JPH03101126A - Electrode for plasma etching apparatus use - Google Patents

Electrode for plasma etching apparatus use

Info

Publication number
JPH03101126A
JPH03101126A JP23761789A JP23761789A JPH03101126A JP H03101126 A JPH03101126 A JP H03101126A JP 23761789 A JP23761789 A JP 23761789A JP 23761789 A JP23761789 A JP 23761789A JP H03101126 A JPH03101126 A JP H03101126A
Authority
JP
Japan
Prior art keywords
electrode
plasma etching
porous body
reactive gas
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23761789A
Other languages
Japanese (ja)
Inventor
Haruhiro Osada
晴裕 長田
Shoji Katayama
片山 彰治
Yoshihiro Tejima
芳博 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP23761789A priority Critical patent/JPH03101126A/en
Publication of JPH03101126A publication Critical patent/JPH03101126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the irregularity in the supply amount of a reactive gas and to execute a uniform etching operation by a method wherein a conductive porous body whose gas transmission is specific is arranged and installed at an outflow port of the reactive gas. CONSTITUTION:A disk-shaped conductive porous body 9 whose gas transmission in terms of nitrogen gas is 20X10<-2> to 800X10<-2> (cc.cm/cm<2>.sec.cmH2O) is arranged and installed at an outflow port 8 of an upper-part electrode 3. Thereby, it is easy to limit the irregularity in the supply amount of a reactive gas 5 within two times over the hole face between electrodes 3, 4; a substrate 10 placed on the lower-part electrode 4 can be etched nearly uniformly. the operation to attach the electrodes to a plasma etching apparatus and the operation to set the etching condition can be completed easily in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマエツチング装置用電極に関し、特に、
半導体集積回路等の製造に用いられるプラズマエツチン
グ装置に使用する平行平板型プラズマエツチング装置用
電極に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrode for a plasma etching device, and in particular,
The present invention relates to an electrode for a parallel plate type plasma etching apparatus used in a plasma etching apparatus used for manufacturing semiconductor integrated circuits and the like.

〔従来技術および解決しようとする課題〕従来、半導体
集積回路の製造においては、湿式エツチングが行われて
いたが、回路パターンの微細化、生産性の向上等の理由
から、近年はドライエツチングが主流となっている。
[Prior art and problems to be solved] Conventionally, wet etching has been used in the production of semiconductor integrated circuits, but in recent years dry etching has become mainstream due to the miniaturization of circuit patterns and improved productivity. It becomes.

そして、中でも平行平板型電極を用いたプラズマエツチ
ング装置が広く使われている。
Among these, plasma etching apparatuses using parallel plate electrodes are widely used.

第3図には従来の平行平板型電極を用いたプラズマエツ
チング装置が示されていて、このプラズマエツチング装
置は、エツチング室22を形成するケーシング21内に
互いに対向して平行に配設される上部電極23と、下部
電極24とを具えている。
FIG. 3 shows a conventional plasma etching apparatus using parallel plate type electrodes, and this plasma etching apparatus consists of upper parts arranged parallel to each other and facing each other in a casing 21 forming an etching chamber 22. It includes an electrode 23 and a lower electrode 24.

前記上部電極23は、反応性ガス25の導入口26を有
し、内部を中空状に形成してその中空部27内を反応性
ガス25が通過可能とし、前記導入口26の対向面に反
応性ガス25を放出する流出口となる小孔28が複数個
設けられて全体が導電性材料からなっており、また、前
記下部電極24は、前記小孔28に対向した面を有し、
その面上に基板29を載置する板状の導電性材料からな
っている。
The upper electrode 23 has an inlet 26 for the reactive gas 25, has a hollow interior so that the reactive gas 25 can pass through the hollow part 27, and has a reactive gas inlet 26 on the surface opposite the inlet 26. A plurality of small holes 28 serving as outflow ports for releasing the sexual gas 25 are provided, and the whole is made of a conductive material, and the lower electrode 24 has a surface facing the small holes 28,
It is made of a plate-shaped conductive material on which a substrate 29 is placed.

そして、前記下部電極24は接地電位してアノードカッ
プリング接続するとともに、前記上部電極23との間に
高周波電源30を接続して画電極23.24間に高周波
電圧を印加できるようになっており、また、前記ケーシ
ング21には排気口31が形成されている。
The lower electrode 24 is connected to the ground potential by anode coupling, and a high frequency power source 30 is connected between the upper electrode 23 and a high frequency voltage can be applied between the picture electrodes 23 and 24. Furthermore, an exhaust port 31 is formed in the casing 21 .

上記のように構成される上部電極23を具えたプラズマ
エンチング装置にあっては、前記下部電極24上に試料
となる薄膜が形成された基板29を載置し、前記上部電
極23に、その導入口26から反応性ガス25を導入し
て中空部27内を経由して小孔28から下部電極24に
向けて反応性ガス25を放出させ、画電極23.24間
に反応性ガス25を充満させるとともに、画電極23.
24間に高周波電圧を印加し、画電極23.24間に存
在する反応性ガス25をプラズマ化し、このプラズマに
より前記下部電極24上に載置した基板29上の薄膜を
所望のパターンにエツチングするものである。
In the plasma etching apparatus equipped with the upper electrode 23 configured as described above, a substrate 29 on which a thin film to be a sample is formed is placed on the lower electrode 24, and the substrate 29 is placed on the upper electrode 23. The reactive gas 25 is introduced from the inlet 26 and released from the small hole 28 toward the lower electrode 24 through the hollow part 27, so that the reactive gas 25 is spread between the picture electrodes 23 and 24. At the same time, the picture electrode 23.
A high frequency voltage is applied between the picture electrodes 23 and 24 to turn the reactive gas 25 present between the picture electrodes 23 and 24 into plasma, and the plasma etches the thin film on the substrate 29 placed on the lower electrode 24 into a desired pattern. It is something.

しかしながら、前記のようなプラズマエツチング装置用
電極を用いたものにあっては、前記上部電極23に設け
た反応性ガス25の流出口が小孔28であるため、下部
電極24に向けて放出される反応性ガス25の濃度が基
板29面上で不均一になるとともに、画電極23.24
間に電界の乱れが発生し、基板29面上のエツチング速
度が不均一になり、正確なエツチングができないという
問題点を有していた。
However, in the case of using the electrode for a plasma etching apparatus as described above, since the outlet of the reactive gas 25 provided in the upper electrode 23 is the small hole 28, the reactive gas 25 is discharged toward the lower electrode 24. The concentration of the reactive gas 25 becomes non-uniform on the surface of the substrate 29, and the picture electrodes 23, 24
There is a problem in that the electric field is disturbed during etching, and the etching rate on the surface of the substrate 29 becomes non-uniform, making it impossible to perform accurate etching.

上記の問題点を解決するために本考案者等は先に、前記
下部電極に対向する上部電極部分を開放した流出口とす
るとともに、その流出口に導電性材料からなる多孔質体
を配設したプラズマエツチング装置用電極(特願昭63
−25668号)を提案した。
In order to solve the above problems, the present inventors first made the upper electrode part facing the lower electrode an open outlet, and arranged a porous body made of a conductive material in the outlet. electrode for plasma etching equipment (patent application 1986)
-25668).

すなわち、前記第3図に示す従来の上部電極において、
流出口部分を小孔とした上部電極に代えて、微細な連通
気孔を有する導電性材料からなる多孔質体を流出口に配
設して上部電極としたものである。
That is, in the conventional upper electrode shown in FIG.
Instead of the upper electrode having small holes at the outlet, a porous body made of a conductive material having fine communicating holes is disposed at the outlet to serve as the upper electrode.

しかしながら、上記の多孔質体を用いたプラズマエツチ
ング装置用電極にあっても、反応性ガスの流量およびエ
ツチング速度に前記小孔部分のような大きな乱れはない
ものの、上部電極に取付けた円板状の多孔質体の全面に
ついて詳細に検討した場合には、その電極の面上におい
て通気率に2倍以上のバラツキを有し、その結果、反応
性ガスの流量およびそのエツチング速度にも大きなバラ
ツキがあるものであった。
However, even with the electrode for plasma etching equipment using the above-mentioned porous material, although there is no large disturbance in the flow rate of the reactive gas and the etching rate as in the small hole part, When the entire surface of a porous body is examined in detail, it is found that the permeability varies more than twice over the surface of the electrode, and as a result, there are large variations in the flow rate of the reactive gas and its etching rate. It was something.

そして、この場合、上部電極と下部電極との間の間隔が
小さいナローギャップタイプの場合に、特にエツチング
のバラツキが大きくなるものであった。
In this case, the variation in etching becomes particularly large in the case of a narrow gap type in which the distance between the upper electrode and the lower electrode is small.

また、上記の多孔質体を前記プラズマエツチング装置に
取付ける際には、反応性ガスの供給圧を調整したりして
、O11記の反応性ガス流量のバラツキを最小とするよ
うな条件を見出す作業、すなわち、エツチングの条件出
し作業を行うが、このエツチングの条件出し作業に多く
の時間がかかり、エツチングの生産性が低下する原因と
なるという問題点を有していた。
In addition, when installing the above-mentioned porous body in the plasma etching apparatus, it is necessary to adjust the supply pressure of the reactive gas to find conditions that minimize the variation in the flow rate of the reactive gas described in O11. That is, although the etching condition setting work is performed, there is a problem in that this etching condition setting work takes a lot of time and causes a decrease in etching productivity.

本発明は前記のような従来のもののもつ問題点を解決し
たものであって、電極の全面において、反応性ガスの供
給量のバラツキを容易に2倍以内にすることができ、均
一なエツチングができるとともに、プラズマエツチング
装置への電極の取付けおよびエツチングの条件出しを簡
単にでき、エツチングの生産性を向上することができる
プラズマエツチング装置用電極を提供することを目的と
している。
The present invention solves the problems of the conventional methods as described above, and it is possible to easily reduce the variation in the amount of reactive gas supplied over the entire surface of the electrode to within twice, and to achieve uniform etching. It is an object of the present invention to provide an electrode for a plasma etching apparatus, which can easily attach the electrode to the plasma etching apparatus and set etching conditions, and improve etching productivity.

〔課題を解決するための手段] 上記の目的を達成するために本発明は、ケーシング内に
配設され、中空状をなすとともに、その内部から反応性
ガスを流出する上部電極と、この上部電極に対向して配
設するとともにその面上に基板を載置する下部電極とを
県え、+il記両重両電極間周波電圧を印加し、前記下
部電極上に載置した基板をエツチングするプラズマエツ
チング装置に使用するためのプラズマエツチング装置用
電極であって、このプラズマエツチング用電極の上部電
極は、反応性ガスの流出口に、窒素ガス相当の通気率が
20X10−2〜800X 10−” (cc−cm/
c+ff−5ec  −cmH,O)の導電性多孔質体
を配設した構成を有している。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an upper electrode that is disposed inside a casing, has a hollow shape, and from which a reactive gas flows out, and this upper electrode. A lower electrode is placed facing the lower electrode and a substrate is placed on the surface of the lower electrode, and a double frequency voltage is applied between the two electrodes to etch the substrate placed on the lower electrode. This is an electrode for a plasma etching device for use in an etching device, and the upper electrode of this plasma etching electrode has an air permeability of 20×10-2 to 800×10-” equivalent to nitrogen gas at the outlet of the reactive gas. cc-cm/
It has a structure in which a conductive porous body of c+ff-5ec-cmH,O) is disposed.

〔作用〕[Effect]

本発明は上記の構成を採用したことにより、電極面の全
面において、反応性ガスの供給量のバラツキを2倍以内
とすることが容易となり、下部電極面上に載置した試料
に対してほぼ均一なエツチングを行うことができるとと
ともに、プラズマエツチング装置への電極の取付けおよ
びエツチングの条件出しが短時間でできることとなる。
By adopting the above configuration, the present invention makes it easy to reduce the variation in the amount of reactive gas supplied over the entire electrode surface to within twice that of the sample placed on the lower electrode surface. Uniform etching can be performed, and electrodes can be attached to the plasma etching apparatus and etching conditions can be set in a short time.

〔実施例〕〔Example〕

以下、図面に示す本発明の実施例について説明する。 Embodiments of the present invention shown in the drawings will be described below.

第1図には本発明によるプラズマエツチング装置用電極
を用いたプラズマエツチング装置が示されていて、この
プラズマエツチング装置は、エツチング室2を形成する
ケーシング1内に互いに対向し゛(平行に配設される、
それぞれ全体が導電性材料からなる上部電極3と、下部
電極4とを具え、前記上部電極3は、反応性ガス5の導
入口6を有し、内部を中空状に形成してその中空部7内
を窒素ガスなどの反応性ガス5が通過可能とし、前記導
入口6の対向面に流出口8を有するとともに、その流出
口8に、窒素ガス相当の通気率が20X10−2〜80
0X10−”(cc−cm/ctM −5ee  −c
m H,O)の円板状の導電性多孔質体9が配設されて
いる。
FIG. 1 shows a plasma etching apparatus using electrodes for a plasma etching apparatus according to the present invention, which are arranged in parallel to each other in a casing 1 forming an etching chamber 2. Ru,
The upper electrode 3 includes an upper electrode 3 and a lower electrode 4, each of which is entirely made of a conductive material. A reactive gas 5 such as nitrogen gas can pass through the interior, and an outlet 8 is provided on the opposite surface of the inlet 6, and the outlet 8 has an air permeability equivalent to nitrogen gas of 20X10-2 to 80.
0X10-”(cc-cm/ctM-5ee-c
A disc-shaped conductive porous body 9 of m H, O) is disposed.

また、前記上部電極3の流出口8に設けられる多孔質体
9に対向した下部電極4の面上には基板10が載置され
、前記下部電極4は接地電位してアノードカップリング
接続するとともに、前記上部電極3との間に高周波電源
11を接続して画電極3.4間に高周波電圧を印加でき
るようになっており、さらに、前記ケーシング1には排
気口12が形成されている。
Further, a substrate 10 is placed on the surface of the lower electrode 4 facing the porous body 9 provided at the outlet 8 of the upper electrode 3, and the lower electrode 4 is grounded and connected by anode coupling. A high frequency power source 11 is connected between the upper electrode 3 and the picture electrodes 3 and 4, so that a high frequency voltage can be applied between the picture electrodes 3 and 4. Furthermore, an exhaust port 12 is formed in the casing 1.

上記のように構成される上部電極3を具えたプラズマエ
ツチング装置にあっては、前記下部電極4面上に試料と
なるF#膜が形成された基板10を載置し、前記上部電
極3に、その導入口6から反応性ガス5を導入して中空
部7内を経由して多孔質体9から下部電極4に向けて反
応性ガス5を放出させ、画電極3.4間の空間に反応性
ガス5を充満さ・Uるとともに、画電極3.4間に高周
波電圧を印加し、画電極3.4間に存在する反応性ガス
5をプラズマ化し、このプラズマにより前記下部電極4
面上に載置した基板10の薄膜を所望のパターンにエツ
チングすることができる。
In the plasma etching apparatus equipped with the upper electrode 3 configured as described above, the substrate 10 on which the F# film serving as a sample is formed is placed on the surface of the lower electrode 4, and the substrate 10 is placed on the upper electrode 3. , the reactive gas 5 is introduced from the inlet 6 and discharged from the porous body 9 toward the lower electrode 4 through the hollow part 7, into the space between the picture electrodes 3 and 4. While filling the reactive gas 5, a high frequency voltage is applied between the picture electrodes 3 and 4 to turn the reactive gas 5 present between the picture electrodes 3 and 4 into plasma, and this plasma causes the lower electrode 4 to
A thin film of substrate 10 placed on a surface can be etched into a desired pattern.

そして、本発明においては、前記のように上部電極3の
流出口8に窒素ガス相当の通気率が20X 10−” 
〜800X 10−” (cc−cta/d−sec 
 −cmH,O)の円板状の導電性多孔質体9を配設し
たので、画電極3.4間の全面において、反応性ガス5
の供給量のバラツキを2倍以内とすることが容易となり
、下部電極4面上に載置した基板10に対してほぼ均一
なエツチングを行うことができることとなる。
In the present invention, the air permeability equivalent to nitrogen gas at the outlet 8 of the upper electrode 3 is 20X 10-'' as described above.
~800X 10-” (cc-cta/d-sec
Since the disc-shaped conductive porous body 9 of -cmH,O) is disposed, the reactive gas 5
It becomes easy to reduce the variation in the supply amount to within twice the amount of etching, and it becomes possible to perform substantially uniform etching on the substrate 10 placed on the surface of the lower electrode 4.

また、プラズマエツチング装置への電極の取付けおよび
エツチングの条件出しの作業は、上記の通気率を有する
多孔質体9を有するものにあっては、極めて容易に、か
つ、短時間でその作業を完了することができた。
In addition, the work of attaching the electrode to the plasma etching apparatus and setting the etching conditions is extremely easy and can be completed in a short time if the porous body 9 has the above-mentioned air permeability. We were able to.

参考までに、従来のプラズマエツチング装置用電極に使
用されていた多孔質体の窒素ガス相当の通気率は、0.
lX10−’〜8×10(cc−c+++/c+1−s
ec  °cmHt O)であった。
For reference, the permeability of the porous material used in conventional electrodes for plasma etching equipment, equivalent to nitrogen gas, is 0.
lX10-'~8x10(cc-c+++/c+1-s
ec °cmHtO).

そして、上記の通気率、すなわち、窒素ガス相当で0.
  I X 10−” 〜8 X 10−” (cc−
ell/d−sec  −、craHz O)の場合に
は、電極の全面において、反応性ガスの供給量のバラツ
キを2倍以内とすることが極めて困難であり、また、エ
ツチングの条件出しの作業に長時間を要していた。
Then, the air permeability mentioned above, that is, 0.0% in terms of nitrogen gas equivalent.
I X 10-" ~ 8 X 10-" (cc-
ell/d-sec -, craHz O), it is extremely difficult to keep the variation in the amount of reactive gas supplied over the entire surface of the electrode within twice, and it is difficult to set the etching conditions. It took a long time.

一般に多孔質体の厚さと反応性ガスなどの流体の流量と
の関係は以下の式で示される。
Generally, the relationship between the thickness of a porous body and the flow rate of a fluid such as a reactive gas is expressed by the following equation.

Q=(k−A・Δp/L)  ・・・・・・(1)ここ
で、Qは流体流量、kは多孔質体固有の通気率、Δは通
気面積、Δpは多孔質体を通過する前後の流体の圧力差
、Lは多孔質体の厚さをそれぞれ表す。
Q=(k-A・Δp/L) ・・・・・・(1) Here, Q is the fluid flow rate, k is the air permeability specific to the porous body, Δ is the ventilation area, and Δp is the flow rate through the porous body. The pressure difference between the fluid before and after the process, and L represents the thickness of the porous body.

すなわち、通気率が異なる場合、同じ流体流量とするた
めには、多孔質体を通過する前後の流体の圧力差Δpを
変えてやらなければならない。
That is, when the air permeability is different, the pressure difference Δp between the fluid before and after passing through the porous body must be changed in order to maintain the same fluid flow rate.

また、通気率kが大きくなるほどその圧力差Δpは小さ
くできるものである。
Further, as the air permeability k increases, the pressure difference Δp can be made smaller.

また、通気率とその通気率のバラツキの大きさとの関係
については以下の関係がある。
Further, the relationship between the air permeability and the magnitude of the variation in the air permeability is as follows.

すなわち、多孔質体のボアを円管と仮定する1 と、Hagen−Poiseuilleの式より、 u−(gc/32μり・d2 ・Δp ここで、Uは流速、gc は重力換算係数、μは流体粘
度、!は多孔質体の厚さ、dは円管の管径、Δpは圧損
を表す。
That is, assuming that the bore of the porous body is a circular pipe1, and from the Hagen-Poiseuille equation, u-(gc/32μ ri・d2・Δp where U is the flow velocity, gc is the gravity conversion coefficient, and μ is the fluid viscosity, ! is the thickness of the porous body, d is the diameter of the circular tube, and Δp is the pressure drop.

そして、通気率は、(gc/32μ)・d2に相当する
The air permeability corresponds to (gc/32μ)·d2.

そこで、k−α・ (gc/32μ)、d!但し、αは
定数。
Therefore, k−α・(gc/32μ), d! However, α is a constant.

として、kのdに対する感度分析をする。Let us perform a sensitivity analysis of k with respect to d.

すなわち、k’/にとdとの関係を求めると、k’/に
=[2,α・(gc/32μ)・dl/[α・(gc/
32μ)・d”1 一2/d となり、dが大きいほど通気率の変化は小さいことがわ
かる。
In other words, when finding the relationship between k'/ and d, k'/ = [2, α・(gc/32μ)・dl/[α・(gc/
32μ)・d"1 -2/d, and it can be seen that the larger d is, the smaller the change in air permeability is.

すなわち、通気率が大きい(dが大きい)はど通気率の
バラツキ(k“/k)が小さくなる。
That is, the larger the air permeability (d is larger), the smaller the variation in air permeability (k''/k) becomes.

したがって、通気率が大きいと反応性ガス流2 量のバラツキが小さくなり、電極取付けおよびエツチン
グの条件出しが容易となる。
Therefore, when the air permeability is high, the variation in the amount of reactive gas flow 2 becomes small, and it becomes easy to set conditions for electrode attachment and etching.

一方、多孔質体の通気率の上限は、エツチング条件との
関係で規制され、本発明における上記の多孔質体の窒素
ガス相当の通気率は、20XIO−2〜800 X 1
0−” (cc−c+n/c+II ・sec・cmH
,0)であれば本発明の目的を達成できるが、好ましく
は20X10−2〜400X10(cc−cm’/c+
fl・sec  −cmH,O)の範囲である。
On the other hand, the upper limit of the permeability of the porous body is regulated in relation to the etching conditions, and the permeability of the porous body in the present invention equivalent to nitrogen gas is 20XIO-2 to 800X1.
0-” (cc-c+n/c+II ・sec・cmH
, 0), the object of the present invention can be achieved, but preferably 20X10-2 to 400X10 (cc-cm'/c+
fl·sec −cmH,O).

上記の多孔質体を製造するには、多孔質体の原料となる
焼結材料粒子の粒径および焼結条件などを適宜に選択す
ることにより製造できる。
The above porous body can be manufactured by appropriately selecting the particle size of the sintered material particles serving as the raw material of the porous body, sintering conditions, and the like.

なお、上記の多孔質体の材質は、導電性材料からなる通
常多孔質体として用いられるセラミック材、金属材など
を用いることができる。
Note that the material of the above porous body may be a ceramic material, a metal material, etc., which are usually used as a porous body made of an electrically conductive material.

以下、実験例により本発明をさらに具体的に説明する。The present invention will be explained in more detail below using experimental examples.

実験例 平均粒径20 Q /7 mの炭化ケイ素粒子を原料と
し成形し、このものに金属ケイ素を真空中1500 ”
Cで22重景%溶浸して、直径140mm、厚み3.4
mmの円板状の導電性多孔質体を調製した。
Experimental example Silicon carbide particles with an average particle size of 20 Q/7 m are used as a raw material and molded, and silicon metal is added to this material in a vacuum for 1500 m.
Infiltrated with C at 22%, diameter 140mm, thickness 3.4
A conductive porous body in the shape of a disc of mm was prepared.

上記で得られたものは、窒素ガス相当の通気率が30 
X 10−” (cc −cm/cnl−sec  −
cmH。
The material obtained above has an air permeability equivalent to nitrogen gas of 30
X 10-” (cc-cm/cnl-sec-
cmH.

0)の多孔質体であり、多孔性体全面上の通気率のバラ
ツキは1.2倍以内であった。
0), and the variation in air permeability over the entire surface of the porous body was within 1.2 times.

上記の多孔質体をプラズマエツチング装置用電極の流出
口に取付け、実際にエツチングして、適性なエツチング
ができる条件出しを設定したが、それに要した所要時間
を測定したところ15分間かかった。
The porous material described above was attached to the outlet of an electrode for a plasma etching device, and conditions were set to allow proper etching by actually etching, but the time required for this was measured and was 15 minutes.

これに対し、平均粒径50μ■1の炭化ゲイ素粒子を原
料とし成形し、上記と同様に、直径1140 mm、厚
み3.4mmの円板状の導電性多孔質体を調製した。
On the other hand, a disc-shaped conductive porous body having a diameter of 1140 mm and a thickness of 3.4 mm was prepared in the same manner as described above by using silicon carbide particles having an average particle size of 50 .mu.m as a raw material.

上記で得られたものは、窒素ガス相当の通気率が3 X
 10−2(cc −cm/cl−sec  −cmH
z ○)の多孔質体であり、多孔性体全面上の通気率の
バラツキは2.8倍であった。
The one obtained above has an air permeability equivalent to nitrogen gas of 3
10-2(cc-cm/cl-sec-cmH
z ○), and the variation in air permeability over the entire surface of the porous body was 2.8 times.

上記の多孔質体をプラズマエツチング装置用電極の流出
口に取付け、実際にエツチングして、上記と同様のエツ
チングの条件出しの所要時間を同じオペレータにより行
い測定したところ4時間かかった。
The above porous body was attached to the outlet of an electrode for a plasma etching apparatus, and the time required to set the same etching conditions as above when actually etching was measured by the same operator, and it took 4 hours.

上記の結果より、本発明による窒素ガス相当の通気率が
20X10−2〜800X 10−” (cc・cm/
cJ ・sec  −cmHz o)である多孔質体を
流出口に配設した電極を用いたプラズマエツチング装置
においては、その電極面での通気率のバラツキを容易に
2倍以内とすることができるので、均一なエツチングを
できることとなり、また、エツチング装置への取付けに
際して、その適性な条件出しまでの所要時間を大幅に短
縮することができ、エツチングの生産性を大幅に向上す
ることができることとなる。
From the above results, the air permeability equivalent to nitrogen gas according to the present invention is 20X10-2 to 800X10-" (cc・cm/
In a plasma etching device using an electrode in which a porous material with a temperature of , it is possible to perform uniform etching, and when installing it in an etching device, the time required to obtain suitable conditions can be greatly shortened, and etching productivity can be greatly improved.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成したので、電極面での通気率
のバラツキを容易に2倍以内とすることができるので、
均一なエツチングをできる5 こととなり、また、エツチング装置への取付けに際して
、その適性な条件出しまでの所要時間を大幅に短縮する
ことができ、プラズマエツチング処理の生産性を大幅に
向上することができるなどのすぐれた効果を有するもの
である。
Since the present invention is configured as described above, it is possible to easily reduce the variation in air permeability on the electrode surface to within twice.
Uniform etching can be achieved5, and the time required to establish suitable conditions for installation in an etching device can be greatly shortened, greatly improving the productivity of plasma etching processing. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案によるプラズマエツチング装置用電極を
配設したプラズマエツチング装置の概略説明図、第2図
は本考案によるプラズマエツチング装置用電極に用いた
多孔質体の斜視図、第3図は従来のプラズマエツチング
装置用電極を配設したプラズマエツチング装置の概略説
明図である。 1 、2 2 、2 3 、2 4 、2 5 、2 6 、2 1・・・・・・ケーシング 2・・・・・・エツチング室 3・・・・・・上部電極 4・・・・・・下部電極 5・・・・・・反応性ガス 6・・・・・・導入口 6 7.27・・・・・・中空部 8・・・・・・流′出口 9・・・・・・多孔質体 10.29・・・・・・基板 11.30・・・・・・高周波電源 12.31・・・・・・排気D 28・・・・・・小孔
FIG. 1 is a schematic explanatory diagram of a plasma etching device equipped with an electrode for a plasma etching device according to the present invention, FIG. 2 is a perspective view of a porous body used in the electrode for a plasma etching device according to the present invention, and FIG. 1 is a schematic explanatory diagram of a plasma etching apparatus equipped with a conventional plasma etching apparatus electrode; FIG. 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 1...Casing 2...Etching chamber 3...Upper electrode 4...・Lower electrode 5...Reactive gas 6...Inlet 6 7.27...Hollow section 8...Flow outlet 9...・Porous body 10.29... Substrate 11.30... High frequency power supply 12.31... Exhaust D 28... Small hole

Claims (1)

【特許請求の範囲】[Claims] (1)ケーシング内に配設され、中空状をなすとともに
、その内部から反応性ガスを流出する上部電極と、該上
部電極に対向して配設するとともにその面上に基板を載
置する下部電極とを具え、前記両電極間に高周波電圧を
印加し、前記下部電極上に載置した基板をエッチングす
るプラズマエッチング装置に使用するためのプラズマエ
ッチング装置用電極であって、このプラズマエッチング
用電極の上部電極は、反応性ガスの流出口に、窒素ガス
相当の通気率が20×10^−^2〜800×10^−
^2(cc・cm/cm^2・sec・cmH_2O)
の導電性多孔質体を配設したことを特徴とするプラズマ
エッチング装置用電極。
(1) An upper electrode that is arranged inside the casing and has a hollow shape and from which reactive gas flows out, and a lower part that is arranged opposite to the upper electrode and on which the substrate is placed. an electrode for use in a plasma etching apparatus for etching a substrate placed on the lower electrode by applying a high frequency voltage between the two electrodes, the electrode for plasma etching The upper electrode has an air permeability equivalent to nitrogen gas of 20 x 10^-^2 to 800 x 10^- at the reactive gas outlet.
^2 (cc・cm/cm^2・sec・cmH_2O)
1. An electrode for a plasma etching device, characterized by disposing a conductive porous body.
JP23761789A 1989-09-13 1989-09-13 Electrode for plasma etching apparatus use Pending JPH03101126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23761789A JPH03101126A (en) 1989-09-13 1989-09-13 Electrode for plasma etching apparatus use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23761789A JPH03101126A (en) 1989-09-13 1989-09-13 Electrode for plasma etching apparatus use

Publications (1)

Publication Number Publication Date
JPH03101126A true JPH03101126A (en) 1991-04-25

Family

ID=17017976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23761789A Pending JPH03101126A (en) 1989-09-13 1989-09-13 Electrode for plasma etching apparatus use

Country Status (1)

Country Link
JP (1) JPH03101126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1155599A1 (en) * 1999-02-01 2001-11-21 Sigma Technologies International, Inc. Atmospheric steady-state glow-discharge plasma
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162588A (en) * 1986-12-25 1988-07-06 京セラ株式会社 Electroconductive porous silicon carbide sintered body and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162588A (en) * 1986-12-25 1988-07-06 京セラ株式会社 Electroconductive porous silicon carbide sintered body and manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1155599A1 (en) * 1999-02-01 2001-11-21 Sigma Technologies International, Inc. Atmospheric steady-state glow-discharge plasma
EP1155599A4 (en) * 1999-02-01 2007-03-28 Sigma Technologies Internation Atmospheric steady-state glow-discharge plasma
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus

Similar Documents

Publication Publication Date Title
KR101056219B1 (en) Showerhead and Substrate Processing Unit
JP4814259B2 (en) Method for manufacturing gas distribution member for plasma processing apparatus and method for adjusting gas permeability of the member
JP5185251B2 (en) Gas injection system with reduced contamination and method of use thereof
KR101028385B1 (en) Stepped upper electrode for plasma processing uniformity
SG190062A1 (en) Rapid and uniform gas switching for a plasma etch process
JP2008047883A (en) Shower plate and its fabrication process, plasma processing equipment employing it, plasma processing method and process for fabricating electronic device
CN101144154B (en) Plasma uniformity control by gas diffuser hole design
WO2002023610A1 (en) Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device
JPH0473289B2 (en)
JPH03101126A (en) Electrode for plasma etching apparatus use
JP2550037B2 (en) Dry etching method
CN110291225B (en) Electrode plate for plasma processing apparatus and method for regenerating electrode plate for plasma processing apparatus
CN216054569U (en) Cavity of plasma etching machine
EP0140975A1 (en) Reactive ion etching apparatus
JPH0437124A (en) Plasma processor
CN2775832Y (en) Air inlet nozzle and its inductive coupling plasma device
JP4180896B2 (en) Plasma processing equipment
JPH11281307A (en) Electrode plate, manufacture of electrode plate and measuring method of surface roughness of its small diameter hole inner wall
JPH02106925A (en) Dry etching apparatus
JPS6230329A (en) Dry etching device
JPH0797690A (en) Plasma cvd device
WO2020023199A1 (en) Systems and methods for pedestal configuration
JP2002164329A (en) Plasma treatment apparatus
TWI615918B (en) A method for mounting and fixing a substrate
TWI795807B (en) Gas flow adjustment device and adjustment method, and plasma processing device