JPS63162518A - Porous spherical silica gel and its production - Google Patents

Porous spherical silica gel and its production

Info

Publication number
JPS63162518A
JPS63162518A JP61309909A JP30990986A JPS63162518A JP S63162518 A JPS63162518 A JP S63162518A JP 61309909 A JP61309909 A JP 61309909A JP 30990986 A JP30990986 A JP 30990986A JP S63162518 A JPS63162518 A JP S63162518A
Authority
JP
Japan
Prior art keywords
silica gel
particle diameter
gel
porous spherical
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61309909A
Other languages
Japanese (ja)
Inventor
Haruo Nagafune
長船 晴夫
Hiroyoshi Mizuguchi
博義 水口
Masaaki Ota
昌昭 大田
Katsuhiko Kada
勝彦 加田
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61309909A priority Critical patent/JPS63162518A/en
Publication of JPS63162518A publication Critical patent/JPS63162518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain porous spherical silica gel which has fine pore diameter especially suitable for sampling a vital high polymer or the like, by using the gelled substance of amorphous fine silica particles having a range of specified mean particle diameter and specifying the respective ranges of both fine pore diameter and the mean particle diameter. CONSTITUTION:An aq. soln. dispersed with amorphous fine silica particles having comparatively large prescribed particle diameter is dispersed into a hydrophobic organic solvent in a fine droplet state. Hydrated gelled substance is obtained by flocculating the amorphous fine silica particles with each other in these individual droplets. Then porous spherical silica gel having comparatively large fine pore diameter, namely 50-1,000Angstrom is obtained by heat-treating this gelled substance. The mean particle diameter of the above-mentioned amorphous fine silica particles is 0.01-1.0mum and the average particle diameter of the gelled substance is 10-100mum. Further as the hydrophobic organic solvent, i.e. liquid paraffin and silicone oil or the like are used. Also the heat treatment is preferably performed at >=400 deg.C for several hour.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は多孔性球状シリカゲルおよびその製;”a+
−111’l+X  Je ILI−i’#l / l
+ffJ弘/すh m −y Lグラフ用充填材として
の担体等に用いられろ多孔性球状シリカゲルおよびその
製造法に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to porous spherical silica gel and its product;
-111'l+X Je ILI-i'#l/l
+ffJ Hiromu/Shm-y L This invention relates to a porous spherical silica gel used as a carrier, etc. as a filler for graphs, and a method for producing the same.

(ロ)従来の技術 従来、各種クロマトグラフ用のカラム充填材や酵素固定
化用担体として用いられる多孔性球状体、ことに微小多
孔性球状体の製造法としては、金属アルコキシドを原料
とし、その加水分解液をキシレン、ヘキサン等の有機溶
媒中に分散させて球状にゲル化させる方法(特願昭59
−34877 )等がある。
(b) Conventional technology Conventionally, the method for producing porous spheres, especially microporous spheres, used as column packing materials for various chromatographs and carriers for enzyme immobilization has been to use metal alkoxides as raw materials. A method of dispersing the hydrolyzed solution in an organic solvent such as xylene or hexane to form a spherical gel (Patent application 1983)
-34877) etc.

(ハ)発明が解決しようとする問題点 最近の高速液体クロマトグラフィは、タンパク質、核酸
、酵素、糖等の生体高分子の分収用等に用途が広がって
おり、これらの場合にはカラム充填材の細孔径は数10
0〜1000人のものが要求されるが、上記従来の方法
では100Å以上の細孔径を何する多孔性球状体を得る
ことは困難であろうこの発明はかかる状況に鑑みなされ
たものであり、ことに上記生体高分子等の分取用として
好適な細孔径を有する多孔性球状シリカゲルおよびその
製造法を提供しようとするものである。
(c) Problems to be solved by the invention Recently, the use of high-performance liquid chromatography has expanded to the separation of biopolymers such as proteins, nucleic acids, enzymes, and sugars. Pore diameter is several 10
However, it would be difficult to obtain porous spherical bodies with pore diameters of 100 Å or more using the conventional methods described above.This invention was made in view of this situation. In particular, it is an object of the present invention to provide a porous spherical silica gel having a pore size suitable for use in fractionating the above-mentioned biopolymers, etc., and a method for producing the same.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、平均粒径0.01〜1゜0
μmの無定形シリカ微粒子分散水性液の液滴を疎水性有
機溶媒中に100℃以下で分散保持することにより、上
記シリカ微粒子のゲル状物からなる球状体を分散状態で
形成させ、得られる平均粒径10〜100μmの球状ゲ
ルを分離した後該球状ゲルを熱処理に付すことにより5
0〜tooo人の細孔径を有するシリカゲルを得ること
を特徴とする多孔性球状シリカゲルの製造法が提供され
る。
(d) Means for solving the problem Thus, according to the present invention, the average particle size is 0.01 to 1°0.
By dispersing and maintaining droplets of an aqueous liquid dispersing micrometer-sized amorphous silica particles in a hydrophobic organic solvent at 100°C or lower, spherical bodies consisting of a gel-like substance of the silica particles are formed in a dispersed state, and the resulting average After separating the spherical gel with a particle size of 10 to 100 μm, the spherical gel is subjected to heat treatment to obtain 5
A method for producing a porous spherical silica gel is provided, which is characterized in that the silica gel has a pore diameter of 0 to 0.000 m.

この発明は、疎水性有機溶媒中に、比較的大きい所定粒
径の無定形シリカ微粒子分散水性液を微小な液滴状で分
散し、これら個々の液滴中で無定形シリカ微粒子同士を
凝集して含水ゲル状物とし、ざらに該ゲル状物を熱処理
することにより、比較的大きい細孔径を有する微小なゲ
ル状多孔体を得ることを特徴とする。
This invention involves dispersing an aqueous liquid containing amorphous silica particles having a relatively large predetermined particle size in the form of minute droplets in a hydrophobic organic solvent, and coagulating the amorphous silica particles in each droplet. The method is characterized in that a fine gel-like porous body having a relatively large pore diameter is obtained by making a hydrous gel-like material and then roughly heat-treating the gel-like material.

この発明に用いる平均粒径0.01〜1.0μmの無定
形シリカ微粒子としては、コロイダル・シリカや超微粒
子状無水シリカとして知られているものが適している。
As the amorphous silica fine particles having an average particle size of 0.01 to 1.0 μm used in this invention, those known as colloidal silica or ultrafine anhydrous silica are suitable.

面者は例えばスノーテックス−20L(登録商標:日産
化学社製)、後者は例えばアエロジル(登録商標;日本
アエロノル社製)等の名で人手可能である。
The latter can be prepared manually under the name of, for example, Snowtex-20L (registered trademark: manufactured by Nissan Chemical Co., Ltd.), and the latter can be prepared manually under the name of, for example, Aerosil (registered trademark; manufactured by Nippon Aeronol Co., Ltd.).

この発明に用いる無定形シリカ微粒子分散水性液は、上
記所定粒径のシリカ微粒子を水または少量の親水性有機
溶媒(例えばエタノール)が混合された水性溶媒に分散
されたものを意味する。該分散水性液は、上記微粒子が
一般に帯電しているときが多いため、その微粒子の凝集
の点から上記分散水性液の液性か調製される。上記無定
形シリカ微粒子は通常負に帯電している場合が多いため
、該微粒子分散水溶液はpH3〜7で用いられることが
好ましい。一般に上記無定形シリカ微粒子分散水性液は
調製されたときにすでに弱酸性を示I。
The amorphous silica fine particle dispersion aqueous liquid used in the present invention means one in which the silica fine particles having the above-mentioned predetermined particle size are dispersed in an aqueous solvent mixed with water or a small amount of a hydrophilic organic solvent (for example, ethanol). Since the fine particles in the aqueous dispersion are generally electrically charged, the liquid properties of the aqueous dispersion are adjusted from the point of agglomeration of the fine particles. Since the above-mentioned amorphous silica fine particles are usually negatively charged, it is preferable that the fine particle dispersion aqueous solution is used at a pH of 3 to 7. In general, the above-mentioned amorphous silica fine particle dispersion aqueous liquid already exhibits weak acidity when it is prepared.

ているが、そうでないときは弱塩基性水溶液、例えばア
ンモニア水等で所定の液性に調製して用いられることが
好ましい。
However, if this is not the case, it is preferable to use a weakly basic aqueous solution, such as aqueous ammonia, to obtain a predetermined liquid consistency.

この発明に用いる疎水性有機溶媒としては、上記無定形
シリカ微粒子分散水性液と非相溶であるが分散可能であ
ることを要し、粘度の比較的低いもので易揮発性のもの
が好ましい。ここでいう易揮発性とは、常温下または3
00〜500 ℃程度までの加熱開放下において容易に
揮発しうろことを意味する。かような有機溶媒としては
例えば流動パラフィン、シリコンオイル、フッ素系不活
性液体(フロリナート、3M社製)の他、ペンタン、ヘ
キサン、ヘプタン、オクタン、シクロヘキサン等の炭素
数4〜lOの炭化水素類や、ベンゼン、トルエン、キシ
レン等の芳香族炭化水素類が挙げられる。
The hydrophobic organic solvent used in the present invention must be incompatible with but dispersible in the aqueous aqueous solution in which the amorphous silica particles are dispersed, and preferably has a relatively low viscosity and is easily volatile. Easily volatile here means at room temperature or
It means a scale that easily volatilizes when exposed to heat up to about 00 to 500°C. Examples of such organic solvents include liquid paraffin, silicone oil, fluorinated inert liquid (Florinart, manufactured by 3M), as well as hydrocarbons having 4 to 10 carbon atoms such as pentane, hexane, heptane, octane, and cyclohexane. , benzene, toluene, xylene, and other aromatic hydrocarbons.

また親水性基を存していても実質的に疎水生のa機溶媒
も用いることができる。この例としてはペンタノール類
が挙げられる。
Furthermore, even if a hydrophilic group is present, a substantially hydrophobic a-organic solvent can also be used. Examples of this include pentanols.

この発明の方法において、前記調製される無定形シリカ
微粒子分散水性液のシリカ濃度(または粘性)は、最終
的に得られる多孔性球状シリカゲルの平均粒径を影響す
る点から所定の濃度(粘性)範囲が選択されるが、上記
平均粒径はまた後述するごとく他の種々な条件によって
も影響されるため限定できない。F記選枳されるiFr
 S−の15K(粘性)@囲としては、例えば0.1−
10 c、p、が挙げられるが、具体的には下記の実施
例の記載が参照される。
In the method of the present invention, the silica concentration (or viscosity) of the amorphous silica fine particle dispersion aqueous liquid prepared above is set to a predetermined concentration (or viscosity) from the viewpoint of influencing the average particle size of the porous spherical silica gel finally obtained. Although a range is selected, the average particle size cannot be limited because it is also influenced by various other conditions as described below. iFr selected by F
For example, the 15K (viscosity) @ range of S- is 0.1-
10 c, p, and specifically, the description of the following examples can be referred to.

上記のごとく調製された無定形シリカ微粒子分散水性液
は、前記疎水性有機溶媒中に分散される。
The amorphous silica fine particle dispersion aqueous liquid prepared as described above is dispersed in the hydrophobic organic solvent.

該疎水性有機溶媒中への分散は、1)一括添加しついで
撹拌して行ってもよく、11)予め疎水性有機溶媒を撹
拌しておいてそこに上記分散液を添加して行っもよく、
111)疎水性有機溶媒に上記分散液を添加後撹拌を行
ってもよいが、通常、11)の方法が用いられる。この
場合上記無定形シリカ微粒子分散液と疎水性有機溶媒と
の混合体積比は、前者が後者の1/3以下となるように
調製することが、得られる多孔性球状シリカゲルの均一
性の点で好ましい。なお、撹拌は分散した分散水性液中
のシリカ微粒子がゲル化されるまで撹拌器等で行うのが
適している。またこの撹拌度合により最終的に得られる
多孔性球状シリカゲルの粒径を調整することもできる。
Dispersion into the hydrophobic organic solvent may be carried out by 1) adding it all at once and stirring, or 11) stirring the hydrophobic organic solvent in advance and adding the above dispersion thereto. ,
111) Although the above dispersion may be stirred after being added to the hydrophobic organic solvent, the method of 11) is usually used. In this case, the mixing volume ratio of the amorphous silica fine particle dispersion and the hydrophobic organic solvent should be adjusted so that the former is 1/3 or less of the latter, from the viewpoint of uniformity of the porous spherical silica gel obtained. preferable. Note that it is suitable to carry out stirring using a stirrer or the like until the silica fine particles in the dispersed aqueous liquid are gelled. Further, the particle size of the porous spherical silica gel finally obtained can be adjusted by adjusting the degree of stirring.

具体的には下記の実施例が参照される。また撹拌処理は
上記混合溶液が常温〜100℃の温度に保持されて行わ
れる。
Specifically, reference is made to the Examples below. Further, the stirring treatment is performed while the mixed solution is maintained at a temperature of room temperature to 100°C.

上記のごとき分散処理および穏やかな加熱処理によって
個々の分散水性液液滴中で無定形シリカ微粒子が凝集し
てゲル化が進行し、含水ゲル状物が形成される。
Through the dispersion treatment and gentle heat treatment as described above, amorphous silica fine particles coagulate in each dispersed aqueous liquid droplet, gelation progresses, and a hydrogel is formed.

上記のごとく形成された含水ゲル状物は、その場で加熱
して9機溶媒を揮発さ′せて分離するか、機械的手段(
フィルタ等)等により分離して加熱して上記何機溶媒を
除去した後、熱処理に付して含水分を除去することによ
り多孔性球状シリカゲルが得られる。上記熱処理条件と
しては含水分が除去できうる条件であればいずれであっ
てもよいが、水分除去以外に形成されろ上記シリカゲル
の強度付与の点を考慮した場合、従って400℃以上の
温度で数時間処理することが好ましい。
The water-containing gel formed as described above can be separated by heating on the spot to volatilize the solvent, or by mechanical means (
A porous spherical silica gel is obtained by separating with a filter, etc.), heating to remove the above-mentioned solvent, and then heat-treating to remove moisture. The above heat treatment conditions may be any conditions as long as the water content can be removed, but considering the strength imparting of the silica gel that is formed other than water removal, it is therefore necessary to Time processing is preferred.

以上の方法により50−1000人の細孔径を有する多
孔性球状シリカゲルが得られる。したがってこの発明は
また、平均粒径0.01〜1.0μmの無定形ノリカ微
粒子からなり、50〜1000人の細孔径を存しかつ平
均粒径10〜100μmである多孔性球状シリカゲルを
提供するものである。
By the above method, a porous spherical silica gel having a pore diameter of 50-1000 pores can be obtained. Therefore, the present invention also provides a porous spherical silica gel consisting of amorphous Norica fine particles with an average particle size of 0.01 to 1.0 μm, having a pore size of 50 to 1000 μm, and having an average particle size of 10 to 100 μm. It is something.

(ホ)作用 この発明によれば、疎水性有機溶媒中に均一に分散保持
された個々の微小な無定形シリカ微粒子含有水性液滴中
で、比較的大きい所定粒径の無定形シリカ微粒子同士が
凝集してゲル化し、所定の粒径を有する個々の微小な球
状含水ゲルが形成される。これらの球状含水ゲルは熱処
理されると各球状ゲルから含水分が放出されるとともに
所定の細孔径を形成し多孔性球状シリカゲルとなる。
(E) Effect According to the present invention, in individual aqueous droplets containing fine amorphous silica particles uniformly dispersed in a hydrophobic organic solvent, amorphous silica fine particles having a relatively large predetermined particle size interact with each other. The particles aggregate and gel to form individual microscopic spherical hydrogels having a predetermined particle size. When these spherical hydrous gels are heat-treated, the water content is released from each spherical gel and a predetermined pore size is formed, resulting in a porous spherical silica gel.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 実施例1 市販のシリカ(S iOt )微粒子(アエロジル。(f) Example Example 1 Commercially available silica (SiOt) fine particles (Aerosil.

登録商標1日本アエロジル社製:平均拉径0.05μm
)20gを水100g中に入れて撹拌し、均質なシリカ
微粒子分散水性液(pH3,5)を調整した。
Registered trademark 1 Manufactured by Nippon Aerosil Co., Ltd.: Average diameter 0.05 μm
) was added to 100 g of water and stirred to prepare a homogeneous silica fine particle dispersion aqueous solution (pH 3.5).

1000ccビーカー中で流動パラフィン500 gを
80 ’Cに加熱しながら、かつマグネティックスター
ラで1500rpm、で撹拌しながら、上記シリカ微粒
子分散水性液を徐々に連続して加えた。添加後攻混合液
の撹拌速度および液温を上記のごとく保持して3時間経
過後、該混合液中から球状のゲル状物か得られた。該ゲ
ル状物をろ過分離してヘキサン中で充分洗浄した後乾燥
(90℃、 15時間)して、多孔性球状シリカゲルが
得られた。この得られた多孔性球状シリカゲルの物性値
を測定したところ、平均粒径は30μm、平均細孔径は
350人であった。
While heating 500 g of liquid paraffin to 80'C in a 1000 cc beaker and stirring at 1500 rpm with a magnetic stirrer, the above-mentioned aqueous silica particle dispersion liquid was gradually and continuously added. After 3 hours of maintaining the stirring speed and liquid temperature of the mixed solution as described above after the addition, a spherical gel-like substance was obtained from the mixed solution. The gel material was separated by filtration, thoroughly washed in hexane, and then dried (90° C., 15 hours) to obtain a porous spherical silica gel. When the physical properties of the obtained porous spherical silica gel were measured, the average particle diameter was 30 μm and the average pore diameter was 350 μm.

実施例2 実施例1でuM製したシリカ@粒子分散水性液を0.2
N−アンモニア水でl)Hを5.0に調整した。室温(
25℃)において流動パラフィン500gを(マグネテ
ィックスターラで200Orpm、の回転速度で)撹拌
しながら、上記液性のシリカ微粒子分散水性液200g
を連続して徐々に添加したところ、20分後に球状のゲ
ル状物か得られた。これを実施例1と同様にして分離、
洗浄、乾燥して、平均り50μm。
Example 2 The silica@particle dispersion aqueous solution prepared in Example 1 was mixed with 0.2
1) H was adjusted to 5.0 with N-ammonia water. room temperature(
While stirring 500 g of liquid paraffin (at a rotational speed of 200 rpm with a magnetic stirrer) at 25° C., 200 g of the above liquid silica fine particle dispersion aqueous solution was added.
was added gradually and continuously, and a spherical gel-like substance was obtained after 20 minutes. This was separated in the same manner as in Example 1,
Washed and dried to an average size of 50 μm.

平均細孔径220人の多孔性球状シリカゲルが得られた
A porous spherical silica gel with an average pore diameter of 220 pores was obtained.

実施例3 市販のシリカ(SiOz)微粒子分散水性液(スノーテ
ックス20L;登録商標1口座化学社製)1゜Ogを用
いる他は、実施例1と同様に行い、多孔性球状シリカゲ
ルを得た。このシリカゲルをさらに1000℃で3時間
加熱したところ、強固な多孔性球状シリカゲルが得られ
た。このシリカゲルの平均粒径は10μm、平均細孔径
は80人であった。
Example 3 A porous spherical silica gel was obtained in the same manner as in Example 1, except that 1°Og of a commercially available silica (SiOz) fine particle dispersion aqueous solution (Snowtex 20L; manufactured by Kagaku Kagaku Co., Ltd., registered trademark) was used. When this silica gel was further heated at 1000° C. for 3 hours, a strong porous spherical silica gel was obtained. This silica gel had an average particle diameter of 10 μm and an average pore diameter of 80 μm.

実施例4 まず、Werner  S toberらの方法(J、
Co11゜id、  I nter4ace Sci、
 、 2J 82(196g) )に従い、平均粒径1
.0μmのシリカ微粒子を調製した。
Example 4 First, the method of Werner Stober et al.
Co11゜id, Inter4ace Sci,
, 2J 82 (196 g)), with an average particle size of 1
.. Silica fine particles of 0 μm were prepared.

この調製したシリカ微粒子を用いる他は実施例1と同様
に行って、多孔性球状シリカゲルを得た。
A porous spherical silica gel was obtained in the same manner as in Example 1 except that the prepared silica fine particles were used.

このシリカゲルの平均粒径は50μm、平均細孔径は7
80人であった。
The average particle size of this silica gel is 50 μm, and the average pore size is 7
There were 80 people.

以上の結果から、平均粒径0.05〜1.0μmの無定
形シリカ微粒子を分散した水性液を、疎水性有機溶媒で
ある流動パラフィン中で分散しかつ穏やかな加熱処理を
行うことにより、平均細孔径8o〜780人の細孔径を
有しかつ平均粒径10〜50μmである多孔性球状シリ
カゲルを得ることができる。
From the above results, by dispersing an aqueous liquid in which amorphous silica fine particles with an average particle size of 0.05 to 1.0 μm are dispersed in liquid paraffin, which is a hydrophobic organic solvent, and performing a gentle heat treatment, the average Porous spherical silica gel having a pore size of 8 to 780 μm and an average particle size of 10 to 50 μm can be obtained.

(ト)発明の効果 この発明によれば、50〜1000人の細孔径を有しか
つ平均粒径10〜1,0μmの、微小で均一な多孔性球
状シリカゲルを非常に簡便に得ることができる。この発
明の方法により得られる多孔性球状シリカゲルは、タン
パク質、核酸、酵素、糖等の生体高分子等の分取用とし
て好適な細孔径を有し、高速液体クロマトグラフカラム
用充填物として有用なものである。用いる無定形シリカ
微粒子の粒径により細孔径をコントロールすることがで
き、数100人の大きい細孔径を有する多孔性球状シリ
カゲルを安価に製造することができる。
(G) Effects of the Invention According to the present invention, it is possible to obtain very easily a fine and uniform porous spherical silica gel having a pore size of 50 to 1000 and an average particle size of 10 to 1.0 μm. . The porous spherical silica gel obtained by the method of this invention has a pore diameter suitable for preparative separation of biopolymers such as proteins, nucleic acids, enzymes, and sugars, and is useful as a packing material for high-performance liquid chromatography columns. It is something. The pore diameter can be controlled by the particle diameter of the amorphous silica fine particles used, and porous spherical silica gel having several hundred large pore diameters can be produced at low cost.

Claims (1)

【特許請求の範囲】 1、平均粒径0.01〜1.0μmの無定形シリカ微粒
子のゲル化物からなり、50〜1000Åの細孔径を有
しかつ平均粒径10〜100μmである多孔性球状シリ
カゲル。 2、平均粒径0.01〜1.0μmの無定形シリカ微粒
子分散水性液の液滴を疎水性有機溶媒中に100℃以下
で分散保持することにより、上記シリカ微粒子のゲル状
物からなる球状体を分散状態で形成させ、得られる平均
粒径10〜100μmの球状ゲルを分離した後該球状ゲ
ルを熱処理に付すことにより50〜1000Åの細孔径
を有するシリカゲルを得ることを特徴とする多孔性球状
シリカゲルの製造法。
[Scope of Claims] 1. A porous spherical material consisting of a gelled product of amorphous silica fine particles with an average particle size of 0.01 to 1.0 μm, and having a pore size of 50 to 1000 Å and an average particle size of 10 to 100 μm. silica gel. 2. By maintaining droplets of an aqueous dispersion of amorphous silica fine particles with an average particle diameter of 0.01 to 1.0 μm in a hydrophobic organic solvent at 100°C or lower, a spherical shape made of the gel-like substance of the above-mentioned silica fine particles is formed. silica gel having a pore diameter of 50 to 1000 Å by separating the resulting spherical gel with an average particle diameter of 10 to 100 μm, and then subjecting the spherical gel to heat treatment. Method for producing spherical silica gel.
JP61309909A 1986-12-26 1986-12-26 Porous spherical silica gel and its production Pending JPS63162518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309909A JPS63162518A (en) 1986-12-26 1986-12-26 Porous spherical silica gel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309909A JPS63162518A (en) 1986-12-26 1986-12-26 Porous spherical silica gel and its production

Publications (1)

Publication Number Publication Date
JPS63162518A true JPS63162518A (en) 1988-07-06

Family

ID=17998794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309909A Pending JPS63162518A (en) 1986-12-26 1986-12-26 Porous spherical silica gel and its production

Country Status (1)

Country Link
JP (1) JPS63162518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102259A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method, apparatus, system and separation column of liquid chromatograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102259A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method, apparatus, system and separation column of liquid chromatograph

Similar Documents

Publication Publication Date Title
JP2757964B2 (en) Magnetic attractive particles and method for producing the same
KR102060844B1 (en) Geopolymer resin materials, geopolymer materials, and materials produced thereby
KR100464870B1 (en) Silica Adsorbent on Magnetic Substrate
JPH0830124B2 (en) Method for producing large porous particles
EP0153827B2 (en) Porous particulate materials
GB2212795A (en) Porous inorganic material
JPH02138986A (en) Method for producing an aliphatic acid
EP0224547B1 (en) Structured silicas
US4382070A (en) Process for producing xerogel of silicic acid with high volume of pores
Ribeiro et al. Immobilization of the enzyme invertase in SBA-15 with surfaces functionalized by different organic compounds
JP3735990B2 (en) Method for producing magnetic silica gel
SE451715B (en) POROST MATERIAL WITH A BIOLOGICALLY ACTIVE SUBSTANCE IMMOBILIZED ON THE SURFACE AND PREPARATION OF IT
JP2865303B2 (en) Biological support
KR910005122B1 (en) Process of making uniform size porous silica spheres
JPS63162518A (en) Porous spherical silica gel and its production
WO2008058996A2 (en) Method for the production of magnetic silicic acid particles
JPH038729A (en) Production of porous glass
JP2000040608A (en) Magnetic silica grain and manufacture thereof
Obiora-Okafo Performance of polymer coagulants for colour removal from dye simulated medium: Polymer adsorption studies
EP0473699B1 (en) Preparation of permeable hollow particles
JPH02180706A (en) Phosphorus compound grain assemblage and its production
JPH0616444B2 (en) Method for manufacturing magnetic microspheres
JP2000308825A (en) Method for manufacturing insoluble tannin and method for adsorbing hexa-valent chromium using the tannin
JP2621153B2 (en) Manufacturing method of spherical porous body
JPS62244438A (en) Preparation of magnetic microsphere