JPS63160889A - Electrothermal transfer recording method - Google Patents

Electrothermal transfer recording method

Info

Publication number
JPS63160889A
JPS63160889A JP61310351A JP31035186A JPS63160889A JP S63160889 A JPS63160889 A JP S63160889A JP 61310351 A JP61310351 A JP 61310351A JP 31035186 A JP31035186 A JP 31035186A JP S63160889 A JPS63160889 A JP S63160889A
Authority
JP
Japan
Prior art keywords
layer
conductive
heat
plate
surface resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310351A
Other languages
Japanese (ja)
Inventor
Shiro Nakano
中野 司郎
Toshimasa Ikena
池名 敏眞
Kazuo Tanaka
一夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61310351A priority Critical patent/JPS63160889A/en
Publication of JPS63160889A publication Critical patent/JPS63160889A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38242Contact thermal transfer or sublimation processes characterised by the use of different kinds of energy to effect transfer, e.g. heat and light

Abstract

PURPOSE:To enable high-speed printing and high resolution, by performing energization while moving an electrothermal recording needle and a heat generating plate relative to each other, and thermally transferring a thermal transfer layer by the heat generated by an electrically energized heat generating layer and a conductive layer or by the heat generating layer and a conductive base layer. CONSTITUTION:A heat generating plate comprises an electrically energized heat generating layer comprising a conductive inorganic material having a surface resistance of 10<2>-10<7>OMEGA provided on one side of a plate-shaped body comprising a conductive ceramic and having a surface resistance of 1-10<4>OMEGA and a volume resistivity of 10<-6>-10<3>OMEGA-cm. The heat generating plate is laid on the surface of a conductive layer of a recording material comprising a thermal transfer layer on one side of an insulating base and the conductive layer, which comprises a thin metallic film having a surface resistance of less than 50 OMEGA, on the other side of the base, or is laid on the surface of a conductive base of a recording material comprising a thermal transfer layer provided on one side of the conductive base layer which comprises a metallic foil having a surface resistance of less than 1OMEGA and a thickness of 2-30mum, with the heat generating layer in contact with the surface of the conductive layer or the conductive base layer. Energization is conducted while moving an electrothermal recording needle placed in contact with the other side of the plate-shaped body and the heat generating body relative to each other, and the thermal transfer layer is thermally transferred by the heat generated by the heat generating layer and the conductive layer or by the heat generating layer and the conductive base layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通電感熱転写記録方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an electrically conductive thermal transfer recording method.

(従来の技術) 近年、情報が著しく豊富となり、その情報の迅速な伝達
、記録等の必要性が高まり、情報処理システム、情報伝
達システムおよび情報記録システム等の情報管理システ
ムに関し、種々の開発がなされており、通電感熱転写記
録システムもその代表的な一例である。
(Prior Art) In recent years, information has become extremely abundant, and the need for rapid transmission and recording of that information has increased, and various developments have been made regarding information management systems such as information processing systems, information transmission systems, and information recording systems. A typical example of this is an electrically conductive thermal transfer recording system.

上記記録システムで使用される記録材料としては、例え
ば特開昭61−179764号公報記載の通電記録装置
がある。該公報記載のものは、発熱抵抗層と導電性層と
を1つの発熱シートに形成し、熱溶融インク層から分離
したものであり、発熱シートは反覆使用できるので印字
速度を低下させることなくランニングコストを下げるこ
とができるという長所がある。
As a recording material used in the above recording system, there is, for example, an energizing recording device described in Japanese Patent Application Laid-open No. 179764/1983. The product described in this publication has a heating resistance layer and a conductive layer formed on one heating sheet and is separated from a heat-melting ink layer, and since the heating sheet can be used repeatedly, it can be used for running without reducing printing speed. It has the advantage of being able to reduce costs.

(発明が解決しようとする問題点) しかしながら、発熱シートとして、発熱抵抗層にはポリ
カーボネートに導電性カーボンを分散したものまたはケ
イ化金属を使用し、導電性層には蒸着アルミニウムまた
はステンレスフィルムを使用しているが、ポリカーボネ
ートに充填剤として導電性カーボンを分散したものは耐
久性に乏しい上に、0.5〜2.0p mの厚さでは反
覆使用は非常に困難である。また、ケイ化金属も0.5
〜2.0umの厚みでは極めて破損し易べ、単独では使
用に耐えうるちのではない。また、これらの表面に導電
性層を設けることも容易ではない。
(Problem to be solved by the invention) However, as a heat generating sheet, polycarbonate with conductive carbon dispersed or metal silicide is used for the heat generating resistance layer, and vapor deposited aluminum or stainless steel film is used for the conductive layer. However, polycarbonate in which conductive carbon is dispersed as a filler has poor durability and is extremely difficult to use repeatedly at a thickness of 0.5 to 2.0 pm. In addition, metal silicide is also 0.5
With a thickness of ~2.0 um, it is extremely easy to break and cannot be used alone. Furthermore, it is not easy to provide a conductive layer on these surfaces.

(問題点を解決するための手段) 本発明は上記従来の欠点を解消するためになされたもの
であって、その要旨は、絶縁性基材の一面に感熱転写層
が積層されるとともに他面に表面抵抗が50Ωより小で
ある金属薄膜からなる導電性層が積層された記録材料の
該導電性層面、もしくは表面抵抗が1Ωより小でありか
つ厚みが2〜30umの金属箔からなる導電性基材層の
一面に感熱転写層が積層された記録材料の該導電性基材
層面に、導電性セラミックスからなり表面抵抗が1〜1
04Ωであって前記導電性層の表面抵抗値より大であり
かつ体積抵抗が10−6〜103Ω−cmである板状体
の片面に表面抵抗が102〜107Ωでかつ該板状体よ
り表面抵抗が大である導電性無機材料からなる通電発熱
層を積層した発熱板を該通電発熱層を介して重ね合わせ
、前記板状体の他面に通電記録針を当接し、該通電記録
針と前記発熱板の相対位置を移動しつつ通電し、前記通
電発熱層および前記導電性層、もしくは前記通電発熱層
および前記導電性基材層で発熱した熱で前記感熱転写層
を熱転写することを特徴とするものである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned conventional drawbacks, and its gist is that a heat-sensitive transfer layer is laminated on one side of an insulating base material, and the other side is laminated with a heat-sensitive transfer layer. The conductive layer surface of a recording material on which a conductive layer made of a metal thin film with a surface resistance of less than 50 Ω is laminated on the surface of the recording material, or a conductive layer made of a metal foil with a surface resistance of less than 1 Ω and a thickness of 2 to 30 um. A recording material having a heat-sensitive transfer layer laminated on one side of the base layer has a layer made of conductive ceramics and a surface resistance of 1 to 1 on the surface of the conductive base layer.
04 Ω, which is larger than the surface resistance value of the conductive layer, and has a volume resistivity of 10 −6 to 10 3 Ω-cm. Heat-generating plates laminated with electrically conductive heat-generating layers made of conductive inorganic materials having a large The heating plate is energized while moving its relative position, and the heat-sensitive transfer layer is thermally transferred with the heat generated by the energizing heat generating layer and the conductive layer, or the energizing heat generating layer and the conductive base material layer. It is something to do.

(発明の概要) 本発明でいう電気的等方性とは、通電した電流の流れに
方向性がない性質をいう。
(Summary of the Invention) Electrical isotropy as used in the present invention refers to a property in which the flow of an applied current has no directionality.

発熱板は、該発熱板に当接した通電記録針から通電され
た電流により該通電記録針直下の厚み方向で発熱するも
のであり、電気的等方性の板状体の片面に、導電性無機
材料からなる通電発熱層を積層したものである。
The heating plate generates heat in the thickness direction directly under the current-carrying recording needle due to the current passed from the current-carrying recording needle that is in contact with the heat-generating plate. It is a stack of electrically conductive heat generating layers made of inorganic materials.

板状体は、発熱板の自己支持性の保持、および電流を通
電記録針の直下の厚み方向のみに流す役割を負うもので
ある。この板状体は、体積抵抗が小さくなると電流が流
れすぎて発熱し難くなり、逆に大きくなると電流が流れ
にくくなって発熱し難くなるので、体積抵抗は10−6
〜103Ω−備の範囲とされる。また、この板状体の表
面抵抗が小さくなると通電記録針直下への通電量が少な
くなって発熱し難くなり、逆に太き(なると放電破壊す
るので、表面抵抗は1−105Ωの範囲とされる。
The plate-like body has the role of maintaining the self-supporting properties of the heating plate and allowing the current to flow only in the thickness direction directly below the current recording needle. When the volume resistance of this plate-like material becomes small, too much current flows through it and it becomes difficult to generate heat.On the other hand, when the volume resistance becomes large, it becomes difficult for current to flow and it becomes difficult to generate heat, so the volume resistance is 10-6.
~103Ω-equipment. In addition, when the surface resistance of this plate-like material decreases, the amount of current passed directly under the current-carrying recording needle decreases, making it difficult to generate heat. Ru.

本発明においては、板状体として導電性セラミックスが
用いられるが、導電性セラミックスとしてはケイ化モリ
ブデン(MoSiz)、炭化チタン(TiC)、炭化タ
ングステン(WC) 、ホウ化ジルコニウム(Zrll
z)、窒化チタン(TiN)等のような遷移金属のケイ
化物、炭化物、ホウ化物、窒化物、もしくはシリコンカ
ーバイド(SiC) 、ランタンクロメート等が好適で
ある。これらのうち、ZrBz、TiC,TiN等の体
積抵抗は1O−−6〜10−bΩ−備である。また、該
導電性セラミックスの体積抵抗値の調整および強度等物
性を改良するために、必要に応じて非導電性セラミック
スを混合してもよく、非導電性セラミックスとしては酸
化ベリリウム(Bed) 、酸化マグネシウム(MgO
) 、酸化アルミニウム(アルミナ:AlzO,)等の
酸化物、窒化アルミニウム(AIN)、窒化ホウ素(O
N)、窒化ケイ素(Si3N4)等の窒化物、炭化ホウ
素(84C)等の炭化物が好適である。
In the present invention, conductive ceramics are used as the plate-like body, and examples of the conductive ceramics include molybdenum silicide (MoSiz), titanium carbide (TiC), tungsten carbide (WC), and zirconium boride (Zrll).
z), silicides, carbides, borides, nitrides of transition metals such as titanium nitride (TiN), silicon carbide (SiC), lanthanum chromate, etc. are suitable. Among these, the volume resistivity of ZrBz, TiC, TiN, etc. is 10-6 to 10-bΩ-. In addition, in order to adjust the volume resistance value and improve the physical properties such as strength of the conductive ceramics, non-conductive ceramics may be mixed as necessary, and examples of the non-conductive ceramics include beryllium oxide (Bed), oxide Magnesium (MgO
), oxides such as aluminum oxide (AlzO,), aluminum nitride (AIN), boron nitride (O
N), nitrides such as silicon nitride (Si3N4), and carbides such as boron carbide (84C) are suitable.

このように、導電性セラミックスまたは導電性セラミッ
クスに非導電性セラミックスを混合してなる板状体は電
流の流れ方に方向性のない電気的等方性である。
In this way, a plate-shaped body made of conductive ceramics or a mixture of conductive ceramics and non-conductive ceramics is electrically isotropic with no directionality in the flow of current.

上記板状体のうち導電性セラミックスを用いたものでは
、その厚みが略1o−tsoumの範囲で使用される。
Among the above-mentioned plate-shaped bodies, those using conductive ceramics are used with a thickness in the range of approximately 10-tsoum.

しかしながら、導電性セラミックスは脆いために10u
mより薄い場合は特に割れ易く、また150um以上に
なると通電した電流が過度に拡散するため記録画像の解
像度が著しく低下する。したがって、より好ましい厚み
は50〜120umである。
However, since conductive ceramics are brittle,
If it is thinner than m, it is particularly prone to breakage, and if it is more than 150 um, the applied current will be excessively diffused, resulting in a significant decrease in the resolution of the recorded image. Therefore, a more preferable thickness is 50 to 120 um.

通電発熱層の厚みは2〜50umが好ましく、該通電発
熱層を構成する導電性無機材料としては、表面抵抗が1
02〜107Ωでかつ、後述する導電性層より表面抵抗
が大であればよく、例えば、酸化ルテニウム−ガラス、
酸化錫(Snug) 、その他低導電性セラミックスが
好適である。
The thickness of the current heating layer is preferably 2 to 50 um, and the conductive inorganic material constituting the current heating layer has a surface resistance of 1
02 to 107 Ω and a surface resistance higher than that of the conductive layer described later, for example, ruthenium oxide glass,
Tin oxide (Snug) and other low conductivity ceramics are suitable.

本発明の導電性層および導電性基材層は、通電記録針の
対電極となるとともに、前記発熱板で発生した熱を感熱
転写層に伝導するものであり、導電性層は通電により破
壊されなくてもよいが、破壊されることにより熱を発生
するのが絶縁性基材に十分な熱を与えることができるの
で好ましい。
The conductive layer and the conductive base material layer of the present invention serve as a counter electrode for the current-carrying recording needle, and also conduct heat generated by the heating plate to the heat-sensitive transfer layer, and the conductive layer is not destroyed by the current flow. Although it is not necessary, it is preferable that heat is generated by being destroyed, since sufficient heat can be given to the insulating base material.

この導電性層および導電性基材層の表面抵抗は大きくな
ると対電極として作用しなくなるので、感電性層の表面
抵抗は50Ωより小さく、導電性基材層の表面抵抗は1
Ωより小さくなされる。また、通電発熱層と板状体の表
面抵抗の比は10−105の範囲となるように決定され
る。
If the surface resistance of the conductive layer and the conductive base layer becomes large, they will no longer function as a counter electrode, so the surface resistance of the conductive layer is less than 50Ω, and the surface resistance of the conductive base layer is 1.
made smaller than Ω. Further, the ratio of the surface resistance of the current heating layer and the plate-like body is determined to be in the range of 10-105.

導電性層の厚みは0.05umよりも薄くすると表面抵
抗が大きくなり対電極として充分に作用せず、108m
以上に厚くすると熱の伝導性が悪くなり、また通電破壊
され難くなり発熱板からの熱が拡散されたり伝熱に時間
を要する等不利となるので、厚みは0.05〜10um
となされる。また、導電性基材層の厚みは上記導電性層
の場合と同様の理由により、かつ基材としての耐久性の
点より2〜30umが好ましい。
If the thickness of the conductive layer is thinner than 0.05 um, the surface resistance will increase and it will not function sufficiently as a counter electrode.
If it is thicker than this, the conductivity of heat will be poor, and it will be difficult to be damaged by electricity, causing disadvantages such as the heat from the heat generating plate will be diffused and it will take time for heat transfer, so the thickness should be 0.05 to 10 um.
It is done. Further, the thickness of the conductive base material layer is preferably 2 to 30 um for the same reason as the above-mentioned conductive layer and from the viewpoint of durability as a base material.

導電性基材層としては、例えば、アルミニウム、ステン
レス鋼、銅、しんちゅう等の金属箔が好適であり、導電
性層としては、アルミニウムを真空蒸着した薄膜が好適
である。また、導電性層として溶射法等により発熱板の
一面に積層された導電性セラミックスも使用できる。
As the conductive base material layer, for example, a metal foil such as aluminum, stainless steel, copper, or brass is suitable, and as the conductive layer, a thin film obtained by vacuum-depositing aluminum is suitable. Further, as the conductive layer, conductive ceramics laminated on one surface of the heating plate by thermal spraying or the like can also be used.

本発明においては、記録材料の導電性層面側もしくは導
電性基材層面側に、発熱板をその通電発熱層を介して重
ね合わせ、該通電発熱層と反対側の発熱板の表面に通電
記録針を当接し、該通電記録針に通電することにより感
熱記録を行うものである。すなわち、通電記録針に通電
すると、発熱板の通電記録針が当接された部分の直下で
点発熱が起こり、この熱は、導電性層と絶縁性基材、も
しくは導電性基材層を伝わって感熱転写層のインクを溶
解し、該感熱転写層に重ね合わせた普通紙等の被記録体
の表面に転写するものである。なお、導電性層もしくは
導電性基材層を流れた電流は発熱板に接触させた別の帰
路電極を通じて電源に戻るようになされている。
In the present invention, a heating plate is superimposed on the conductive layer side or the conductive base layer side of the recording material via the current-carrying heat-generating layer, and a current-carrying recording needle is placed on the surface of the heat-generating plate opposite to the current-carrying heat-generating layer. Thermal recording is performed by contacting the recording needle and energizing the recording needle. In other words, when electricity is applied to the current-carrying recording needle, point heat generation occurs directly below the part of the heating plate that the current-carrying recording needle contacts, and this heat is transmitted through the conductive layer and the insulating base material, or through the conductive base material layer. The ink in the heat-sensitive transfer layer is dissolved and transferred onto the surface of a recording medium such as plain paper that is superimposed on the heat-sensitive transfer layer. Note that the current flowing through the conductive layer or the conductive base material layer is returned to the power source through another return electrode that is in contact with the heat generating plate.

このとき、金属薄膜からなる感電性層では、通電により
金属薄膜が放電破壊するとそれにより発熱が起こり、発
熱板の発熱量をさらに補うので、熱転写させ易く高濃度
の画像が得られるので好ましい。このように、4電性層
は放電破壊される場合もあるけれども金属薄膜であるた
め、放電破壊により飛散するものの煤や悪臭の発生は起
こらず、また発熱板への付着も少量であり、適宜除去す
れば実用上の支障は全く無い。
At this time, in the case of an electrically sensitive layer made of a metal thin film, when the metal thin film is broken by electric current, it generates heat and further supplements the amount of heat generated by the heat generating plate, which is preferable because thermal transfer is easy and a high density image can be obtained. In this way, although the four-electroconductor layer may be destroyed by discharge, it is a thin metal film, so although it is scattered by discharge destruction, soot and bad odor are not generated, and a small amount of it adheres to the heating plate, so it can be used as appropriate. If removed, there will be no practical problem at all.

一方、金属箔からなる導電性基材層では、通電による放
電破壊は起こらず、発熱板での発熱が金属箔を伝わって
感熱転写層に伝わるが、金属箔の熱伝導性が良好なため
熱転写に必要な熱量が充分に供給でき、同じく高濃度の
画像が得られる。
On the other hand, with a conductive base material layer made of metal foil, no discharge damage occurs due to energization, and the heat generated by the heat generating plate is transmitted through the metal foil to the heat-sensitive transfer layer. The required amount of heat can be supplied sufficiently, and images with high density can also be obtained.

本発明によれば、熱転写記録に際し通電記録針と発熱板
の相対位置を移動しつつ通電することにより発熱板に蓄
熱されることがなく、能率よ(記録することができる。
According to the present invention, by applying electricity while moving the relative positions of the energizing recording needle and the heat generating plate during thermal transfer recording, heat is not stored in the heat generating plate, and recording can be performed more efficiently.

また、発熱板の厚み方向に導電性が高いので発熱板の厚
みを大きくしても画像濃度や鮮明さを損なうことがない
。さらに、発熱板は耐摩耗性にすぐれ、耐久性がよく半
永久的に使用できるので経済的であり、従来のように長
尺の発熱シートを必要としないのでプリンタの構造を簡
単にすることができる。
Furthermore, since the heat generating plate has high conductivity in the thickness direction, even if the thickness of the heat generating plate is increased, image density and sharpness are not impaired. Furthermore, the heating plate has excellent abrasion resistance, is durable, and can be used semi-permanently, making it economical. It also simplifies the structure of the printer because it does not require a long heating sheet as in the past. .

(実施例) 次に本発明の実施例について説明する。以下単に「部」
とあるのは「重量部」を意味する。
(Example) Next, an example of the present invention will be described. Hereafter simply "department"
"parts by weight" means "parts by weight".

〔実施例1〕 導電性セラミックスである炭化ケイ素(SiC)をホッ
トプレス法で焼結加工したセラミックス板を研磨するこ
とにより厚さ40umの板状体を得た。
[Example 1] A plate-shaped body having a thickness of 40 um was obtained by polishing a ceramic plate obtained by sintering silicon carbide (SiC), which is a conductive ceramic, using a hot press method.

該板状体は体積抵抗が50XlO−”Ω−0であり、表
面抵抗が50Ωであった。次に、酸化ルテニウム−ガラ
ス系の抵抗ペーストを上記板状体の片面にスクリーン印
刷し、焼付けて膜厚20um、表面抵抗5にΩの通電発
熱層を形成し発熱板を得た。
The plate had a volume resistivity of 50XlO-''Ω-0 and a surface resistance of 50Ω.Next, a ruthenium oxide-glass based resistance paste was screen printed on one side of the plate and baked. A heat generating plate was obtained by forming an energizing heat generating layer with a film thickness of 20 um and a surface resistance of 5 Ω.

ケ)シ樹脂(本州化学社製、商品名l5tlン80) 
  100部含金属染料(保土谷化学社製、商品名スヒ
uンブラフクBNH)               
              25 部ミツロウ   
             15部カルナバワックス 
          15部酢酸エチル       
       50部トルエン           
    25部次に、上記組成からなる配合物を溶解分
散せしめ、表面抵抗が0.8Ωのアルミニウム蒸着層よ
りなる導電性層が一面に形成されたポリエステルフィル
ムの他面に塗布し乾燥して、厚さ3umの感熱転写層を
形成し、厚さ9umの感熱転写記録材料を得た。
K) Resin (manufactured by Honshu Kagaku Co., Ltd., trade name 15tln80)
100 parts metal-containing dye (manufactured by Hodogaya Chemical Co., Ltd., trade name: Suhiunburafuku BNH)
25 Part Beeswax
15 parts carnauba wax
15 parts ethyl acetate
50 parts toluene
25 parts Next, the compound having the above composition was dissolved and dispersed, and applied to the other side of the polyester film on which a conductive layer consisting of an aluminum vapor-deposited layer with a surface resistance of 0.8 Ω was formed, and dried to give a thick A heat-sensitive transfer layer with a thickness of 3 um was formed to obtain a heat-sensitive transfer recording material with a thickness of 9 um.

得られた感熱転写記録材料を幅7 mに裁断し、発熱板
の通電発熱層面を感熱転写記録材料の導電性層に重ね合
わせ、謄写原紙製版機(ゲステラトナー社製、商品名ゲ
ストファックス1100を改良したもの)に供給し、感
熱転写層の下に上質紙を当接し、発熱板上に通電記録針
を当接し、該通電記録針に直流20Vの電圧を印加し、
走査線密度161/m、記録スピード1 、2 m/s
ecの条件で通電記録を行ったところ、煤やカーボンブ
ラックの飛散および悪臭はなく、発熱板およびポリエス
テルフィルムに貫通孔が生じることもなく、記録中に切
断することなく上質紙に黒色の鮮明な画像が得られた。
The resulting heat-sensitive transfer recording material was cut into a width of 7 m, and the energized heat-generating layer surface of the heat-generating plate was superimposed on the conductive layer of the heat-sensitive transfer recording material. A high-quality paper is brought into contact with the underside of the heat-sensitive transfer layer, an energized recording needle is brought into contact with the heating plate, and a DC voltage of 20 V is applied to the energized recording needle.
Scanning line density 161/m, recording speed 1, 2 m/s
When electricity was recorded under EC conditions, there was no soot or carbon black scattering or bad odor, there were no through holes in the heating plate or polyester film, and a clear black color was printed on the high-quality paper without cutting during recording. Image obtained.

得られた画像の濃度は1.35であり、解′像度は16
j2/Nであった。発熱板を20m]繰返し使用後も同
様の結果であった。
The density of the obtained image is 1.35, and the resolution is 16.
It was j2/N. Similar results were obtained after repeated use of the heat generating plate over a distance of 20 m.

〔実施例2〕 実施例1で得た板状体の片面に、CVD法で酸化錫(S
nug)からなる膜厚lOumの通電発熱層を形成し、
発熱板を得た。
[Example 2] One side of the plate obtained in Example 1 was coated with tin oxide (S
forming a current-carrying heating layer with a film thickness of lOum,
A heating plate was obtained.

次に、実施例1と同様の感熱転写記録材料を得、この感
熱転写記録材料を幅7酊に裁断し、発熱板の通電発熱層
面を感熱転写記録材料の導電性層に重ね合わせ、実施例
1と同様の謄写原紙製版機に供給し、感熱転写層の下に
上質紙を当接し、発熱板上に通電記録針を当接し、実施
例1と同じ条件で通電記録を行ったところ、煤やカーボ
ンブランクの飛散および悪臭はなく、発熱板およびポリ
エステルフィルムに貫通孔が生じることもなく、記録中
に切断することなく上質紙に黒色の鮮明な画像が得られ
た。得られた画像の濃度は1.35であり、解像度は1
64!/amであった。発熱板を20回繰返し使用後も
同様の結果であった。
Next, a heat-sensitive transfer recording material similar to that in Example 1 was obtained, this heat-sensitive transfer recording material was cut into widths of 7 mm, and the current-carrying heat-generating layer surface of the heat-generating plate was superimposed on the conductive layer of the heat-sensitive transfer recording material. The paper was supplied to the same mimeograph paper making machine as in Example 1, high-quality paper was brought into contact with the bottom of the heat-sensitive transfer layer, and an energized recording needle was brought into contact with the heating plate, and energized recording was performed under the same conditions as in Example 1. There was no scattering or bad odor of the carbon blank, no through-holes were formed in the heating plate or polyester film, and clear black images were obtained on the high-quality paper without being cut during recording. The density of the obtained image is 1.35, and the resolution is 1
64! /am. Similar results were obtained after using the heating plate 20 times.

〔実施例3〕 実施例1の感熱転写記録材料の代わりに下記のものを用
いた。すなわち、表面抵抗0.1Ω、厚み108mのア
ルミニウム箔よりなる導電性基材層の片面に下記組成か
らなる配合物を溶解分散せしめて塗付乾燥し、3umの
厚みに感熱転写層を形成して感熱転写記録材料を得た。
[Example 3] The following material was used in place of the thermal transfer recording material of Example 1. That is, a compound having the following composition was dissolved and dispersed on one side of a conductive base layer made of aluminum foil with a surface resistance of 0.1 Ω and a thickness of 108 m, and the mixture was applied and dried to form a heat-sensitive transfer layer with a thickness of 3 um. A thermal transfer recording material was obtained.

Hン樹脂(本州化学社製、商品名naン80)   1
00部含金属染料(保土谷化学社製、商品名スヒoンプ
ラフクBNH)                  
          25 部酢酸エチル      
        50部トルエン          
     25部カルナバワックス         
  15部ミツロウ               1
5部実施例1で得られた発熱板の通電発熱層面をアルミ
ニウム箔からなる導電性基材層面側に重ね合わせ、実施
例1と同様の条件で通電記録を行ったところ、煤やカー
ボンブラックの飛散および悪臭はなく、発熱板に貫通孔
が生ずることもなく、上質紙に黒色の鮮明な画像が得ら
れた。得られた画像の濃度は1830であり、解像度は
151/mmであった。発熱板を20回繰返し使用後も
同様の結果であった。
H resin (manufactured by Honshu Kagaku Co., Ltd., trade name nan 80) 1
00 parts metal-containing dye (manufactured by Hodogaya Chemical Co., Ltd., trade name: SUHION PLAFUK BNH)
25 parts ethyl acetate
50 parts toluene
25 parts carnauba wax
15 parts beeswax 1
5 parts The surface of the energized heat generating layer of the heat generating plate obtained in Example 1 was superimposed on the surface of the conductive base material layer made of aluminum foil, and energization recording was performed under the same conditions as in Example 1. As a result, soot and carbon black were removed. There was no scattering or bad odor, no through holes were formed in the heat generating plate, and a clear black image was obtained on the high-quality paper. The density of the obtained image was 1830, and the resolution was 151/mm. Similar results were obtained after using the heating plate 20 times.

(発明の効果) 本発明は上述の構成となされているので、発熱板を長期
間反覆使用しても取替える必要がなく、ランニングコス
トを大幅に下げることができる。
(Effects of the Invention) Since the present invention has the above-described structure, there is no need to replace the heating plate even if it is repeatedly used for a long period of time, and running costs can be significantly reduced.

また、発熱板は電気的異方性を有しているので厚くする
ことができ、耐久性に優れている。さらに、発熱板を補
強する補強部材が不要であるからプリンタ印字ユニット
の構造を簡素化することができ、プリンタ印字ユニット
全体の製作費を低減することができる。さらにまた、発
熱位置が一点集中化し、かつ記録材料により近づけられ
るので、与エネルギー量が減少し、しかも熱拡散が抑え
られることで解像度が向上する。加えて、蓄熱による被
記録体の地汚れや印字尾曵きを解消することができるの
で、通電感熱転写方式の特性である高速印字、高解像度
を有効に発揮し得る。
Furthermore, since the heating plate has electrical anisotropy, it can be made thicker and has excellent durability. Furthermore, since a reinforcing member for reinforcing the heat generating plate is not required, the structure of the printer printing unit can be simplified, and the manufacturing cost of the entire printer printing unit can be reduced. Furthermore, since the heat generating position is concentrated at one point and brought closer to the recording material, the amount of energy applied is reduced and thermal diffusion is suppressed, thereby improving resolution. In addition, it is possible to eliminate background smudges and print tails on the recording medium due to heat accumulation, so that the high speed printing and high resolution that are the characteristics of the electrically conductive thermal transfer system can be effectively achieved.

特許出願人 積水化学工業株式会社 代表者 廣1)馨Patent applicant Sekisui Chemical Co., Ltd. Representative Hiro 1) Kaoru

Claims (1)

【特許請求の範囲】 1)絶縁性基材の一面に感熱転写層が積層されるととも
に他面に表面抵抗が50Ωより小である金属薄膜からな
る導電性層が積層された記録材料の該導電性層面、もし
くは表面抵抗が1Ωより小でありかつ厚みが2〜30u
mの金属箔からなる導電性基材層の一面に感熱転写層が
積層された記録材料の該導電性基材層面に、 導電性セラミックスからなり表面抵抗が1 〜10^4Ωであって前記導電性層の表面抵抗値より大
でありかつ体積抵抗が10^−^6〜10^3Ω−cm
である板状体の片面に表面抵抗が10^2〜10^7Ω
でかつ該板状体より表面抵抗が大である導電性無機材料
からなる通電発熱層を積層した発熱板を該通電発熱層を
介して重ね合わせ、前記板状体の他面に通電記録針を当
接し、該通電記録針と前記発熱板の相対位置を移動しつ
つ通電し、前記通電発熱層および前記導電性層、もしく
は前記通電発熱層および前記導電性基材層で発熱した熱
で前記感熱転写層を熱転写することを特徴とする通電感
熱転写記録方法。 2)通電発熱層と板状体の表面抵抗の比が10〜10^
5である特許請求の範囲第1項記載の通電感熱転写記録
方法。
[Scope of Claims] 1) The conductivity of a recording material in which a heat-sensitive transfer layer is laminated on one side of an insulating base material and a conductive layer made of a metal thin film having a surface resistance of less than 50Ω is laminated on the other side. The layer surface or surface resistance is less than 1Ω and the thickness is 2 to 30u.
A conductive substrate layer made of conductive ceramics having a surface resistance of 1 to 10^4 Ω and having a surface resistance of 1 to 10^4 Ω of a recording material in which a heat-sensitive transfer layer is laminated on one surface of a conductive base layer made of a metal foil of is larger than the surface resistance value of the sexual layer and has a volume resistivity of 10^-^6 to 10^3 Ω-cm
The surface resistance on one side of the plate-shaped body is 10^2 to 10^7Ω.
A heat-generating plate laminated with a current-carrying heat-generating layer made of a conductive inorganic material having a surface resistance larger than that of the plate-like body is superimposed via the current-carrying heat-generating layer, and a current-carrying recording needle is placed on the other side of the plate-like body. The electricity is applied while moving the relative position of the current-carrying recording needle and the heat-generating plate, and the heat generated by the current-carrying heat-generating layer and the conductive layer, or the current-carrying heat-generating layer and the conductive base layer causes the temperature to rise. An electrically conductive thermal transfer recording method characterized by thermally transferring a thermal transfer layer. 2) The ratio of the surface resistance of the current heating layer and the plate-shaped body is 10 to 10^
5. The electrically conductive thermal transfer recording method according to claim 1.
JP61310351A 1986-12-25 1986-12-25 Electrothermal transfer recording method Pending JPS63160889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310351A JPS63160889A (en) 1986-12-25 1986-12-25 Electrothermal transfer recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310351A JPS63160889A (en) 1986-12-25 1986-12-25 Electrothermal transfer recording method

Publications (1)

Publication Number Publication Date
JPS63160889A true JPS63160889A (en) 1988-07-04

Family

ID=18004188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310351A Pending JPS63160889A (en) 1986-12-25 1986-12-25 Electrothermal transfer recording method

Country Status (1)

Country Link
JP (1) JPS63160889A (en)

Similar Documents

Publication Publication Date Title
JPH0710601B2 (en) Thermal head
WO2005105462A1 (en) Thermal print head
JPS63160889A (en) Electrothermal transfer recording method
JPS63160885A (en) Electrothermai transfer recording method
JPS63160888A (en) Electrothermal recording method
JPS63139787A (en) Electrothermo transfer recording method
JPS63160884A (en) Electrothermal recording method
JPH0274356A (en) Recording head of electrification type
JPS63160886A (en) Electrothermal recording method
JPS63139788A (en) Electrothermo transfer recording method
JPS63160887A (en) Electrothermal transfer recording method
JPS63135285A (en) Electric-conduction thermal recording method
JP3371881B2 (en) Thermal head
JPS6384982A (en) Electro-thermal recording method
JP2808804B2 (en) Thermal head
JPH0785946B2 (en) Thermal sublimation ink ribbon
JP4157392B2 (en) Thermal head
JP2778368B2 (en) Energized thermal transfer recording medium
JP2668946B2 (en) Sublimation transfer type recording ink medium
JP2626511B2 (en) Power transfer printing recorder
JPH07137312A (en) Electrothermal transfer ink medium
JPH062419B2 (en) Print record head
JPH02220857A (en) Thermal head
JPH03106662A (en) Thermal head and printer
JPS6335357A (en) Recording head