JPS63161146A - Cr-ni steel bar for magnetic graduation - Google Patents

Cr-ni steel bar for magnetic graduation

Info

Publication number
JPS63161146A
JPS63161146A JP61314507A JP31450786A JPS63161146A JP S63161146 A JPS63161146 A JP S63161146A JP 61314507 A JP61314507 A JP 61314507A JP 31450786 A JP31450786 A JP 31450786A JP S63161146 A JPS63161146 A JP S63161146A
Authority
JP
Japan
Prior art keywords
magnetic
flux density
magnetic flux
saturation magnetic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61314507A
Other languages
Japanese (ja)
Other versions
JPH0475307B2 (en
Inventor
Takashi Tsukamoto
塚本 孝
Chuzo Sudo
須藤 忠三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61314507A priority Critical patent/JPS63161146A/en
Publication of JPS63161146A publication Critical patent/JPS63161146A/en
Publication of JPH0475307B2 publication Critical patent/JPH0475307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a Cr-Ni steel bar for magnetic graduations excellent in magnetic graduation properties, by subjecting a metastable austenitic steel containing Ni, Cr, or further Mo to cold wire drawing to form a magnetic base material and by forming nonmagnetic parts on the surface by means of solution heat treatment. CONSTITUTION:An austenitic steel stock consisting of 18-8 austenitic stainless steel or the one further containing Mo by about 1% and having a composition in which Md value [413-462X(C+N)-9.2Si-8.1Mn-13.7Cr-9.5Ni-18.5Mo] as an evaluation index to the stability of Cr-Ni metastable austenite to working is regulated to >=15 deg.C and the condition of 2Ni+100X(C+N)-Cr>=2.0 is satisfied is subjected to cold wire drawing so as to be formed into a magnetic-steel base material 1 of 5-12KG saturation magnetic flux density, and then, local parts 2 at the surface are subjected to solution heat treatment so as to be formed into nonmagnetic substances of <=0.5KG saturation magnetic flux density. In this way, the steel bar for magnetic graduations having high strength and excellent in magnetic graduation properties can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、メカトロニクス分野で用いられる磁気目盛用
網棒の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a magnetic scale mesh bar used in the mechatronics field.

(従来の技術及びその問題点) 近年メカトロニクスの発展に伴い第6図(イ)に示す様
な位置検出機構として磁気目盛が使用される様になった
。この磁気目盛用材料として要求される特性は、工業的
に容易に第6図(イ)に示す如き強磁性、非磁性の組合
せが実現できることである。なお、第6図(イ)中1は
母材部、2は溶体化(非磁性)部、3は位置検出センサ
ーを示す。
(Prior art and its problems) With the development of mechatronics in recent years, magnetic scales have come to be used as position detection mechanisms as shown in FIG. 6(a). The characteristics required for this material for magnetic scales are that the combination of ferromagnetism and non-magnetism as shown in FIG. 6(a) can be easily realized industrially. In FIG. 6(a), 1 indicates a base material part, 2 a solution-treated (non-magnetic) part, and 3 a position detection sensor.

この具体的方法として、例えば、特開昭58−7517
号公報に示される様に金属材の表面に金属化合物を化学
メンキした後、レーザー等の粒子線により加熱して磁気
的変質部を所定間隔で形成する様にしたものが知られて
いる。また、特開昭57−16309号公報には、金属
材料表面に高エネルギービームを照射して局部的に熱処
理し磁気的に変質させて目盛を付ける方法が示されてい
る。
As a specific method for this, for example, JP-A-58-7517
As shown in the above publication, a method is known in which the surface of a metal material is chemically coated with a metal compound and then heated with a particle beam such as a laser to form magnetically altered parts at predetermined intervals. Furthermore, Japanese Patent Laid-Open No. 57-16309 discloses a method of applying a scale by irradiating the surface of a metal material with a high-energy beam, locally heat-treating the surface, and magnetically altering the material.

しかし、これらは目盛部と基体部の磁気特性の差が小さ
くて高価な検出装置が必要となったり、あるいは検出の
信顛性が低いといった欠点があった。
However, these have drawbacks such as a small difference in magnetic properties between the scale portion and the base portion, requiring an expensive detection device, or low detection reliability.

そこで、この対策としてFe25重景%、Ni75重量
%合金等の非常に高価な磁性材料を適用する例も示され
ているが、これは高価なだけであって強度や耐摩耗性は
あまり望めず、用途上の制約が多い上、磁気特性も完全
とは言い難い。
Therefore, as a countermeasure to this problem, examples have been shown of applying very expensive magnetic materials such as alloys with 25% Fe and 75% Ni by weight, but this is only expensive and does not offer much strength or wear resistance. , there are many restrictions in terms of use, and the magnetic properties are also far from perfect.

一方、ある種のオーステナイト系ステンレス鋼は溶体化
状態では非磁性でかつ冷間加工により加工誘起変態が起
こり、強磁性化することが知られており、この特性を利
用すれば比較的簡単に磁気目盛が実現できる可能性があ
る。
On the other hand, it is known that certain types of austenitic stainless steels are non-magnetic in the solution state, but undergo a strain-induced transformation during cold working and become ferromagnetic. There is a possibility that a scale can be realized.

本発明の目的は、この現象に着想を得て磁気目盛用材料
としての性能を高めるために成分を改良し、それによっ
て安価で強度が高く、かつ磁気目盛性能に優れた磁気目
盛用鋼棒を提供することにある。
The purpose of the present invention is to improve the composition of the material to improve its performance as a material for magnetic scales based on this phenomenon, thereby producing a steel rod for magnetic scales that is inexpensive, has high strength, and has excellent magnetic scale performance. It is about providing.

(問題点を解決するための手段) 本発明は、Cr、Niを含み、あるいはさらにMoを含
む準安定オーステナイト鋼において、Mo□4L3 4
62 X (C+N)  9.2S t  8.IM 
n−13,7Cr −9,5N i −18,5M o
なる式で表されるMl、値が15℃以上で、さらに2N
i+100X (C+N) −Cr≧2.0の条件を満
足する成分からなり、飽和磁束密度が5KG以上、12
KG以下になる様冷間伸線し、局部を加熱溶体化するこ
とで当該箇所を飽和磁束密度0.1KG以下の非磁性と
したことを要旨とするものである。
(Means for Solving the Problems) The present invention provides a metastable austenitic steel containing Cr, Ni, or further containing Mo.
62 X (C+N) 9.2S t 8. IM
n-13,7Cr -9,5N i -18,5Mo
Ml expressed by the formula, when the value is 15°C or more, and further 2N
i+100X (C+N) - Cr≧2.0, saturation magnetic flux density is 5KG or more,
The gist of the method is to cold draw the wire so that the magnetic flux density becomes 0.1 KG or less, and heat the local part to form a solution, thereby making the part non-magnetic with a saturation magnetic flux density of 0.1 KG or less.

磁気目盛用鋼としては溶体化で完全な非磁性を得る一方
で、冷間加工で強磁性化をできるだけ発達させなければ
優れた特性は得られない。そこで、本発明者等はこれを
実現するための材料成分を詳細に研究した結果、この非
磁性化と強磁性化は矛盾するもので、これを実現するに
は微量元素に至たるまで適切に制御しなければならない
ことを見出した。具体的に磁気目盛材料として必要な特
性を述べると、その骨子とするところは以下の通りであ
る。
As a steel for magnetic scales, while it can be made completely non-magnetic by solution treatment, excellent properties cannot be obtained unless ferromagnetism is developed as much as possible by cold working. As a result of detailed research into material components to achieve this, the inventors found that non-magnetization and ferromagnetization are contradictory, and in order to achieve this, it is necessary to properly select trace elements. I found that I had to control it. Specifically, the characteristics necessary for a magnetic scale material are as follows.

■母材部は強磁性体で5KG以上の飽和磁束密度を有す
ること。
■The base material must be ferromagnetic and have a saturation magnetic flux density of 5KG or more.

■溶体化部は非磁性体であり、飽和磁束密度0.1KG
以下であること。
■The solution-treated part is a non-magnetic material, and the saturation magnetic flux density is 0.1KG.
Must be below.

本発明ではこれらの特性を得るために、前述したように
各諸元の限定を行った。以下に、その限定理由について
詳細に述べる。
In the present invention, in order to obtain these characteristics, each specification is limited as described above. The reasons for this limitation will be described in detail below.

前述の如く、磁気目盛は強磁性部と非磁性部の磁気特性
の差を位置検出に利用するものである。
As mentioned above, the magnetic scale utilizes the difference in magnetic properties between the ferromagnetic part and the non-magnetic part for position detection.

そこで前記の所要特性を得るためには、この強磁性と非
磁性を夫々ある一定レベルに保つ必要が生れる。第1図
に母材の飽和磁束密度と磁気センサーの往復誤差の関係
を示す。ここで磁気センサーの往復(出力)誤差とは第
6図(ロ)に示す如くセンサーまたは磁気目盛材を往復
させたときの「出力波形におけるピーク電圧」の変化量
(ピーク出力差、△V)を計測し、そのときのピーク電
圧幅(ピーク出力値、■)の〃で除してパーセントで表
示したものである。すなわち、往復(出力)誤差=〔△
v/ (v/2))xloO%と表されるものである。
Therefore, in order to obtain the above-mentioned required characteristics, it is necessary to maintain the ferromagnetism and nonmagnetism at a certain level. Figure 1 shows the relationship between the saturation magnetic flux density of the base material and the reciprocating error of the magnetic sensor. Here, the reciprocating (output) error of a magnetic sensor is the amount of change in the "peak voltage in the output waveform" (peak output difference, △V) when the sensor or magnetic scale material is reciprocated as shown in Figure 6 (b). is measured, divided by the peak voltage width (peak output value, ■) at that time, and expressed as a percentage. In other words, round trip (output) error = [△
v/(v/2))xloO%.

そして、この数値は位置精度に極めて大きな影響がある
ので、磁気目盛にとって重要な特性である。
This numerical value has an extremely large effect on positional accuracy, and is therefore an important characteristic for magnetic scales.

しかして、往復誤差は4.0%以下が実用許容範囲であ
るが、これを維持するには第1図より飽和磁束密度が5
KG以上必要なことが判る。もちろん前述の通り磁気目
盛の特性は、母材の強磁性だけでなく、溶体化部の非磁
性の程度にも影響され両者の差が大きい程、特性は良く
なる(誤差が小さくなる)。
Therefore, a reciprocating error of 4.0% or less is a practical allowable range, but in order to maintain this, the saturation magnetic flux density is 5%, as shown in Figure 1.
It turns out that more than KG is required. Of course, as mentioned above, the characteristics of the magnetic scale are influenced not only by the ferromagnetism of the base material but also by the degree of nonmagnetism of the solution-treated part, and the larger the difference between the two, the better the characteristics (the smaller the error).

第1図は、溶体化部の飽和磁束密度が50〜70Gで、
はぼ完全に非磁性化されている例である。この様に、溶
体化部の非磁性が完全な場合、母材部の飽和磁束密度が
変化するとセンサー出力は一定であるが、往復誤差は増
加につれて減少する。すなわち、磁気センサーの往復誤
差を実用許容範囲の4%以下に押えるためには、母材部
の飽和磁束密度を5KG以上にする必要があり、本発明
ではかかる値に限定した。
Figure 1 shows that the saturation magnetic flux density of the solution treatment section is 50 to 70G.
This is an example of completely non-magnetic material. In this manner, when the solution-treated part is completely non-magnetic, the sensor output remains constant as the saturation magnetic flux density of the base metal part changes, but the reciprocating error decreases as it increases. That is, in order to suppress the reciprocating error of the magnetic sensor to 4% or less, which is the practical allowable range, it is necessary to make the saturation magnetic flux density of the base material part 5 KG or more, and the present invention is limited to this value.

一方、第2図に往復誤差に及ぼす溶体化部の飽和磁束密
度の影響を示す。同図から明らかな様に、溶体化部の飽
和磁束密度が増加して非磁性が保れなくなると、センサ
ー出力が低下し、その結果、往復誤差が大きくなる。往
復誤差を実用許容範囲である4、0%以下にするには、
溶体化部の飽和磁束密度を100 G (0,1KG)
以下にすることが必要であり、本発明ではかかる値に限
定した。
On the other hand, FIG. 2 shows the influence of the saturation magnetic flux density of the solution-treated section on the reciprocating error. As is clear from the figure, when the saturation magnetic flux density of the solution-treated portion increases and nonmagnetism cannot be maintained, the sensor output decreases, and as a result, the reciprocating error increases. To reduce the reciprocating error to less than 4.0%, which is the practical allowable range,
The saturation magnetic flux density of the solution treatment part is 100 G (0.1 KG)
It is necessary to set the value below, and the present invention is limited to this value.

次に、本発明ではこの様な磁気特性を実現し得る鋼種成
分を限定した。
Next, in the present invention, the steel type components that can realize such magnetic properties are limited.

本発明者等はCr−Ni系準安定オーステナイトの加工
に対する安定性の評価指標として使われるM0値を使っ
て、溶体化、伸線加工によって得られる磁気特性につい
て整理した。その結果を第3図及び第4図に示す。
The present inventors organized the magnetic properties obtained by solution treatment and wire drawing using the M0 value, which is used as an evaluation index of the stability of Cr-Ni based metastable austenite against processing. The results are shown in FIGS. 3 and 4.

Mo値は413−462 X (C+N) −9,25
i −8,1M n −13,7Cr −9,5Ni 
 −18,5M oなる式で表されるが、第3図に伸線
後の飽和磁束密度がMD値によって変化する様子を、ま
た第4図に伸線加工によって飽和磁束密度が増加する様
子を夫々示す。
Mo value is 413-462 X (C+N) -9,25
i -8,1M n -13,7Cr -9,5Ni
Figure 3 shows how the saturation magnetic flux density after wire drawing changes depending on the MD value, and Figure 4 shows how the saturation magnetic flux density increases due to wire drawing. Show each.

第3図よりMo値が15℃以下の場合には加工度を上げ
ても必要な5KGを確保できないことが判る(同様のこ
とは第4図からも判る)、また、第4図よりM、値が1
2℃の場合には伸線加工による飽和磁束密度の上昇が4
.5KG程度で頭打ちになっており、必要な5KGを確
保できないことが判る。この様な理由から本発明ではM
D値を15℃以上に限定した。
It can be seen from Fig. 3 that if the Mo value is 15°C or less, the required 5 kg cannot be secured even if the processing degree is increased (the same can be seen from Fig. 4). Also, from Fig. 4, M, value is 1
At 2℃, the increase in saturation magnetic flux density due to wire drawing is 4
.. It has reached a plateau at around 5KG, indicating that it is not possible to secure the necessary 5KG. For these reasons, in the present invention, M
The D value was limited to 15°C or higher.

また、第4図に示す様に冷間伸線により飽和磁束密度が
増加して12KGを超えると加工割れが発生する。これ
は加工誘起マルテンサイトの量が許容限界を超えて発生
し、割れの原因になったためでありこのような理由から
本発明では飽和磁束密度の上限を12KGに限定した。
Further, as shown in FIG. 4, when the saturation magnetic flux density increases due to cold wire drawing and exceeds 12 KG, processing cracks occur. This is because the amount of deformation-induced martensite exceeds the allowable limit and causes cracking. For this reason, the upper limit of the saturation magnetic flux density is limited to 12 KG in the present invention.

第5図に溶体化状態での飽和磁束密度がNi。Figure 5 shows the saturation magnetic flux density of Ni in the solution state.

Cr、C,Nによって変化する様子を示す。溶体化状態
での飽和磁束密度の増加は主にδフェライトの発生に起
因する。Ni、C,Nは減少するとδフェライトの発生
を促進するし、一方Crは減少するとδフェライトの発
生は逆に減少する。この溶体化状態でのδフエライト発
生による飽和磁束密度の変化を整理する指標として 2N i + 100 X (C+N) −Crを用い
た。その結果が第5図である。同図から明らかな様に、
必要とする非磁性確保レベルである1 00G (0,
1KG)以下を確保するには、2Ni +100 X 
(C+N)−Crの値が2.0以上であることを要する
It shows how it changes depending on Cr, C, and N. The increase in saturation magnetic flux density in the solution state is mainly due to the generation of δ ferrite. When Ni, C, and N decrease, they promote the generation of δ ferrite, while when Cr decreases, the generation of δ ferrite decreases. 2N i + 100 X (C+N) - Cr was used as an index for organizing changes in saturation magnetic flux density due to the generation of δ ferrite in this solution state. The result is shown in FIG. As is clear from the figure,
100G (0,
1KG) or less, 2Ni +100X
The value of (C+N)-Cr is required to be 2.0 or more.

この様な理由から、本発明では2Ni+100X (C
+N)−Crの値を2.0以上に限定した。
For these reasons, in the present invention, 2Ni+100X (C
+N)-Cr value was limited to 2.0 or more.

(実施例) 本発明の効果を実施例により説明する。本実施例では下
記表に掲げる1Iil11.5.8.11.14.16
.19及び21〜27の鋼を150 kg真空溶解炉で
溶製して32φの棒材に熱間鍛造した後、25φに外削
し試験に供した。
(Example) The effects of the present invention will be explained by examples. In this example, 1Iil11.5.8.11.14.16 listed in the table below
.. Steel Nos. 19 and 21 to 27 were melted in a 150 kg vacuum melting furnace, hot forged into a 32φ bar, and then externally machined to a 25φ bar for testing.

実施例?&L1〜4では、M、値が12.3と本発明範
囲を下回っている。このため、溶体化状態の飽和磁束密
度は20G以下と十分に低い値を保っているが、伸線後
では、加工度を57%まで上げても4420Gにしかな
らず、これ以上加工しても増加する傾向が認められない
。したがって、各加工度に伸線後、レーザーで溶体化目
盛処理後、第6図に示す検出装置により精度を測定した
結果、いずれも5KGに不足しているため、往復誤差は
5.4%〜14.5%と実用許容範囲の4.0%を超え
ている。
Example? In &L1-4, the M value is 12.3, which is below the range of the present invention. For this reason, the saturation magnetic flux density in the solution state is kept at a sufficiently low value of 20G or less, but after wire drawing, even if the processing degree is increased to 57%, it will only reach 4420G, and it will increase even if processing is performed further. No trend observed. Therefore, after wire drawing to each degree of processing and after processing the solution scale using a laser, the accuracy was measured using the detection device shown in Figure 6, and as a result, the accuracy was less than 5 kg in both cases, so the reciprocating error was 5.4% ~ 14.5%, which exceeds the practical allowable range of 4.0%.

実施例1’h5〜15ではM、値が18.0〜64.5
といずれも本発明範囲の中にある。しかし、実施例光5
.8においては冷間伸線による飽和磁束密度の上昇が夫
々3050Gと4500GLかなく、本発明範囲の50
00Gに達していない。このため往復誤差は夫々12.
1%、5.4%と実用許容範囲の4.0%を超えている
In Example 1'h5-15, M value is 18.0-64.5
Both are within the scope of the present invention. However, Example Light 5
.. 8, the increase in saturation magnetic flux density due to cold wire drawing was only 3050G and 4500GL, respectively, and 50G, which is within the range of the present invention.
It has not reached 00G. Therefore, the round trip error is 12.
1% and 5.4%, exceeding the practical allowable range of 4.0%.

一方、実施例阻13.15では冷間伸線後の飽和磁束密
度が夫々13500G、13100Gと本発明範囲の1
2000Gを超えたため、加工割れが発生している。こ
れ以外の実施側石6.7.9.10.11.12.14
ではMD値、2Ni+100X (C+N)−Cr、及
び伸線後の飽和磁束密度のいずれもが本発明範囲にあり
往復誤差も実用許容範囲の4.0%以下に収まっている
On the other hand, in Example 13.15, the saturation magnetic flux density after cold wire drawing was 13,500G and 13,100G, respectively, which was within the range of the present invention.
Because the force exceeded 2000G, machining cracks occurred. Other implementation stones 6.7.9.10.11.12.14
In this case, the MD value, 2Ni+100X (C+N)-Cr, and the saturation magnetic flux density after wire drawing are all within the range of the present invention, and the reciprocating error is also within the practical allowable range of 4.0% or less.

実施例11&l16〜20では、2Ni +100X 
(C+N)−Crの値が1.5〜1.7と本発明範囲を
外れて下回っており、このため溶体化時の飽和磁束密度
が310〜400Gと100Gを超えている。
In Examples 11 & 16-20, 2Ni +100X
The value of (C+N)-Cr is 1.5 to 1.7, which is outside the range of the present invention, and therefore the saturation magnetic flux density during solution treatment is 310 to 400G, which exceeds 100G.

したがって、往復誤差は10.1%〜12.1%と実用
許容範囲の4.0%を大きく超えている。また、実施例
N118.20では伸線後の飽和磁束密度が夫々122
00Gと13000Gと、本発明範囲の12000Gを
超えたため加工割れが発生している。
Therefore, the reciprocating error is 10.1% to 12.1%, which greatly exceeds the practical allowable range of 4.0%. In addition, in Example N118.20, the saturation magnetic flux density after wire drawing was 122, respectively.
00G and 13000G, which exceeded the range of 12000G according to the present invention, caused machining cracks.

実施例光21〜25ではNi量を調整し2Ni+1OO
X (C+N)−CrO値を変化させた。
In Example Lights 21 to 25, the amount of Ni was adjusted to 2Ni+1OO
The X (C+N)-CrO value was varied.

すなわち、実施例阻21〜23では2Ni+10 Qx
 (C+N)−Crの値が3.2〜3.6と本発明範囲
内にあり、溶体化時の飽和磁束密度が、40〜50Gと
100G以下に収っている。したがって往復誤差も2.
9%〜3.1%と実用許容範囲4%に収っている。一方
、実施例阻24〜25では2Ni+100X (C+N
)−Crの値は0.5〜1.9と本発明範囲を下回って
おり溶体化時の飽和磁束密度も130〜950Gと10
0Gを超えている。このため往復誤差も5.2%〜17
.1%と4%を超えてしまっている。
That is, in Examples 21 to 23, 2Ni+10Qx
The value of (C+N)-Cr is 3.2 to 3.6, which is within the range of the present invention, and the saturation magnetic flux density during solution treatment is 40 to 50G, which is 100G or less. Therefore, the round trip error is also 2.
It is 9% to 3.1%, which is within the practical allowable range of 4%. On the other hand, in Examples 24 to 25, 2Ni+100X (C+N
)-Cr value is 0.5 to 1.9, which is below the range of the present invention, and the saturation magnetic flux density during solution treatment is 130 to 950G, which is 10
It exceeds 0G. Therefore, the round trip error is also 5.2%~17
.. They have exceeded 1% and 4%.

実施例光26〜27ではMoを添加した例を示す。いず
れも2Ni+1 oox (C+N)−G及びM、値共
本発明範囲を満たしており、往復誤差は3.0%〜3.
2%と許容範囲に収っている。
Examples 26 and 27 show examples in which Mo was added. Both values of 2Ni+1 oox (C+N)-G and M satisfy the range of the present invention, and the round-trip error is 3.0% to 3.0%.
2%, which is within the acceptable range.

以上の様に、本発明の請求範囲に従えば、所要の優れた
特性を有する磁気目盛用鋼棒を得ることが出来る。
As described above, according to the claims of the present invention, it is possible to obtain a steel bar for magnetic scales having the required excellent characteristics.

(発明の効果) 以上説明したように本発明は、Cr、Niを含み、ある
いはさらにMoを含む準安定オーステナイト鋼において
、MD=413 462 X (C+N)  9.23
 i−8,1M n −13,7Cr −9,5Ni 
−18,5M oなる式で表されるM、値が15℃以上
で、さらに2 Ni + 100 X(C+N)−Cr
≧2.0の条件を満足する成分からなり、飽和磁束密度
が5KG以上、12KG以下になる様冷間伸線し、局部
を加熱溶体化することで、当該箇所を飽和磁束密度0.
1KG以下の非磁性とした為、安価で強度が高く、しか
も磁気目盛性能に優れている。
(Effects of the Invention) As explained above, the present invention provides a metastable austenitic steel containing Cr, Ni, or further containing Mo, MD=413 462 X (C+N) 9.23
i-8,1M n-13,7Cr-9,5Ni
M expressed by the formula -18,5Mo, the value is 15℃ or higher, and 2Ni + 100X(C+N)-Cr
≧2.0, the wire is cold drawn so that the saturation magnetic flux density is 5 KG or more and 12 KG or less, and the local area is heated to form a solution, so that the saturation magnetic flux density is 0.
Since it is non-magnetic and weighs less than 1KG, it is inexpensive, has high strength, and has excellent magnetic scale performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は母材の磁気特性とセンサー往復誤差の関係図、
第2図は溶体化部の磁気特性とセンサー往復誤差の関係
図、第3図は伸線後の飽和磁束密度とMo30点の関係
図、第4図は伸線加工による飽和磁束密度の増加に及ぼ
すM。30点の影響を示す図面、第5図は成分による溶
体化状態の飽和磁束密度の変化図、第6図(イ)は磁気
目盛による位置検出機構の一例を示す図面、(ロ)はそ
の往復誤差説明図である。 第31?、         丁4図 MD  うop−cc)              
              Rt  (va)第5図 ど0)
Figure 1 is a diagram of the relationship between the magnetic properties of the base material and the sensor reciprocating error.
Figure 2 shows the relationship between the magnetic properties of the solution-treated part and the sensor reciprocating error, Figure 3 shows the relationship between the saturation magnetic flux density after wire drawing and the Mo30 point, and Figure 4 shows the relationship between the saturation magnetic flux density and the Mo30 point after wire drawing. M exerts. A drawing showing the influence of 30 points, Fig. 5 is a diagram of changes in saturation magnetic flux density in the solution state depending on the components, Fig. 6 (a) is a drawing showing an example of a position detection mechanism using a magnetic scale, and (b) is a diagram showing its reciprocation. It is an error explanatory diagram. 31st? , Figure 4 MD up-cc)
Rt (va) Figure 5 0)

Claims (1)

【特許請求の範囲】[Claims] (1)Cr、Niを含み、あるいはさらにMoを含む準
安定オーステナイト鋼において、M_D=413−46
2×(C+N)−9.2Si−8.1Mn−13.7C
r−9.5Ni−18.5Moなる式で表されるMn値
が15℃以上で、さらに2Ni+100×(C+N)−
Cr≧2.0の条件を満足する成分からなり、飽和磁束
密度が5KG以上、12KG以下になる様冷間伸線し、
局部を加熱溶体化することで、当該箇所を飽和磁束密度
0.1KG以下の非磁性としたことを特徴とする磁気目
盛用鋼棒。
(1) In metastable austenitic steel containing Cr, Ni, or further containing Mo, M_D=413-46
2×(C+N)-9.2Si-8.1Mn-13.7C
The Mn value expressed by the formula r-9.5Ni-18.5Mo is 15°C or higher, and further 2Ni+100×(C+N)-
It is made of a component that satisfies the condition of Cr≧2.0, and is cold drawn so that the saturation magnetic flux density is 5KG or more and 12KG or less,
A steel rod for a magnetic scale, characterized in that the local portion is made non-magnetic with a saturation magnetic flux density of 0.1 KG or less by heating it into a solution.
JP61314507A 1986-12-24 1986-12-24 Cr-ni steel bar for magnetic graduation Granted JPS63161146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61314507A JPS63161146A (en) 1986-12-24 1986-12-24 Cr-ni steel bar for magnetic graduation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61314507A JPS63161146A (en) 1986-12-24 1986-12-24 Cr-ni steel bar for magnetic graduation

Publications (2)

Publication Number Publication Date
JPS63161146A true JPS63161146A (en) 1988-07-04
JPH0475307B2 JPH0475307B2 (en) 1992-11-30

Family

ID=18054119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61314507A Granted JPS63161146A (en) 1986-12-24 1986-12-24 Cr-ni steel bar for magnetic graduation

Country Status (1)

Country Link
JP (1) JPS63161146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629711A1 (en) * 1993-06-18 1994-12-21 Nippondenso Co., Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP2681341A1 (en) * 2011-03-03 2014-01-08 RLS Merilna Tehnika D.O.O. Method of manufacturing a magnetic substrate for an encoder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187459B1 (en) 1993-06-18 2001-02-13 Nippondenso Co., Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
US6390443B1 (en) 1993-06-18 2002-05-21 Nippondenso Co. Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
EP0629711A1 (en) * 1993-06-18 1994-12-21 Nippondenso Co., Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
US5865907A (en) * 1993-06-18 1999-02-02 Nippondenso Co., Ltd Composite magnetic member, process for producing the member and electromagnetic valve using the member
EP1061140A1 (en) * 1993-06-18 2000-12-20 Denso Co., Ltd. Composite magnetic member, process for producing the member and electromagnetic valve using the member
US6143094A (en) * 1996-04-26 2000-11-07 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP0803582A3 (en) * 1996-04-26 1997-11-12 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6949148B2 (en) 1996-04-26 2005-09-27 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6521055B1 (en) 1996-04-26 2003-02-18 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP1178123A1 (en) * 1996-04-26 2002-02-06 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP2681341A1 (en) * 2011-03-03 2014-01-08 RLS Merilna Tehnika D.O.O. Method of manufacturing a magnetic substrate for an encoder
US10072943B2 (en) 2011-03-03 2018-09-11 Rls Merilna Tehnika D.O.O. Method of scale substrate manufacture
EP2681341B1 (en) * 2011-03-03 2021-08-11 RLS Merilna Tehnika D.O.O. Method of manufacturing a magnetic substrate for an encoder scale

Also Published As

Publication number Publication date
JPH0475307B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
CA1182308A (en) Amorphous magnetic alloy
US20070095443A1 (en) Wear resistant cast iron
KR100189221B1 (en) Stainless steel for coins and method for manufacturing stainless steel coins
US3418110A (en) Hardenable steel material containing aluminum
CN106282844B (en) A kind of high-strength corrosion-resisting magnetism-free stainless steel instrument and preparation method thereof
JPS63161146A (en) Cr-ni steel bar for magnetic graduation
CA1119846A (en) Powder-metallurgy vanadium-containing tungsten-type high-speed steel
JPH0542493B2 (en)
JPH04272158A (en) Nonmagnetic stainless steel having low work hardenability
Scholefield et al. Factors influencing the initial permeability of some alloys based on 80Ni20Fe
US4462826A (en) Low-loss amorphous alloy
JPS63105952A (en) Steel bar for magnetic graduation
JPH0543991A (en) Steel bar for magnetic graduation
EP0077079B1 (en) Use of a non-magnetic alloy having high hardness for electromagnetic stirrer rolls
JPS625984B2 (en)
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JP3693577B2 (en) Torque sensor shaft and torque sensor using the shaft
JPS5681656A (en) Nonmagnetic steel for cryogenic temperature high magnetic field apparatus
KR920006605B1 (en) Austenitic stainless steel having a good welding resistant corrosion toughness properties
JPS6123750A (en) Nonmagnetic steel
JP3393043B2 (en) Low nuclear heat generation and low activation Mn-Cr non-magnetic steel with excellent corrosion resistance and weldability
JPH0641624B2 (en) Work hardening type non-magnetic stainless steel
JP2697846B2 (en) Torque sensor
SU1161577A1 (en) Non-magnetic steel
JPH04116142A (en) Nonmagnetic functional alloy having high rigidity and low magnetic permeability and its manufacture