JPS63161667A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPS63161667A
JPS63161667A JP61310876A JP31087686A JPS63161667A JP S63161667 A JPS63161667 A JP S63161667A JP 61310876 A JP61310876 A JP 61310876A JP 31087686 A JP31087686 A JP 31087686A JP S63161667 A JPS63161667 A JP S63161667A
Authority
JP
Japan
Prior art keywords
film
thin film
light
shading
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310876A
Other languages
Japanese (ja)
Inventor
Keiji Toriyama
鳥山 景示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61310876A priority Critical patent/JPS63161667A/en
Publication of JPS63161667A publication Critical patent/JPS63161667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To much reduce lowering of production yield due to pin holes in an aluminium thin film, by forming a shading film on a part for generating an optical black level reference signal so that it is formed into a plurality of layers comprising the aluminium thin film and a dyed black organic thin film having a shading effect. CONSTITUTION:A dyed black organic thin film 6 having a shading effect is formed by performing a uniform coating process by a solution, which is a mixture of an organic solution such as gelatine and casein to a sensitive material such as ammonium bichromate, and next by performing a patterning process by lithography and further performing a dying process by a black dye. When a shading film on a part 20 for generating an optical black level reference signal is formed of a composite film in this way, dependency can be provided to the shading effect even if pin holes exist in a lower-layered aluminium thin film 5 because optical paths thereof are covered with an upper-layered dyed black organic film 6 so as to interact complementally. Therefore, the shading characteristics of the shading film are stabilized so that deterioration in production yield, due to leakage of lights, can be much improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像素子に関し特に光学的黒レベル基準信
号発生部における遮光膜の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state image sensor, and particularly to the structure of a light shielding film in an optical black level reference signal generating section.

〔従来の技術〕[Conventional technology]

固体撮像素子の受光部における出力信号電荷は光電変換
により発生した入射光量に比例する電荷と、通常暗電流
と呼ばれる光電変換によらない対生成電荷とから成る。
The output signal charge in the light receiving section of the solid-state image sensor is composed of a charge proportional to the amount of incident light generated by photoelectric conversion and a pair-generated charge not caused by photoelectric conversion, which is usually called dark current.

従って、一般に固体撮像素子では、受光部における同一
構造の受光素子に遮光膜を被覆して成る光学的黒レベル
基準信号発生領域を受光部に隣接して設は受光部からの
出力信号からこの光学的黒レベル基準信号を常に差引い
て出力せしめるように構成される。
Therefore, in general, in a solid-state image sensor, an optical black level reference signal generation area, which is made by covering a light-shielding film on a light-receiving element of the same structure in the light-receiving part, is installed adjacent to the light-receiving part, so that the output signal from the light-receiving part can be detected from the optical signal. The target black level reference signal is always subtracted and output.

第3図は固体撮像素子の基本構成を示す平面図で上記撮
像信号変換面の構造を概略的に説明するものである。す
なわち、固体撮像素子の撮像信号変換面は、半導体基板
上1と、受光部10および光学的黒レベル基準信号発生
部20と、これら2つの領域10および20からの出力
信号の差をカウントし入射光量に比例した撮像信号を出
力部30に出力する水平シフトレジスタ40とを3む。
FIG. 3 is a plan view showing the basic configuration of the solid-state image pickup device, and schematically explains the structure of the image pickup signal conversion surface. That is, the imaging signal conversion surface of the solid-state imaging device counts the difference between the output signals from the semiconductor substrate 1, the light receiving section 10 and the optical black level reference signal generating section 20, and these two areas 10 and 20, A horizontal shift register 40 outputs an imaging signal proportional to the amount of light to the output section 30.

通常、この光学的黒レベル基準信号発生部20の遮光膜
はアルミニウムの薄膜から成り、受光部10に隣接配置
される受光素子上にバターニング形成される。
Usually, the light-shielding film of the optical black level reference signal generating section 20 is made of a thin aluminum film, and is formed by patterning on a light-receiving element disposed adjacent to the light-receiving section 10.

第4図は従来固体撮像素子の撮像信号変換部の断面図で
、遮光膜が上述の通り受光素子2上にバターニング形成
された第2層目のアルミニウム3膜5により形成されて
いる様子を示したものである。ここで、1.10および
20は前述の通り半導体基板、受光部および光字的黒レ
ベル基準信号発生部をそれぞれ示し、また、3および4
はそれぞれ層間膜および信号電荷の読出し手段を遮光す
る第1層目のアルミニウム薄膜を表わしている。
FIG. 4 is a cross-sectional view of the image signal conversion section of a conventional solid-state image sensor, showing how the light-shielding film is formed by the second layer of aluminum 3 film 5 patterned on the light-receiving element 2 as described above. This is what is shown. Here, 1.10 and 20 respectively indicate the semiconductor substrate, the light receiving section, and the optical black level reference signal generating section as described above, and 3 and 4
1 and 2 respectively represent the first layer of aluminum thin film that shields the interlayer film and the signal charge readout means from light.

I発明が解決しようとする問題点〕 しかしながら、この従来の固体撮像素子はアルミニウム
薄膜の成長時におけるダメージを回復させることを目的
としてアニール処理を行なうと、光学的黒レベル基準信
号発生部のアルミニウム遮光膜にピンホールを発生させ
て光の洩れを生ぜしぬるので生産歩留りの低rをひき起
こす問題点を有する。
[Problems to be Solved by the Invention] However, when annealing is performed for the purpose of recovering the damage caused during the growth of the aluminum thin film in this conventional solid-state image sensor, the optical black level reference signal generating part is blocked by the aluminum. This has the problem of causing pinholes in the film, causing light leakage, resulting in a low production yield.

本発明の目的は、上記の状況に鑑み、アルミニウム遮光
膜のピンホールによる光学的黒レベル基準信号発生部の
光の洩れ問題を解決した固体撮像素子を提供することで
ある。、 〔問題点を解決するための手段〕 本発明によれば、固体撮像素子は、半導体基板と前記半
導体基板上に配設される複数個の受光素子と前記受光素
子の配列上に互いに隣接して形成される受光部と光学的
黒レベル基準信号発生部とを含んで成り、前記光学的黒
レベル基準信号発生部における前記受光素子の受光面を
それぞれ遮蔽被覆する遮光膜がアルミニウム薄膜と染色
された黒色有機薄膜とからなる複数膜により形成されて
いることを含む。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a solid-state image sensor that solves the problem of light leakage from an optical black level reference signal generating section due to pinholes in an aluminum light-shielding film. [Means for solving the problem] According to the present invention, a solid-state image sensor includes a semiconductor substrate, a plurality of light receiving elements disposed on the semiconductor substrate, and an array of the light receiving elements adjacent to each other. a light receiving section and an optical black level reference signal generating section, each of which has a light shielding film that shields and covers the light receiving surface of the light receiving element in the optical black level reference signal generating section and is dyed with an aluminum thin film. This includes being formed of a plurality of films consisting of a black organic thin film and a black organic thin film.

すなわち本発明によれば遮光膜がアルミニウム薄膜と染
色された黒色有機膜による複合膜で形成されているので
、入射光はアルミニウム薄膜に到達する前に黒色有機膜
で大幅に減衰される。従って、アニール熱処理により成
金アルミニウム薄膜にビンポールが発生していたとして
も歩留り低下を来たす程の光洩れ不良の発生はきわめて
有効に抑止される。
That is, according to the present invention, since the light shielding film is formed of a composite film of an aluminum thin film and a dyed black organic film, the incident light is significantly attenuated by the black organic film before reaching the aluminum thin film. Therefore, even if bin poles are generated in the deposited aluminum thin film due to annealing heat treatment, the occurrence of light leakage defects that cause a decrease in yield can be extremely effectively suppressed.

し実施例〕 以下図面を参照して本発明の詳細な説明する。Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す撮像信号変換部の断面
図である。本実施例によれば、本発明の固体撮像素子の
撮像信号変換部は半導体基板1と、半導体基板1に設け
られた受光素子2と、層間膜3と、信号電荷の読み出し
手段(図示しない)を遮光する第1層目のアルミニウム
薄膜4と、光学的黒レベル基準信号発生部20において
受光部10と同じ構造の受光素子2上にパターニング形
1反された第2層目のアルミニウム薄膜5および光遮蔽
効果を有する染色された黒色有機薄膜から成る複き横道
の遮光膜とを含む。ここで、光遮蔽効果を有する染色さ
れた黒色有機薄膜6は、例えばゼラチンあるいはガセ、
インといった有機物の溶液と重クロム酸アンモニウム等
の感光性材料の混合液を均一に塗布した後にフォトリソ
グラフィーによりパターニングし、更に黒色染料〔例え
ば、カラー・インテ・ソクス酸性黒色染料52:1(C
FIG. 1 is a cross-sectional view of an image signal conversion section showing an embodiment of the present invention. According to this embodiment, the image signal conversion section of the solid-state image sensor of the present invention includes a semiconductor substrate 1, a light receiving element 2 provided on the semiconductor substrate 1, an interlayer film 3, and a signal charge readout means (not shown). A first layer of aluminum thin film 4 that blocks light; a second layer of aluminum thin film 5 that is patterned on the light receiving element 2 having the same structure as the light receiving section 10 in the optical black level reference signal generating section 20; and a multi-lateral light-shielding film made of a dyed black organic thin film with a light-shielding effect. Here, the dyed black organic thin film 6 having a light-shielding effect may be made of gelatin or gasse, for example.
After uniformly applying a mixture of a solution of an organic substance such as in and a photosensitive material such as ammonium dichromate, patterning is performed by photolithography, and then a black dye [for example, Color Inte Sox Acidic Black Dye 52:1 (C
.

!、Ac1d  Black  52:1)]で染色し
て形成する。このように光学的黒レベル基準信号発生部
20における遮光膜が複合膜で形成されると、下層のア
ルミニウム薄膜5にピンホールが存在したとしてもこれ
による光学パスは上層の染色された黒色有filBI6
で塞がれまた相互に補完するよう作用し合うので遮光効
果に確実性を付与することができる。従って遮光膜の遮
光特性は安定し光の洩れに因る製造歩留りの低下を大幅
に改善し得る。
! , Ac1d Black 52:1)]. When the light shielding film in the optical black level reference signal generating section 20 is formed of a composite film in this way, even if there is a pinhole in the lower layer aluminum thin film 5, the optical path due to this pinhole will be blocked by the dyed black film BI6 in the upper layer.
The light shielding effect can be ensured because the light shielding effect is blocked by the light shielding elements, and they act to complement each other. Therefore, the light-shielding properties of the light-shielding film are stable, and the reduction in manufacturing yield due to light leakage can be significantly improved.

第2図は本発明の他の実施例を示す撮像信号変換部の断
面図である。本実施例では、光学的黒レベル基準信号発
生部における第1層アルミニウム薄膜4はこの領域の受
光素子1の全て?遮光するように連続した単一膜とされ
、前実施例におけろ第2層目のアルミニウム薄膜5の作
用を兼用する上う形成される。この構造によると第2層
目のアルミニウム薄膜6の形成を省くことができ製造を
容易にすることが可能である。
FIG. 2 is a sectional view of an imaging signal converter showing another embodiment of the present invention. In this embodiment, the first layer aluminum thin film 4 in the optical black level reference signal generating section covers all of the light receiving elements 1 in this area. It is formed as a continuous single film so as to block light, and is formed on top of the thin aluminum film 5 serving as the second layer in the previous embodiment. According to this structure, the formation of the second layer of aluminum thin film 6 can be omitted and manufacturing can be facilitated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、光学的黒レベル基
準信号発生部における遮光膜はアルミニウム薄膜と光遮
蔽効果を有する染色された黒色有機薄膜の複数層によっ
て形成されるので、アルミニウム薄膜の単一層で形成さ
れた場合従来問題とされたアルミニウム薄膜のピンホー
ルに因る製造歩留り低下を大幅に低減することができる
As explained above, according to the present invention, the light shielding film in the optical black level reference signal generating section is formed of multiple layers of an aluminum thin film and a dyed black organic thin film having a light shielding effect. When formed in a single layer, it is possible to significantly reduce the reduction in manufacturing yield due to pinholes in the aluminum thin film, which has been a problem in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す撮像信号変換部の断面
図、第2図は本発明の他の実施例を示す撮像信号変換部
の断面図、第3図は従来の固体撮像素子の基本構成を示
す平面図、第4図は従来固体撮像素子の撮像信号変換部
の断面図である。 ■・・・半導体基板、2・・・受光素子、3・・・層間
膜、4・・・第1層目のアルミニウム薄膜、5・・・第
2層目のアルミニウム薄膜、6・・・染色された黒色有
機膜、10・・・受光部、20・・・光学的黒レベル基
準信号発生部、30・・・出力部、40・・・水平シフ
トレジスタ。 第1 V 手 2 v 30“′秤  手3図 牛4 V
FIG. 1 is a sectional view of an imaging signal converter showing one embodiment of the present invention, FIG. 2 is a sectional view of an imaging signal converter showing another embodiment of the invention, and FIG. 3 is a conventional solid-state imaging device. FIG. 4 is a sectional view of an image signal conversion section of a conventional solid-state image sensor. ■... Semiconductor substrate, 2... Light receiving element, 3... Interlayer film, 4... First layer aluminum thin film, 5... Second layer aluminum thin film, 6... Dyeing 10... Light receiving section, 20... Optical black level reference signal generating section, 30... Output section, 40... Horizontal shift register. 1st V hand 2 v 30"' scale hand 3 figure cow 4 V

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と前記半導体基板上に配設される複数個の受
光素子と前記受光素子の配列上に互いに隣接して形成さ
れる受光部と光学的黒レベル基準信号発生部とを含んで
成り、前記光学的黒レベル基準信号発生部において前記
受光素子の受光面をそれぞれ遮蔽被覆する遮光膜はアル
ミニウム薄膜と染色された黒色有機薄膜とからなる複数
膜により形成されることを特徴とする固体撮像素子。
The method comprises a semiconductor substrate, a plurality of light receiving elements disposed on the semiconductor substrate, a light receiving section formed adjacent to each other on an array of the light receiving elements, and an optical black level reference signal generating section, A solid-state image pickup device, characterized in that in the optical black level reference signal generation section, the light-shielding films that respectively shield and cover the light-receiving surfaces of the light-receiving elements are formed of a plurality of films consisting of an aluminum thin film and a dyed black organic thin film.
JP61310876A 1986-12-25 1986-12-25 Solid-state image sensor Pending JPS63161667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310876A JPS63161667A (en) 1986-12-25 1986-12-25 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310876A JPS63161667A (en) 1986-12-25 1986-12-25 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS63161667A true JPS63161667A (en) 1988-07-05

Family

ID=18010446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310876A Pending JPS63161667A (en) 1986-12-25 1986-12-25 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS63161667A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289367A (en) * 1988-09-27 1990-03-29 Nec Corp Solid-state image sensing element
JPH02285675A (en) * 1989-04-27 1990-11-22 Toppan Printing Co Ltd Solid-state image sensing device
JPH02308568A (en) * 1989-05-23 1990-12-21 Toshiba Corp Solid-state imaging device
JPH09166877A (en) * 1995-12-18 1997-06-24 Hamamatsu Photonics Kk Production of optical semiconductor element
EP1021914A1 (en) * 1997-10-06 2000-07-26 Photobit, Inc. Quantum efficiency improvements in active pixel sensors
WO2007019073A2 (en) * 2005-08-03 2007-02-15 Micron Technology, Inc. Backside silicon wafer design reducing image artifacts from infrared radiation
JP2015128187A (en) * 2015-03-24 2015-07-09 ソニー株式会社 Solid state image pickup device and electronic apparatus
US9613997B2 (en) 2010-09-15 2017-04-04 Sony Corporation Solid state imaging device and electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289367A (en) * 1988-09-27 1990-03-29 Nec Corp Solid-state image sensing element
JPH02285675A (en) * 1989-04-27 1990-11-22 Toppan Printing Co Ltd Solid-state image sensing device
JPH02308568A (en) * 1989-05-23 1990-12-21 Toshiba Corp Solid-state imaging device
JPH09166877A (en) * 1995-12-18 1997-06-24 Hamamatsu Photonics Kk Production of optical semiconductor element
EP1021914A1 (en) * 1997-10-06 2000-07-26 Photobit, Inc. Quantum efficiency improvements in active pixel sensors
EP1021914A4 (en) * 1997-10-06 2006-12-06 Photobit Corp Quantum efficiency improvements in active pixel sensors
WO2007019073A2 (en) * 2005-08-03 2007-02-15 Micron Technology, Inc. Backside silicon wafer design reducing image artifacts from infrared radiation
WO2007019073A3 (en) * 2005-08-03 2008-01-03 Micron Technology Inc Backside silicon wafer design reducing image artifacts from infrared radiation
US7576361B2 (en) 2005-08-03 2009-08-18 Aptina Imaging Corporation Backside silicon wafer design reducing image artifacts from infrared radiation
US9613997B2 (en) 2010-09-15 2017-04-04 Sony Corporation Solid state imaging device and electronic apparatus
US9647024B2 (en) 2010-09-15 2017-05-09 Sony Corporation Solid state imaging device and electronic apparatus
US11863898B2 (en) 2010-09-15 2024-01-02 Sony Group Corporation Solid state imaging device and electronic apparatus
JP2015128187A (en) * 2015-03-24 2015-07-09 ソニー株式会社 Solid state image pickup device and electronic apparatus

Similar Documents

Publication Publication Date Title
US4721999A (en) Color imaging device having white, cyan and yellow convex lens filter portions
JPS63161667A (en) Solid-state image sensor
JPH1093060A (en) Structure of solid-state image pickup device and manufacture thereof
KR960010932B1 (en) Solid state image pick-up device
JPH0235282B2 (en)
JPH069229B2 (en) Method of manufacturing solid-state imaging device
US6429038B2 (en) Solid-state imaging device and method of manufacturing the same
JPH04343470A (en) Solid-state image pickup device
JPS5972164A (en) Solid-state image-pickup device
JPH0250441B2 (en)
JPS6336203A (en) Solid-state color image pickup element and its production
JP2663475B2 (en) Solid-state imaging device
JP2751376B2 (en) Solid-state imaging device
JPH02244761A (en) Solid image pickup element and manufacture thereof
JPH03194970A (en) Ccd image sensing device
KR100192321B1 (en) The structure of solid-state image sensing device and manufacturing method thereof
IT9021590A1 (en) METHOD FOR THE MANUFACTURE OF A COLORED FILTER.
JPH04129268A (en) Solid-state image sensor
JPH03181168A (en) Color solid state image sensor element
JP2811738B2 (en) Solid-state imaging device
JP2663476B2 (en) Solid-state imaging device
JPH09321262A (en) Solid-state image pickup device and method of fabricating the same
KR930000151B1 (en) Making method of color filter
KR930003614B1 (en) Making method of color filter
JPH07112051B2 (en) Color-solid-state image sensor manufacturing method