエツチングせんと
するものである。
(Prior Art) It is well known that plasma etching is employed in the preparation of silicon wafers and the like. In this plasma etching method, a silicon wafer on which an AQ or SiO□ film is formed and the non-etched areas are masked with resin is placed on the positive electrode, while a punched porous metal plate is attached to the negative electrode, and etched under reduced pressure. A voltage is applied between the two electrodes while supplying chlorine or fluorine gas through the punched hole in the negative electrode plate, and the AQ or SiO□ film is etched with plasma ions.

(発明が解決しようとする問題点)  。(Problem that the invention seeks to solve).

然し乍ら、上記プラズマエツチング法に於いて。However, in the above plasma etching method.

プラズマイオンは多孔性金属板のパンチング孔のみから
放射されることになる為、均一なエツチングがなされず
、所謂エツチングむらが生じることは不可避であった。
Since plasma ions are emitted only from the punched holes in the porous metal plate, uniform etching is not achieved and so-called uneven etching inevitably occurs.

そして益々高性能が要求されるシリコンウェハー等の電
子部品の調製に於いては、このようなエツチングむらは
早急に解決されなければならない問題として指摘されて
いた。
In the preparation of electronic parts such as silicon wafers, which require increasingly high performance, such etching unevenness has been pointed out as a problem that must be solved as soon as possible.

一方、炭化珪素焼結体に導電性を付与する試みもなされ
ており、その−例としては炭化珪素原料に、助剤として
のアルミニウム化合物及びカーボン源を加え、これを成
形焼結したものが挙げられる。然し、この焼結体は緻密
であり上記プラズマエツチング装置の電極に用いること
は不可であった。
On the other hand, attempts have also been made to impart electrical conductivity to silicon carbide sintered bodies; one example of this is to add an aluminum compound as an auxiliary agent and a carbon source to a silicon carbide raw material, and then shape and sinter the mixture. It will be done. However, this sintered body was dense and could not be used as an electrode in the plasma etching apparatus.

(発明の目的) 本発明は、上記に鑑みなされたもので、プラズマエツチ
ング装置の電極に用いた時には均一なプラズマイオンの
放射を可能とする新規な炭化珪素焼結体並びにその有効
な製造方法を提供せんとするものである。
(Object of the Invention) The present invention has been made in view of the above, and provides a novel silicon carbide sintered body that enables uniform plasma ion emission when used as an electrode of a plasma etching device, and an effective manufacturing method thereof. This is what we intend to provide.

(問題点を解決する為の手段) 上記目的を達成する為の本発明の詳細な説明する。即ち
、本発明の特定発明は、内外に連通ずる多数の細孔を含
有し、且つ有機炭化水素の焼成分解による残留炭素を焼
結構造内に担持し、この残留炭素により導電性が付与さ
れた導電性多孔質炭化珪素焼結体にあり、亦、第2発明
は、細粒状の炭化珪素原料を所望形状に成形したものを
焼成して多孔質の焼結体となし、この焼結体に自己焼失
性有機炭化水素化合物の溶液を含浸せしめ且つ該有機炭
化水素化合物の分解温度以上で焼成して炭化珪素の焼結
構造内に上記有機炭化水素の焼成分解による残留炭素を
担持させこれにより導電性を付与せしめるようにした導
電性多孔質炭化珪素焼結体の製造方法にある。
(Means for Solving the Problems) The present invention for achieving the above object will be described in detail. That is, the specific invention of the present invention contains a large number of pores communicating between the inside and outside, and carries residual carbon resulting from sintering decomposition of organic hydrocarbons in the sintered structure, and this residual carbon imparts conductivity. The second invention is a conductive porous silicon carbide sintered body, and the second invention is to mold a fine-grained silicon carbide raw material into a desired shape and sinter it to form a porous sintered body. It is impregnated with a solution of a self-burning organic hydrocarbon compound and fired at a temperature higher than the decomposition temperature of the organic hydrocarbon compound to support residual carbon resulting from the firing decomposition of the organic hydrocarbon in the sintered structure of silicon carbide, thereby making it conductive. The present invention provides a method for producing a conductive porous silicon carbide sintered body that is imparted with properties.

便宜上特定発明と第2発明とを併せて説明する。For convenience, the specific invention and the second invention will be explained together.

本発明の導電性多孔質炭化珪素焼結体は、孔径が1〜6
0μm、孔容量が0.1〜0.3cc/gで内外に連通
ずる多数の細孔を含む。この細孔は、平均粒径5〜20
0μmの炭化珪素原料を約1900〜2200℃で焼結
することにより形成され、該細孔の存在により焼結体は
通気性を保有する。この場合、孔径が1μm未満で孔容
量が0.1cc/g未満のときは充分な通気性が得られ
ず、一方孔径が60μm、孔容量が0.3cc/gを超
えると焼結体の強度が弱くなる。
The conductive porous silicon carbide sintered body of the present invention has a pore diameter of 1 to 6.
It has a diameter of 0 μm, a pore volume of 0.1 to 0.3 cc/g, and contains many pores communicating between the inside and outside. This pore has an average particle size of 5 to 20
It is formed by sintering a 0 μm silicon carbide raw material at about 1900 to 2200°C, and the sintered body has air permeability due to the presence of the pores. In this case, if the pore diameter is less than 1 μm and the pore volume is less than 0.1 cc/g, sufficient air permeability cannot be obtained, whereas if the pore diameter is more than 60 μm and the pore volume is more than 0.3 cc/g, the strength of the sintered body will be becomes weaker.

亦、本発明の焼結体の構造内には、有機炭化水素の焼成
分解による残留炭素が、焼結体100重量部に対し1〜
15重量部担持され、これにより焼結体の体積固有低動
値が0.05〜60Ω・国とされる。この担持量が2重
量部未満の場合は焼結体に充分な導電性が付与されず、
一方15重量部を超えて担持させても体積固有抵抗値に
大きな変化はみられない。この残留炭素の担持は、上記
細粒状炭化珪素原料を所望形状に成形焼結し、この焼結
体をフェノール樹脂、フルフリルアルコール、ポリフェ
ニレン、ジベッズアントラセン及びクリセン等の自己焼
失性の有機炭化水素化合物の溶液に含浸させ、約200
0℃の温度で焼成することによりなされる。該有機炭化
水素化合物溶液の含浸量は、焼結体100重量部に対し
4〜35重量部であり、この範囲外の場合には上記の如
き残留炭素の適正な担持量が得られなくなる。
Additionally, in the structure of the sintered body of the present invention, residual carbon due to sintering decomposition of organic hydrocarbons is present in an amount of 1 to 1 to 100 parts by weight per 100 parts by weight of the sintered body.
15 parts by weight is supported, thereby making the volume-specific low dynamic value of the sintered body 0.05 to 60 Ω·mm. If the supported amount is less than 2 parts by weight, sufficient conductivity will not be imparted to the sintered body,
On the other hand, even if more than 15 parts by weight is supported, no significant change is observed in the volume resistivity value. This residual carbon is supported by molding and sintering the above-mentioned fine-grained silicon carbide raw material into a desired shape, and converting this sintered body into a self-burning organic carbonization material such as phenol resin, furfuryl alcohol, polyphenylene, dibbeds anthracene, and chrysene. Impregnated with a solution of hydrogen compound, about 200
This is done by firing at a temperature of 0°C. The impregnation amount of the organic hydrocarbon compound solution is 4 to 35 parts by weight per 100 parts by weight of the sintered body, and if it is outside this range, it will not be possible to obtain the appropriate amount of residual carbon supported as described above.

(作用) 上記構成の本発明導電性多孔質炭化珪素焼結体は、細粒
状炭化珪素原料を所望形状に成形し且つ焼成して成るも
ので、この細粒状原料を用いることにより焼結床内に内
外に連通し且つ均等に分散した多数の細孔を含有し、こ
の細孔を介して通気性を保有することとなる。亦、上記
焼結体の構造内には、自己焼失性有機炭化水素の焼成分
解による残留炭素が担持されており、この残留炭素の存
在により体積固有抵抗値が小さくなり、導電性が付与さ
れる。従って、本発明の焼結体を後記の実施例で示す如
きプラズマエツチング装置のプラス電極に用いた場合、
!極として充分に機能すると共に、細孔を通じてプラズ
マイオンが均一に放射され、むらのないエツチングが確
実になされる。
(Function) The conductive porous silicon carbide sintered body of the present invention having the above-mentioned structure is formed by molding a fine-grained silicon carbide raw material into a desired shape and firing it. It contains a large number of pores that are evenly distributed and communicate with each other from inside to outside, and has air permeability through these pores. Additionally, the structure of the sintered body carries residual carbon resulting from the sintering decomposition of self-burning organic hydrocarbons, and the presence of this residual carbon reduces the volume resistivity and imparts electrical conductivity. . Therefore, when the sintered body of the present invention is used as a positive electrode of a plasma etching apparatus as shown in Examples below,
! In addition to functioning well as a pole, plasma ions are emitted uniformly through the pores to ensure uniform etching.

(実施例) 以下に実施例を挙げ本発明を更に詳述する。(Example) EXAMPLES The present invention will be explained in further detail with reference to Examples below.

(i)多孔質焼結体の調製; 平均粒径が下記第1表に示す如き炭化珪素原料を板状に
成形し、これを2000℃で焼結して多孔質の焼結体を
得た。この焼結体に形成された細孔の孔径、開孔率及び
焼結体の嵩比重を測定した。その結果を第1表に示す。
(i) Preparation of porous sintered body; A silicon carbide raw material having an average particle size shown in Table 1 below was formed into a plate shape, and this was sintered at 2000°C to obtain a porous sintered body. . The pore diameter and porosity of the pores formed in this sintered body, and the bulk specific gravity of the sintered body were measured. The results are shown in Table 1.

第圭弄 但し、第1表の評価の欄は、主にプラズマエツチング装
置の電極として用いる場合に強度的に適切かどうかの評
価であり、0は良好、Δはやや不適、×は不適を夫々示
す。
However, the evaluation column in Table 1 mainly evaluates whether the strength is appropriate when used as an electrode in a plasma etching device, where 0 means good, Δ means slightly unsuitable, and × means unsuitable. show.

(n)導電性の付与; 第1表のNa 3により得た多孔質焼結体サンプルにフ
ェノール樹脂溶液を含浸させ、非酸化雰囲気中で200
0℃の温度で焼成した。含浸樹脂溶液の量を種々変化さ
せたものについて、その残留炭素量及び体積固有抵抗値
を測定した。その結果を第2表に示す。
(n) Imparting conductivity; The porous sintered sample obtained from Na3 in Table 1 was impregnated with a phenolic resin solution, and
It was fired at a temperature of 0°C. The amount of residual carbon and volume resistivity were measured for samples with various amounts of impregnating resin solution. The results are shown in Table 2.

第1表 但し、第2表におけるフェノール樹脂溶液の含浸量及び
残留炭素量の欄の数値は、上記多孔質焼結体(サンプル
Nα3)100重量部に対する重量部である。
In Table 1, however, the values in the columns of the impregnated amount of phenol resin solution and the amount of residual carbon in Table 2 are parts by weight based on 100 parts by weight of the porous sintered body (sample Nα3).

この第2表から残留炭素が焼結体の構造内に担持される
と体積固有抵抗値が極端に低下し焼結体に導電性が付与
されることが理解される。また、フェノール樹脂溶液の
含浸量を調整することにより体積固有抵抗値を任意に変
えることが可能であることも推察される。
It is understood from Table 2 that when residual carbon is supported within the structure of the sintered body, the volume resistivity value is extremely reduced and the sintered body is imparted with electrical conductivity. It is also presumed that the volume resistivity value can be arbitrarily changed by adjusting the amount of phenol resin solution impregnated.

(in)プラズマエツチング装置への適用;第1図及び
第2図は上記(i)  (ii)の要領で得た導電性多
孔質炭化珪素焼結体をプラズマエツチング装置のプラス
極に適用した例を示す縦断面図である。
(in) Application to plasma etching equipment; Figures 1 and 2 are examples in which the conductive porous silicon carbide sintered body obtained by the procedures in (i) and (ii) above is applied to the positive electrode of a plasma etching equipment. FIG.

第1図に於いて、真空ボックス1内にプラス・マイナス
の電極3.2が対向関係で配置されており、断面略逆T
字型のマイナス極2はプラズマガスの供給管路21を含
み且つ該マイナス極3の下面略全面には該供給管路21
に連通ずるプラズマガスの放射域22が凹設されている
。そして該放射域22を覆うように本発明の導電性多孔
質炭化珪素焼結板4が止着固定されている。一方プラス
極3上には、AQ若しくはSin、のコート膜51が被
着され更に所望パターンの印刷樹脂コート層52が形成
されたシリコンウェハー5が載置されている。この状態
で、真空ボックス1内を減圧しながら(約0.8t、o
rr )、供給管路21より塩素若しくはフッ素ガスを
供給し、電極2.3間に電圧を印加(300す、13.
5MHz)させると、放射域22から焼結板4の細孔を
通って放出されたプラズマガスはイオン化され、プラス
極3上に載置されたシリコンウェハー5のコート膜51
をエツチングする。この時、焼結板4からは均一にプラ
ズマイオンが放射されるので、コート膜51はむらなく
均一にエツチングされる。
In Fig. 1, positive and negative electrodes 3.2 are arranged in a facing relationship in a vacuum box 1, and the cross section is approximately inverted T.
The negative electrode 2 has a plasma gas supply conduit 21, and substantially the entire lower surface of the negative electrode 3 includes the supply conduit 21.
A radiation region 22 of plasma gas is recessed and communicated with the plasma gas. A conductive porous silicon carbide sintered plate 4 of the present invention is fixedly fixed so as to cover the radiation region 22 . On the other hand, a silicon wafer 5 is placed on the positive electrode 3, on which a coating film 51 of AQ or Sin is coated and further a printed resin coating layer 52 of a desired pattern is formed. In this state, while reducing the pressure inside the vacuum box 1 (approximately 0.8 t, o
rr), chlorine or fluorine gas is supplied from the supply pipe 21, and a voltage is applied between the electrodes 2.3 (300s, 13.
5 MHz), the plasma gas emitted from the radiation region 22 through the pores of the sintered plate 4 is ionized, and the coating film 51 of the silicon wafer 5 placed on the positive electrode 3 is ionized.
etching. At this time, since plasma ions are uniformly emitted from the sintered plate 4, the coat film 51 is etched evenly and uniformly.

第2図は、プラズマガスの放射域22を供給管路21よ
り積大とした程度で、第1図の如く広い面積から放射さ
れるものとは異なる。しかしマイナス極2の下面略全面
域に止着固定された焼結板4からは、その全面域よりプ
ラズマイオンが放射される。即ち、供給管路21から焼
結板4に至ったプラズマガスは焼結板4内を面域方向に
拡散し。
In FIG. 2, the radiation area 22 of the plasma gas is made larger than the supply pipe 21, which is different from the plasma gas emitted from a wide area as shown in FIG. However, plasma ions are emitted from the sintered plate 4 fixedly fixed to substantially the entire area of the lower surface of the negative electrode 2 from the entire area. That is, the plasma gas that has reached the sintered plate 4 from the supply pipe line 21 is diffused within the sintered plate 4 in the area direction.

その下面略全面域から放射され、第1図の場合と同様の
機能を奏する。
The radiation is emitted from substantially the entire area of the lower surface, and the same function as in the case of FIG. 1 is performed.

尚5上記実施例では本発明の焼結体をプラズマエツチン
グ装置に適用した例を示したが、導電性多孔質で且つセ
ラミックスと云う特性を活かしてこれを他の分野にも適
用することは可能である。
5 In the above example, an example was shown in which the sintered body of the present invention was applied to a plasma etching device, but it is possible to apply it to other fields by taking advantage of the characteristics of being porous and ceramic. It is.

亦、残留炭素を焼結体の全面域に担持させるだけでなく
、例えば有機炭化水素溶液を含浸させる際、部分的に含
浸させるようにすれば焼結体の所望域のみに導電性を付
与させることも可能である。
Furthermore, in addition to supporting residual carbon over the entire surface of the sintered body, for example, when impregnating the sintered body with an organic hydrocarbon solution, conductivity can be imparted only to the desired area of the sintered body by impregnating it partially. It is also possible.

(発明の効果) 取上の如く、本発明の導電性多孔質炭化珪素焼結体は、
多数の細孔により通気性を保有し、且つ残留炭素の存在
により導電性が付与されているから、これをプラズマエ
ツチング装置のプラス極に用いればプラズマガスが均一
に放射され、むらのないエツチングが確実になされる。
(Effects of the invention) As mentioned above, the conductive porous silicon carbide sintered body of the present invention has the following effects:
It has air permeability due to its large number of pores, and conductivity due to the presence of residual carbon, so if it is used as the positive electrode of a plasma etching device, plasma gas will be emitted uniformly, resulting in even etching. It will definitely be done.

従って益々高性能が要求されるシリコンウェハー等の調
製に極めて好適であり、斯かる分野の技術的発展に大き
く寄与することとなる。また、この焼結体の製造方法も
、有機炭化水素を含浸焼成させる以外は従来の炭化珪素
の焼結技術がほぼ其の侭適用されるから、従来の設備が
使用出来且つ極めて簡易である。このように本発明の有
用性は頗る大である。
Therefore, it is extremely suitable for preparing silicon wafers, etc., which require increasingly high performance, and will greatly contribute to the technological development of this field. In addition, the method for producing this sintered body is extremely simple and allows the use of conventional equipment, since almost all conventional silicon carbide sintering techniques are applied except for impregnation with organic hydrocarbon and firing. As described above, the usefulness of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導電性多孔質炭化珪素焼結体を応用し
たプラズマエツチング装置の一例を示す概略縦断面図、
第2図は同地の例を示す概略縦断面図である。 (符号の説明) 1・・・真空ボックス、  2・・・マイナス極、 2
1・・・プラズマガスの供給管路、  22・・・プラ
ズマガスの放射域、 3・・・プラス極、 4・・・導
電性多孔質炭化珪素焼結板、 5・・・シリコンウェハ
ー、51・・・コート膜、 52・・・印刷樹脂膜。 −以上−
FIG. 1 is a schematic vertical cross-sectional view showing an example of a plasma etching apparatus to which the conductive porous silicon carbide sintered body of the present invention is applied;
FIG. 2 is a schematic vertical cross-sectional view showing an example of the same area. (Explanation of symbols) 1...Vacuum box, 2...Negative pole, 2
DESCRIPTION OF SYMBOLS 1... Plasma gas supply pipe line, 22... Plasma gas radiation area, 3... Positive electrode, 4... Conductive porous silicon carbide sintered plate, 5... Silicon wafer, 51 ...Coat film, 52...Printed resin film. -And more-

Claims (1)

【特許請求の範囲】 1、内外に連通する多数の細孔を含有し、且つ有機炭化
水素の焼成分解による残留炭素を焼結構造内に担持し、
この残留炭素により導電性が付与された導電性多孔質炭
化珪素焼結体。 2、細粒状の炭化珪素原料を所望形状に成形したものを
焼成して多孔質の焼結体となし、この焼結体に自己焼失
性有機炭化水素化合物の溶液を含浸せしめ且つ該有機炭
化水素化合物の分解温度以上で焼成して炭化珪素の焼結
構造内に上記有機炭化水素の焼成分解による残留炭素を
担持させこれにより導電性を付与せしめるようにした導
電性多孔質炭化珪素焼結体の製造方法。
[Claims] 1. Contains a large number of pores communicating inside and outside, and supports residual carbon from sintering decomposition of organic hydrocarbons in the sintered structure;
A conductive porous silicon carbide sintered body imparted with conductivity by this residual carbon. 2. Fine-grained silicon carbide raw material is molded into a desired shape and fired to form a porous sintered body, and this sintered body is impregnated with a solution of a self-burning organic hydrocarbon compound, and the organic hydrocarbon compound is impregnated with a solution of a self-burning organic hydrocarbon compound. A conductive porous silicon carbide sintered body which is fired at a temperature higher than the decomposition temperature of the compound to support residual carbon from the sintered decomposition of the organic hydrocarbon in the sintered structure of the silicon carbide, thereby imparting electrical conductivity. Production method.
JP61310579A 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same Expired - Fee Related JP2555333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310579A JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310579A JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63162588A true JPS63162588A (en) 1988-07-06
JP2555333B2 JP2555333B2 (en) 1996-11-20

Family

ID=18006935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310579A Expired - Fee Related JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2555333B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260233U (en) * 1988-10-27 1990-05-02
JPH03101126A (en) * 1989-09-13 1991-04-25 Eagle Ind Co Ltd Electrode for plasma etching apparatus use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162178A (en) * 1983-02-18 1984-09-13 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manufacture of penetratively porous silicon carbide molded body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162178A (en) * 1983-02-18 1984-09-13 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manufacture of penetratively porous silicon carbide molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260233U (en) * 1988-10-27 1990-05-02
JPH03101126A (en) * 1989-09-13 1991-04-25 Eagle Ind Co Ltd Electrode for plasma etching apparatus use

Also Published As

Publication number Publication date
JP2555333B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US3679950A (en) Ceramic capacitors
Wang et al. Hybrid manufacturing of 3D hierarchical porous carbons for electrochemical storage
US20070212567A1 (en) Aluminum Nitride Junction Body And Method Of Producing The Same
US2530546A (en) Electrophoretic deposition of insulating coating
US3772748A (en) Method for forming electrodes and conductors
US3829356A (en) Sintered ceramic bodies with porous portions
JPS63162588A (en) Electroconductive porous silicon carbide sintered body and manufacture
Bo et al. Multi‐pin dc glow discharge PECVD for uniform growth of vertically oriented graphene at atmospheric pressure
RU2149477C1 (en) Field-effect electron emitter
JPH1050678A (en) Electrode plate for plasma etching
JPS62252942A (en) Electrode plate for plasma etching
JPH03119723A (en) Electrode plate for plasma etching use
JPH06128762A (en) Electrode plate for plasma etching
US5026402A (en) Method of making a final cell electrode assembly substrate
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
RU2159972C1 (en) Material possessing low field-emission threshold
CN112335939A (en) Electronic cigarette atomizer, electronic cigarette and preparation method and application of porous ceramic body
JPH0243868Y2 (en)
JPH03126670A (en) Production of porous silicon carbide material
WO1999034385A1 (en) A field electron emitter and a method for producing it
JPH0445322B2 (en)
JP3461032B2 (en) Carbon electrode for CVD apparatus and method for producing the same
JPH11265654A (en) Electrode array containing diamond/hydrogen
KR100539976B1 (en) Electrostatic chuck and method for manufacturing the same
JPH01320278A (en) Electrically-conductive porous material and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees