JPS6336203A - Solid-state color image pickup element and its production - Google Patents

Solid-state color image pickup element and its production

Info

Publication number
JPS6336203A
JPS6336203A JP61180888A JP18088886A JPS6336203A JP S6336203 A JPS6336203 A JP S6336203A JP 61180888 A JP61180888 A JP 61180888A JP 18088886 A JP18088886 A JP 18088886A JP S6336203 A JPS6336203 A JP S6336203A
Authority
JP
Japan
Prior art keywords
color filter
light shielding
filter layer
photoelectric conversion
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61180888A
Other languages
Japanese (ja)
Inventor
Koichi Sekine
弘一 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61180888A priority Critical patent/JPS6336203A/en
Publication of JPS6336203A publication Critical patent/JPS6336203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the sensitivity of an element by utilizing the steps between light shielding films for determining the positions of picture elements to position color filter layers and underlying picture elements by self-alignment. CONSTITUTION:Plural pieces of the picture elements (photodiodes) 21, 22, 23 are formed to a semiconductor substrate 1 so as to be flush with the substrate surface. The surface of the substrate 1 is coated with an insulating film 50 and the light shielding films 40 are deposited by evaporation of Al, etc. on the substrate surface between the respective picture elements. The color filter layers 301, 302, 303 are formed on the surfaces of the respective picture elements 21, 22, 23 so as to fill the recessed faces between the respective picture elements by the steps between the picture element surface and the surface of the light shielding films. The color filter layers 301, 302, 303 are margined along the end faces of the light shielding layers 40 and are separated from each other by the light shielding films 40 by which the bulging of the ends and the overlapping thereof on each other are prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明のi]的〕 (産業上の利用分野) 本発明は、固体カラー顕像素子のつ」−−凸状態にて形
成される色フィルタ(以4;、オンウJ−ハ色フィルタ
と呼ぶ)の製造方法及びこの方法によりlされるオンク
ー1−−ハ色フィルタを持つ固体カワ−扼像素子に関す
る。 (従来の技術) 従来の固体カフ−撮像累子の構成を第6図に示iI。同
図(fi )はその平面図C1半導体基板1の表面に臨
んで光電変換をijなう光電変換セル(以下、画素と呼
ぶ)2が正方格子状に配列されている。各両系列間には
垂i+ジノ1〜レジスタ(図示lず)が配(きれC1各
画糸2で発生しlζ(ilfl−j電仙の読出しを行な
う。 この従来の撮像索子の13B ’での断面図を第6図(
b)に示す。各画素2 .2 .2  はノAトダイオ
ードである。各画素2,22.23上には、カラー撮像
のための色フィルタ層 31゜32.33が形成されC
おり、各画素2.2 。 23の信号出力に所定の演紳を?−jなうことにより、
色の三原色〈赤、青、緑)の各成分が抽出できるように
なっている。色ノrルタ層31,32゜33は、フィル
クの配列方式により異なるしのの、通常は3〜4種類の
色で構成される。尚、以−トの説明では、3梗類で構成
される色フィルタを例に説明する。また、各画素量子に
は光しゃへい膜4が形成されて、画素の光分離を?−i
”、’につ(“いる。尚、参照番号5は絶縁膜である この撮像索子の製造手順を第7図に;1ζづ。同図(a
)に示寸ように、まず両糸(図示省略)を形成すべき半
導体基板1の画素間−トに絶縁膜5を形成し、その上に
光じゃへい膜4を形成し、この光しヤへい膜の間に各画
素を形成り−る。次にその上に絶縁膜5を形成した後、
この絶縁膜5上に色フィルタを形成するIこめのレンズ
1−〇を塗布する。 そして、このレンズ1−6にホトマスクパターン7を転
写する。次に、同図(b)に示すように、現像処理を行
なってレンズ1へパターンを形成しこれを染色して第1
色目の色フィルタ層31を形成する。以上と同様の1稈
を繰り返し゛(第2色目、第3色目の色フィルタ層3.
33それぞれ形成する。こうして第6図(b)に示ず従
来のAンウエーハ色フィルタが出来上がる。。 (発明が解決しようとする問題点) 各色フィルタ層31.32.33はそれに対応づる画素
2,2.23を覆う必要がある。 しかし、上述した従来の製造り法においては、色フィル
タ層31,32.33は、そのパターニングの際の下地
のパターンとの合けずれにJこり、第8図(a)に示り
°ようになることがある。即ち、例えば画素21を覆う
はずの色フィルタ層31が隣接の画素22の上にまでは
み出すことがある。 こうなると、画素22に大川される光は、本来の色フィ
ルタ層の分光からずれ、色の再現性が悪化してしまう。 またこの場合、色フィルタ層31の端部の傾斜部が画素
21の上に来てしまうので、画素21に入射する光には
色のむらが生じ易くなる。 これらの不都合を解消覆るためには、色フィルタ層31
,32.33の端部が光じゃへい膜4」−に来るように
位置合わけしな
[Objective of the Invention] (Industrial Application Field) The present invention relates to a solid-state color developing element, which is a color filter formed in a convex state (hereinafter referred to as a color filter). ) and a solid-state image element having a color filter produced by this method. (Prior Art) The configuration of a conventional solid-state cuff-imaging device is shown in FIG. FIG. 3(fi) is a plan view C1 showing that photoelectric conversion cells (hereinafter referred to as pixels) 2 facing the surface of a semiconductor substrate 1 and performing photoelectric conversion are arranged in a square lattice. Between each series, registers (not shown) are arranged to read out the curvature C1 generated in each drawing thread 2 and lζ(ilfl-j Densen. 13B' of this conventional imaging probe. Figure 6 shows the cross-sectional view at
Shown in b). Each pixel 2. 2. 2 is a diode. A color filter layer 31°32.33 for color imaging is formed on each pixel 2, 22.23.
2.2 pixels per pixel. Is there a predetermined effect on the signal output of 23? −jBy becoming
Each component of the three primary colors (red, blue, green) can be extracted. The color filter layers 31, 32, and 33 are usually composed of three to four different colors depending on the film arrangement method. In the following explanation, a color filter composed of three types will be explained as an example. In addition, a light shielding film 4 is formed on each pixel quantum to separate light from each pixel. -i
", 'nitsu ("Reference number 5 is an insulating film. The manufacturing procedure of this imaging probe is shown in Fig. 7;
), first, an insulating film 5 is formed between the pixels of the semiconductor substrate 1 on which both threads (not shown) are to be formed, and a light shielding film 4 is formed thereon. Each pixel is formed between the membranes. Next, after forming an insulating film 5 thereon,
On this insulating film 5, a lens 1-0 with an I-shaped structure forming a color filter is applied. Then, a photomask pattern 7 is transferred onto this lens 1-6. Next, as shown in FIG.
A colored filter layer 31 is formed. Repeat the same process as above (color filter layer 3 for second color and third color).
33 respectively. In this way, a conventional A-wafer color filter not shown in FIG. 6(b) is completed. . (Problems to be Solved by the Invention) Each color filter layer 31, 32, 33 needs to cover the corresponding pixel 2, 2, 23. However, in the conventional manufacturing method described above, the color filter layers 31, 32, and 33 suffer from misalignment with the underlying pattern during patterning, as shown in FIG. 8(a). It may become. That is, for example, the color filter layer 31 that is supposed to cover the pixel 21 may protrude onto the adjacent pixel 22. In this case, the light transmitted to the pixel 22 deviates from the original spectrum of the color filter layer, and color reproducibility deteriorates. Further, in this case, since the sloped end portion of the color filter layer 31 is located above the pixel 21, color unevenness is likely to occur in the light incident on the pixel 21. In order to overcome these disadvantages, the color filter layer 31
, 32. Align the ends of 33 so that they are on the photo-shielding film 4''-.

【ノればならない。この場合、色フィル
タ層の端部は傾斜しているので、色フィルタ層とその下
地との位置合わUの精度δは次の2条件を満たす必要が
ある(第8図(b)参照)。 a=W’ /2+W−L/2>δ  ・・・・・・(1
)b = L / 2−八−W′/2≧δ  ・・・・
・・(2)ここで、Δは傾斜部分の幅、Wは光し・をへ
い膜の幅、W′は画素の開口幅、しは色フィルタ層の幅
である。この2式より決まる色フィルタ層の幅しは次式
で規定される。 W′+2Δ+2δ≦1−≦W’+2W−26・・・・・
・(3) この式に−(Lが解を持つためには、位置合わけ精度δ
は δ≦W/2−Δ/2    ・・・・・・・・・(4)
を満たす必要がある。 さらに、従来の製造方法においては、多色の色フィルタ
層を形成する場合の位置合わせずれににす、容易に第9
図(a)に示すような重なり部分3Sが発生してしまう
。こうなると、オンウェー八表面層が凹凸形状になり、
この表面層でのレンズ効果により各画素毎に集光効率が
異なってしまい素子設計上大きな制約となってしまう。 この重なり構造を無くすためには、色フイルタ層間の距
離をCとすると(第9図(b)参照)、C=−W −4
6−2Δ〉0   ・・・・・・・・・(5)を満たず
必要がある。従って、位置合わせ¥1度δは δ≦W/4−Δ/2      ・・・・・・・・・(
6)を満たすことが必要であり、(4)式よりも更に高
い位置合わせ精度が要求される。 第10図は上記(6)式の条件を満たり゛位置合わせ精
度δと光じゃへい膜幅Wとの関係を、傾斜部分幅Δ−0
,0,5(71m)の各場合について示したもので、傾
斜側が上記条件を満たり領域である。 通常の1/2インチ光学系の500 X 4. OO画
素エリアレンリ−においては、代表的な値としてW−3
〔μm〕、W′−7〔μm〕、Δ−0,5(μm)どす
ると、第10図から必要<”C位♂1合l精度δは0.
5〔μm〕以下となり、つ1−ハ内にて高精度の位置合
わせが必要どなることがわかる。 一方、光しゃへい膜幅Wを人きくづれば、位置合わU精
瓜δは低く(りむが、同助に黒石の低トをもたらしてし
まい、多画素化して行くことが九しくなってしまう。ま
た、色フィルタを結句するという方式があるが、この方
式では上記問題は更に悪化し、この方式は解決策にはな
らない。 本発明は、色フィルタ層と下地の画素との位置合せマー
ジンを拡大した、多画素化に適した固体カラー撮像素子
の製造方法及びこの方法ににり製造される固体カレー撮
像素子を提供づることを目的どする。 〔発明の構成〕 (問題点を解決するための手段) 本発明は、半導体基体にその表面に臨んで形成される複
数個の光電変換セル(画素)間の上記基体表面に光しヤ
へい膜を形成し、この光じゃへい膜及びこの光じゃへい
膜間に形成し!、各画素を含む領域の表面に、色フィル
タを形成するIこめの所定材料の層を形成し、に配光し
ゃへい膜表面の上記所定材料層をエツチングにJ、り除
去し、これにより残った各画素表面のト記所定材1’1
層に染色を施して色フィルタ層を形成覆る固体ノJフー
搬像素了の製造1J法を提供り−るものである。 まlこ、本発明は、半導体基体に、その表面に臨まl!
で形成した複数個の両県と、各画素間の基体表面に形成
した光じゃへい膜と、各画素表面にこの画素表面と光じ
ゃへい膜表面との段差により生じた凹部を埋めるにうに
形成しに色フィルタ層とを右する固体カラー撮像索子を
提供づるものである。 (作 用) 各画素間の基体表面に光じゃへい膜を形成した段階で、
基体表面には、光しゃへい膜が凸部、これに囲まれた各
画素が凹部となった段差構造が形成される。従って、そ
の十に形成される色フイルタ形成のだめの所定月利(例
えばレジスト)の層は、段差構造に対応して、光し1)
へい膜にでは薄く、画素上では厚くなる。次いで、光じ
ゃへい股上の薄い層をエツチングにより除去する。この
除去により、上記各画素の凹部を埋めた卸い層だ4Jが
残され、これを染色することにより色フfルタ層が形成
される。このJ:うに、基体表1coに形成した光じゃ
へい膜の段差構造を利用して、セル7ノ?ラインにより
自動的に色フィルタ層の位置決めを行なうので、従来の
ような位置合わせずれの問題が生じない。 (実施例) 以下、実施例により本発明を説明する。 第1図は本発明に係る固体カラー撮像素子のm−8一 実施例の断面構造図ぐある。同図におい(、半導体N板
1には、第6図の従来例と同様に、基板表面に臨ん−(
゛複数個の画素(]A1〜ダイA−ド)21.22.2
3が形成されている。基板10表面は絶縁膜50で被覆
され、各両県間の基板表面には光じゃへい膜(通常は、
A1蒸肴膜)40が形成され、各画素2.22.23の
表面には、この画素表面と光じゃへい膜表面との段差に
J、る各画素の凹部を埋めるように、色フィルタ層30
1.302.303が形成されている。かかる構造では
、各色フィルタ層30,302゜303tj;、光しI
)へい膜40のη1:面によっηぞの端部が規定され、
かつ光じゃへい膜40によって相ηが分離されてd3す
、従来例のJ、うに端部が19表み出したり、相Hに重
なり合ったりづることはない。 第2図(a)〜・(d)は、かかる固体カラー囮像素子
の製造方法の一実施例を示・J一工程図(・ある。 尚、画素2,2.23の図示は省略しである、まず、同
図(a)に示すように、基板1の表面を絶縁膜50で被
覆した後、画素間の基板表面に、後に形成する色フィル
タ層と同様のIQみを右づる光しヤへい膜40を形成す
る。この光じゃへい膜40は、通常、Δ1蒸着により形
成す゛る。これにより、基板表面には、光じゃへい膜/
IOが凸部、これに囲まれた各画素が凹部となつlこ段
差4M造が形成される。次いで、この上(根表面全体に
、色フィルタ層を形成づ−るための1ノジス1〜層61
を塗イIIする。このレジスト層(51は、基板表面の
段差構造に対応して、光じゃへい膜4−1−では薄く、
光じゃへい膜間(画素上)では厚くなる。 次に、光しヤへい膜4」二のレジスト1苫ご30をエツ
チングにより除去する。その方法としくは、例えば第7
図(a)の構造を02ブラズン中にさら1ことにより、
レンスh Fm 61をその表面より1ツチバツクする
方法などがある。これにJ:す、第7図N))のように
、光じゃへい膜4に囲まれた各画素−りの凹部を埋めた
レジメ1〜層61だけが残される。次いで、第1色目の
色ノイルタ層を形成すべき画素上のレジスト層611だ
けを残りにうに露光・現像を行イjって、他の画素上の
レンス1〜ff161,613を除去覆る。でして残っ
たレジストVA 6 ’11に第1回[1の染色を施し
C1第1色目の色ノイルタIi′;′i 301を形成
覆る。 次に、第2図(C)に示1ように第2色目の色フィルタ
層を形成するためのレンス1〜層62を塗イ1jシ、1
−述と同様のエッチバックにより光じゃへい膜/I O
、J−及び第1色目の色フイルタ層301十のレジスト
1苫62を除入り゛る。次いで、ト述と同様の露光・】
1.! IWによって、第2色目の色フイルタ−f’J
を形成リベさ画素上のレンス1〜層622だL′jを残
し、他の画素上のレジスト層623を除去する。 次に、第71>1 (d )に示づ−J、うに、残した
レンス1〜層622に第2回目の染色を施して、第2色
1」の色フィルタ跨302を形成する。尚、この際、第
1色[1の色フィルタ層301については、第2回1]
の染色が施され4rいように、予め所定の固定化処理を
施し−Cおく。 以下、同様に第3色口の色フィルタ層303を形成づ−
る。こうして、第1図に示づ′構造が出来上がる。 第3図は、本発明に係る製造方法の別の実施例を示す図
である。 同図は第2図(b)以下の工程の別7′j法を示したも
ので、エッチバックにより光じゃへい膜40上のレジス
ト層61を除去した後、その上に染色ブロック層どなる
ホトレジス]・膜80を形成し、部分的にバターニング
して第1色1]の色フィルタ層を形成すべきレジスト層
611を露出ざUる。 そして、このレジスト層611を染色して、第1色目の
色フィルタ層301を形成Jる。次に、小トレジスト膜
80を除去し、再1衰ボトレジスト膜を形成して、第2
色目の色フィルタ層を形成すべきレジスト層612が露
+11 ”Jるようにパターニングし、第2回目の染色
を行なう。以F同様に、レジスト層613にも染色を施
し、第1図に示寸固体カラーS像素子を形成する。 こうした実施例に示り°ように、色フィルタ層の端部は
、下地の画素位眉を決める光しヤへい膜の端面に、セル
ファラインにJ、つ″(自動的に規定される。このため
、色フイルタ層形成時の位囮合I精度は大幅に向上する
。 以下、第6図に示した従来例の位置合せ精度と対比して
説明J“る。 不発IIJに、1月プる色フィルタ層の位置合わせ精度
゛ δを決定する要因は、各染色を7711−領域を定
めるための露光の精度である。即ら、第4図に示すよう
に、露光の光パターン9が特定の画素2の領域だけに照
射されるようにするために、光パターン9の端部が光じ
ゃへい膜40上に来るようにすればよい。その条件は、 δ〈W/2    ・・・・・・・・・(7)である。 この(7)式により定まる本発明による光しやへい膜幅
Wと位置合ぜ精j衰δとの関係を、従来の第(6)式で
定まる関係と対比して第5図に示す。ここで実線が本発
明、破線が従来例であり、斜線側が条件を満たす領域で
ある。尚、(6)式の傾斜部分幅ΔはO(μm)として
いる。同図から判る」:うに、本発明では、同一の位置
合せ精僚δに対する光しヤへい膜幅Wは従来の半分以下
どなる。従って素子の黒石を向上させることがC・ぎる
。このことはまた、位置合せマージンが2倍以上になる
ことCあり、従っ(−多画素化に際して設計上、製造上
の大ぎな利点となる。 (発明の効果) 以上説明したように、本発明にJ、れば、色フィルタ層
と下地の画素との位11°V合わμを、画素位置を決め
る光じゃへい膜の段差を利用してセルファラインにより
行なうようにしくいるのぐ、位置合せのマージンが拡大
し、素子の高感電化、多画素化に大ぎく貢献できる。
[I have to. In this case, since the end of the color filter layer is inclined, the accuracy δ of the alignment U between the color filter layer and its base must satisfy the following two conditions (see FIG. 8(b)). a=W'/2+W-L/2>δ...(1
)b=L/2-8-W'/2≧δ...
(2) Here, Δ is the width of the inclined portion, W is the width of the light shielding film, W' is the aperture width of the pixel, and is the width of the color filter layer. The width of the color filter layer determined by these two equations is defined by the following equation. W'+2Δ+2δ≦1−≦W’+2W−26・・・・・・
・(3) In order for this equation to have a solution, −(L has a solution, the alignment accuracy δ
is δ≦W/2−Δ/2 (4)
need to be met. Furthermore, in the conventional manufacturing method, it is easy to avoid misalignment when forming multicolor color filter layers.
An overlapping portion 3S as shown in Figure (a) occurs. When this happens, the surface layer becomes uneven,
Due to the lens effect in this surface layer, the light collection efficiency differs from pixel to pixel, which poses a major constraint on device design. In order to eliminate this overlapping structure, if the distance between the color filter layers is C (see FIG. 9(b)), then C=-W-4
6-2Δ〉0 ・・・・・・・・・(5) is not satisfied and necessary. Therefore, alignment ¥1 degree δ is δ≦W/4−Δ/2 ・・・・・・・・・(
6), and higher alignment accuracy than equation (4) is required. Fig. 10 satisfies the condition of equation (6) above and shows the relationship between the alignment accuracy δ and the light shielding film width W by the inclined portion width Δ−0.
, 0, and 5 (71 m), and the slope side is the area that satisfies the above conditions. 500 x 4 with normal 1/2 inch optics. In the OO pixel area range, W-3 is a typical value.
[μm], W'-7 [μm], Δ-0.5 (μm), and from Fig. 10, the required <"C position ♂ 1 combination l accuracy δ is 0.
5 [μm] or less, and it can be seen that highly accurate positioning is required within the range. On the other hand, if the width W of the light shielding film is determined manually, the alignment U precision δ will be low, but this will result in a low level of black stone, making it difficult to increase the number of pixels. In addition, there is a method of combining color filters, but this method makes the above problem worse and is not a solution.The present invention expands the alignment margin between the color filter layer and the underlying pixels. It is an object of the present invention to provide a method for manufacturing a solid-state color image sensor suitable for increasing the number of pixels, and a solid-state curry image sensor manufactured by this method. [Structure of the Invention] (Means for solving the problems) The present invention forms a light-shielding film on the surface of a semiconductor base between a plurality of photoelectric conversion cells (pixels) formed facing the surface of the semiconductor base, and the light-shielding film and this light-shielding film. A layer of a predetermined material forming a color filter is formed on the surface of the region including each pixel, and the predetermined material layer on the surface of the light distribution shielding film is removed by etching. , As a result, the specified material 1'1 on the surface of each pixel remaining
The present invention provides a method for manufacturing a solid-state image carrier in which the layer is dyed to form a color filter layer. However, the present invention is applied to a semiconductor substrate on its surface!
A photoreflective film is formed on the substrate surface between each pixel, and a photoreflective film is formed on the surface of each pixel to fill in the recesses caused by the difference in level between the pixel surface and the photoreflective film surface. The present invention provides a solid-state color imaging element having a color filter layer. (Function) At the stage when a photoresist film is formed on the substrate surface between each pixel,
A step structure is formed on the surface of the substrate, in which the light shielding film is a convex portion and each pixel surrounded by the convex portion is a concave portion. Therefore, the layer (for example, resist) of a predetermined monthly rate (for example, resist) for forming the color filter, which is formed in the 1)
It is thinner on the membrane and thicker on the pixel. Next, the thin layer on the photoresist crotch is removed by etching. This removal leaves an empty layer 4J filling the concave portions of each pixel, and by dyeing this, a color filter layer is formed. This J: Utilizing the stepped structure of the photoresist film formed on the base surface 1co, cell 7? Since the color filter layer is automatically positioned using lines, the problem of misalignment that occurs in the prior art does not occur. (Example) The present invention will be explained below with reference to Examples. FIG. 1 is a cross-sectional structural diagram of an M-8 embodiment of a solid-state color image sensor according to the present invention. In the same figure, the semiconductor N-board 1 has a surface facing the substrate surface, as in the conventional example shown in FIG.
゛Multiple pixels (]A1~Die A-D) 21.22.2
3 is formed. The surface of the substrate 10 is covered with an insulating film 50, and a photoresist film (usually,
A1 vaporized film) 40 is formed on the surface of each pixel 2, 22, and 23, and a color filter layer is formed on the surface of each pixel 2, 22, and 23 so as to fill the recesses of each pixel located at the step between the pixel surface and the light blocking film surface. 30
1.302.303 are formed. In such a structure, each color filter layer 30, 302, 303tj;
) The ends of η are defined by the η1: plane of the diaphragm 40,
In addition, since the phase η is separated by the light shielding film 40, the ends of the sea urchin (J) and the sea urchin (19) of the conventional example do not protrude or overlap with the phase H. Figures 2(a) to 2(d) show an example of the method for manufacturing such a solid color decoy image element. First, as shown in FIG. 5A, the surface of the substrate 1 is coated with an insulating film 50, and then light is applied to the surface of the substrate between the pixels to create an IQ similar to that of the color filter layer to be formed later. A light shielding film 40 is formed. This light shielding film 40 is usually formed by Δ1 vapor deposition. As a result, the light shielding film 40 is formed on the substrate surface.
The IO is a convex part, and each pixel surrounded by this is a concave part, forming a 4M structure with a four-dimensional step. Next, on top of this (on the entire root surface, 1 nozzle 1 to 61 layers for forming a color filter layer)
Paint it II. This resist layer (51 is thin in the photoresist film 4-1-, corresponding to the step structure on the substrate surface
It becomes thicker between the light blocking films (on the pixels). Next, the resist layer 30 on the photoresist film 4' is removed by etching. For example, the method is as follows:
By further adding the structure in Figure (a) to 02 Brazen,
There is a method of backing the lens h Fm 61 by one point from its surface. As shown in FIG. 7N), only the layers 1 to 61 that fill the concave portions of each pixel surrounded by the light blocking film 4 are left behind. Next, only the resist layer 611 on the pixel on which the first color filter layer is to be formed is exposed and developed, and the lenses 1 to ff161, 613 on the other pixels are removed and covered. The remaining resist VA6'11 is subjected to the first dyeing process [1] to form a color filter Ii';'i 301 of the first color C1. Next, as shown in FIG. 2(C), layers 1 to 62 for forming the second color filter layer are applied.
- The photoresist film/IO was etched back in the same manner as described above.
, J- and the first color filter layer 301 except for the resist 1 layer 62. Next, the same exposure as described above.]
1. ! By IW, the second color filter - f'J
The resist layer 623 on other pixels is removed, leaving the layers 1 to 622 L'j on the exposed pixel. Next, as shown in 71>1(d), the remaining lenses 1 to 622 are dyed a second time to form a color filter straddle 302 of the second color 1. At this time, the first color [for the first color filter layer 301, the second color 1]
A predetermined fixation treatment is performed in advance so that the staining is carried out. Thereafter, the color filter layer 303 of the third color is formed in the same manner.
Ru. In this way, the structure shown in FIG. 1 is completed. FIG. 3 is a diagram showing another embodiment of the manufacturing method according to the present invention. This figure shows another method 7'j of the steps shown in FIG. ] - Form the film 80 and partially pattern it to expose the resist layer 611 to form the color filter layer of the first color 1]. Then, this resist layer 611 is dyed to form a first color filter layer 301. Next, the small resist film 80 is removed and a second attenuated bottom resist film is formed.
The resist layer 612 on which the colored filter layer is to be formed is patterned so that it is exposed by +11"J, and the second dyeing is performed. Thereafter, the resist layer 613 is also dyed in the same manner as shown in FIG. As shown in these embodiments, the ends of the color filter layer are attached to the self-alignment line on the end face of the light shielding film that determines the underlying pixel area. '' (defined automatically. Therefore, the alignment accuracy during color filter layer formation is greatly improved.Hereinafter, it will be explained in comparison with the alignment accuracy of the conventional example shown in FIG. 6. The factor that determines the alignment accuracy δ of the color filter layer in the unexploded IIJ is the accuracy of the exposure for defining the 7711-region of each stain. In order to make the exposure light pattern 9 irradiate only the area of a specific pixel 2, the end of the light pattern 9 may be placed on the light shielding film 40.The conditions are as follows. δ〈W/2・・・・・・・・・(7).The relationship between the light shielding film width W and the alignment precision j decay δ according to the present invention determined by this equation (7) is Fig. 5 shows a comparison with the relationship determined by the conventional equation (6).Here, the solid line is the present invention, the broken line is the conventional example, and the diagonal line is the area where the condition is satisfied. The width of the inclined portion Δ is O (μm). As can be seen from the figure, in the present invention, the width W of the optical shield film for the same alignment precision δ is less than half that of the conventional one. This also means that the alignment margin is more than doubled, which is a great advantage in terms of design and manufacturing when increasing the number of pixels. (Effect of the invention ) As explained above, according to the present invention, the 11°V alignment μ between the color filter layer and the underlying pixel is performed by self-alignment using the step of the light shielding film that determines the pixel position. In this way, the alignment margin is expanded, which greatly contributes to higher electric shock and higher pixel counts in devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る固体カラーhA像素了の=一実施
例の断面椙造図、第2図は本発明に係る固体カラー11
I13像素子の製造り法の一実施例の各1稈を断面構造
で示す図、第3図は本発明に係る製造方法の別の実施例
の」−稈を断面構’1M ”C″丞q図、第4図は本発
明の製造方法による露光位置合lを説明する図、第5図
は同本発明の方法と従来方法とによる位置合1粘度と光
じゃへい膜幅との関係を対比して承り図、第6図は従来
の固体カラー撤像糸了の平面構)告及び断面構造を承り
図、第7図は従来の固体カラー撮像素子の製造方法の各
]−稈を断in1構造で六す図、第8図は従来の製造方
法ににる色−フィルタ層の位置合Uずれを説明する図、
第9図番ま同従来方法による色フィルタ)+7+の重な
りを説明J−る図、第10図は同従来方法による位「1
′合せ精度と光じゃへい膜幅との関係を示1ノ図(゛あ
る。 1・・・半>9体基板、2・・・光電変換セル(画素)
、30・・・色フィルタ層、40・・・光じゃへい膜、
61゜62.63・・・レジメ1〜層、80・・・ホ1
〜レジス1〜膜。 出願人代理人  佐  藤  −・  月1ん 3 図 朽4 図 色6 図 W[74m) (0)                 (b)ち 
8 図 (0)                (b)色9 
図 δ [PmJ W[PmJ ち10  図
FIG. 1 is a cross-sectional view of one embodiment of the solid color hA image according to the present invention, and FIG. 2 is a solid color 11 according to the present invention.
FIG. Figure q and Figure 4 are diagrams explaining the exposure position l according to the manufacturing method of the present invention, and Figure 5 shows the relationship between position 1 viscosity and photoresistance film width according to the method of the present invention and the conventional method. For comparison, Fig. 6 shows the planar structure and cross-sectional structure of a conventional solid-state color imaging device, and Fig. 7 shows a conventional method for manufacturing a solid-state color imaging device. FIG. 8 is a diagram illustrating the positional U misalignment of the color-filter layer in the conventional manufacturing method.
Figure 9 is a diagram explaining the overlap of color filters)+7+ by the same conventional method, and Figure 10 is a diagram explaining the overlap of color filters by the same conventional method
Figure 1 shows the relationship between alignment accuracy and photoresistance film width.
, 30... color filter layer, 40... light blocking film,
61゜62.63...Regime 1 to layer, 80...Ho 1
~Regis 1~Membrane. Applicant's agent Sato - Tsuki 1 3 Illustration 4 Illustration 6 Illustration W [74m] (0) (b) Chi
8 Figure (0) (b) Color 9
Figure δ [PmJ W[PmJ Chi10 Figure

Claims (1)

【特許請求の範囲】 1、半導体基体内にその表面に臨んで形成される複数個
の光電変換セル間の上記基体表面に、上記光電変換セル
を光分離するための光しやへい膜を形成し、この光しゃ
へい膜及びこの光しゃへい膜間に形成した各光電変換セ
ルを含む領域の表面に、色フィルタ層を形成するための
所定材料の層を形成し、上記光しゃへい膜表面の上記所
定材料層をエッチングにより除去し、残った各光電変換
セル表面の上記所定材料層に染色を施して各光電変換セ
ルに対応した色フィルタ層を形成する固体カラー撮像素
子の製造方法。 2、半導体基体内に、その表面に臨ませて形成した複数
個の光電変換セルと、各光電変換セル間の上記基体表面
に形成した、上記光電変換セルを光分離する光しゃへい
膜と、各光電変換セルの表面に、このセル表面と上記光
しゃへい膜表面との段差により生じた凹部を埋めるよう
に形成した色フィルタ層とを有する固体カラー撮像素子
[Claims] 1. A light-shielding film for optically separating the photoelectric conversion cells is formed on the surface of the substrate between a plurality of photoelectric conversion cells formed in a semiconductor substrate facing the surface thereof. A layer of a predetermined material for forming a color filter layer is formed on the surface of this light shielding film and a region including each photoelectric conversion cell formed between the light shielding films, and a layer of a prescribed material for forming a color filter layer is formed on the surface of the light shielding film. A method for manufacturing a solid-state color imaging device, which comprises removing the material layer by etching, and dyeing the predetermined material layer on the surface of each remaining photoelectric conversion cell to form a color filter layer corresponding to each photoelectric conversion cell. 2. A plurality of photoelectric conversion cells formed in a semiconductor substrate facing the surface thereof, a light shielding film formed on the surface of the substrate between each photoelectric conversion cell for optically separating the photoelectric conversion cells, and each A solid-state color imaging device having a color filter layer formed on the surface of a photoelectric conversion cell so as to fill a recess created by a step difference between the cell surface and the light shielding film surface.
JP61180888A 1986-07-31 1986-07-31 Solid-state color image pickup element and its production Pending JPS6336203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180888A JPS6336203A (en) 1986-07-31 1986-07-31 Solid-state color image pickup element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180888A JPS6336203A (en) 1986-07-31 1986-07-31 Solid-state color image pickup element and its production

Publications (1)

Publication Number Publication Date
JPS6336203A true JPS6336203A (en) 1988-02-16

Family

ID=16091086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180888A Pending JPS6336203A (en) 1986-07-31 1986-07-31 Solid-state color image pickup element and its production

Country Status (1)

Country Link
JP (1) JPS6336203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146771A (en) * 1988-11-28 1990-06-05 Dainippon Printing Co Ltd Manufacture of color solid state image-pickup device
JP2006202778A (en) * 2005-01-17 2006-08-03 Matsushita Electric Ind Co Ltd Solid state imaging device and its fabrication process
JP2007516609A (en) * 2003-06-09 2007-06-21 マイクロン・テクノロジー・インコーポレーテッド Imaging device having adjusted color filter
JP2013243364A (en) * 2012-05-21 2013-12-05 Taiwan Semiconductor Manufacturing Co Ltd Semiconductor device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146771A (en) * 1988-11-28 1990-06-05 Dainippon Printing Co Ltd Manufacture of color solid state image-pickup device
JP2007516609A (en) * 2003-06-09 2007-06-21 マイクロン・テクノロジー・インコーポレーテッド Imaging device having adjusted color filter
JP2006202778A (en) * 2005-01-17 2006-08-03 Matsushita Electric Ind Co Ltd Solid state imaging device and its fabrication process
US7750354B2 (en) 2005-01-17 2010-07-06 Panasonic Corporation Solid-state imaging device and manufacturing method for the same
JP2013243364A (en) * 2012-05-21 2013-12-05 Taiwan Semiconductor Manufacturing Co Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4565756A (en) Color imaging device
US4721999A (en) Color imaging device having white, cyan and yellow convex lens filter portions
US5266501A (en) Method for manufacturing a solid state image sensing device using transparent thermosetting resin layers
JPH06310695A (en) Lens arrangement for photodiode device provided with aperture containing lens region and non-lens region
US6630722B1 (en) Solid state image sensing device having high image quality and fabricating method thereof
US6136481A (en) Color filter manufacturing method capable of assuring a high alignment accuracy of color filter and alignment mark therefor
US4339514A (en) Process for making solid-state color imaging device
JPH1093060A (en) Structure of solid-state image pickup device and manufacture thereof
JP2006003869A (en) Method for forming microlenses of image sensor
US4659226A (en) Method of making a semiconductor device
JPS6336203A (en) Solid-state color image pickup element and its production
JPS63229851A (en) Solid-state image sensing device and manufacture thereof
JP2678074B2 (en) Method for manufacturing solid-state imaging device
JPS63161667A (en) Solid-state image sensor
US6429038B2 (en) Solid-state imaging device and method of manufacturing the same
JP4513273B2 (en) Solid-state image sensor for linear sensor
US20090152661A1 (en) Image sensor and method for manufacturing the same
JPH03190168A (en) Manufacture of solid-state image sensing device
JPS59229863A (en) Manufacture of color sensor
US20240036237A1 (en) Microlens array and manufacturing method thereof
KR920008072B1 (en) Method for making color filter
JP2560387B2 (en) Manufacturing method of color separation filter
JP2560384B2 (en) Manufacturing method of color separation filter
KR100648800B1 (en) Method for forming color filer and microlens of image sensor
JPH08191141A (en) Solid-state image pickup device