JPS63160886A - Electrothermal recording method - Google Patents

Electrothermal recording method

Info

Publication number
JPS63160886A
JPS63160886A JP61310348A JP31034886A JPS63160886A JP S63160886 A JPS63160886 A JP S63160886A JP 61310348 A JP61310348 A JP 61310348A JP 31034886 A JP31034886 A JP 31034886A JP S63160886 A JPS63160886 A JP S63160886A
Authority
JP
Japan
Prior art keywords
heat
recording
heat generating
plate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310348A
Other languages
Japanese (ja)
Inventor
Shiro Nakano
中野 司郎
Toshimasa Ikena
池名 敏眞
Kazuo Tanaka
一夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61310348A priority Critical patent/JPS63160886A/en
Publication of JPS63160886A publication Critical patent/JPS63160886A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/20Duplicating or marking methods; Sheet materials for use therein using electric current

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To enable efficient recording and simplify the construction of a printer, by performing energization while moving an electrothermal recording needle and a heat generating plate relative to each other, and performing thermal transfer recording or thermal color forming recording by the heat generated by an electrically energized heat generating layer in the heat generating plate. CONSTITUTION:An electrically energized heat generating layer comprising a conductive inorganic material having a surface resistance of 10-10<7>OMEGA is provided on one side of an electrically anisotropic plate-shaped body in which a metal having a volume resistivity of not more than 10<-2>OMEGA-cm is contained in a matrix of an insulating open- cellular glass having a volume resistivity of at least 10<9>OMEGA-cm. A conductive layer comprising a thin metallic film or a conductive ceramic having a surface resistance of not more than 50 OMEGA is provided on the surface of the heat generating layer to form a heat generating plate, and a thermal transfer recording medium and a recording material or a thermal color forming paper is laid on the conductive layer side of the heat generating plate. Energization is conducted while moving an electrothermal recording needle placed in contact with the other side of the plate shaped body and the heat generating plate relative to each other, and thermal transfer recording or thermal color forming recording is conducted by the heat generated by the heat generating layer in the heat generating plate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通電感熱記録方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an electrically conductive thermal recording method.

(従来の技術) 近年、情報が著しく豊富となり、その情報の迅速な伝達
、記録等の必要性が高まり、情報処理システム、情報伝
達システムおよび情報記録システム等の情報管理システ
ムに関し、種々の開発がなされており、通電感熱転写記
録システムもその代表的な一例である。
(Prior Art) In recent years, information has become extremely abundant, and the need for rapid transmission and recording of that information has increased, and various developments have been made regarding information management systems such as information processing systems, information transmission systems, and information recording systems. A typical example of this is an electrically conductive thermal transfer recording system.

l記記録システムで使用される記録材料としては、例え
ば特開昭゛61−179764号公報記載の通電記録装
置がある。該公報記載のものは、発熱抵抗層と導電性層
とを1つの発熱シートに形成し、熱溶融インク層から分
離したものであり、発熱シートは反覆使用できるので印
字速度を低下させることなくランニングコストを下げる
ことができるという長所がある。
As a recording material used in the recording system, there is, for example, an electric current recording device described in Japanese Patent Application Laid-Open No. 61-179764. The product described in this publication has a heating resistance layer and a conductive layer formed on one heating sheet and is separated from a heat-melting ink layer, and since the heating sheet can be used repeatedly, it can be used for running without reducing printing speed. It has the advantage of being able to reduce costs.

(発明が解決しようとする問題点) しかしながら、発熱シートとして、発熱抵抗層にはポリ
カーボネートに導電性カーボンを分散したものまたはケ
イ化金属を使用し、導電性層には薄着アルミニウムまた
はステンレスフィルムを使用しているが、ポリカーボネ
ートに充填剤として導電性カーボンを分散したものは耐
久性に乏しい上に、0.5〜2.0μmの厚さでは反覆
使用は非常に困難である。また、ケイ化金属も0.5〜
2.0μmの厚みでは極めて破損し易(、単独では使用
に耐えうるちのではない。また、これらの表面に導電性
層を設けることも容易ではない。
(Problem to be solved by the invention) However, as a heat generating sheet, polycarbonate with conductive carbon dispersed or metal silicide is used for the heat generating resistance layer, and thin aluminum or stainless steel film is used for the conductive layer. However, polycarbonate in which conductive carbon is dispersed as a filler has poor durability and is extremely difficult to use repeatedly at a thickness of 0.5 to 2.0 μm. In addition, metal silicide is also 0.5~
With a thickness of 2.0 μm, it is extremely easy to break (and cannot be used alone. Furthermore, it is not easy to provide a conductive layer on these surfaces.

(問題点を解決するための手段) 本発明は上記従来の欠点を解消するためになされたもの
であって、その要旨は、体積抵抗が109Ω−値以上で
ある絶縁性の連通性多孔質ガラスのマトリクスに体積抵
抗が101Ω−値以下の金属を含浸させてなる電気的異
方性の板状体の片面に、表面抵抗が10−109Ωであ
るW電性無機材料からなる通電発熱層が積層され、さら
に該通電発熱層面に、表面抵抗が50Ω以下でかつ該通
電発熱層より表面抵抗が小である金属薄膜もしくは導電
性セラミックスからなる導電性層が積層された発熱板の
該導電性層面側に感熱転写記録媒体と被記録体、または
感熱発色紙を重ね合わせ、前記板状体の他面に通電記録
針を当接し、該通電記録針と前記発熱板の相対位置を移
動しつつ通電し、該発熱板内の通電発熱層で発熱した熱
で前記感熱転写記録もしくは感熱発色記録を行うことを
特徴とするものである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned conventional drawbacks, and its gist is to provide an insulating continuous porous glass having a volume resistivity of 109Ω-value or more. An electrically anisotropic plate-like body made of a matrix impregnated with a metal having a volume resistivity of 101Ω or less is laminated on one side of the electrically anisotropic plate-like body made of a W conductive inorganic material with a surface resistance of 10-109Ω. and a conductive layer made of a metal thin film or a conductive ceramic having a surface resistance of 50 Ω or less and a surface resistance lower than that of the current heating layer is further laminated on the surface of the current heating layer, the side of the conductive layer side of the heating plate. A thermal transfer recording medium and a recording medium or a thermosensitive coloring paper are superimposed on each other, an energizing recording needle is brought into contact with the other surface of the plate-like body, and the current is applied while moving the relative position of the energizing recording needle and the heating plate. , the heat-sensitive transfer recording or the heat-sensitive color recording is performed using the heat generated by the energized heat-generating layer in the heat-generating plate.

(発明の概要) 発熱板は、該発熱板に当接した通電記録針から通電され
た電流により該通電記録針直下の厚み方向で発熱するも
のであり、絶縁性の連通性多孔質ガラスのマトリクスに
金属を含浸させた電気的異方性の板状体の片面に、導電
性無機材料からなる通電発熱層を積層し、さらに該通電
発熱層面に金属薄膜もしくは導電性セラミックスからな
る導電性層を積層したものである。
(Summary of the invention) The heating plate generates heat in the thickness direction directly under the current-carrying recording needle due to the current applied from the current-carrying recording needle in contact with the heat-generating plate, and is made of an insulating, continuous porous glass matrix. An electric heating layer made of a conductive inorganic material is laminated on one side of an electrically anisotropic plate-like body impregnated with a metal, and a conductive layer made of a thin metal film or a conductive ceramic is further layered on the surface of the electric heating layer. It is a layered product.

板状体は、発熱板の自己支持性の保持、および電流を通
電記録針の直下の厚み方向のみに流す役割を負うもので
ある。
The plate-like body has the role of maintaining the self-supporting properties of the heating plate and allowing the current to flow only in the thickness direction directly below the current recording needle.

本発明の絶縁性の連通性多孔質ガラスとしては、孔径が
80人〜1μのものが好適である。また、この連通性多
孔質ガラスのマトリクスに含浸させる金属としては、銀
(Ag) 、銅(Cu)等が好適である。
The insulating, open-circuit porous glass of the present invention preferably has a pore diameter of 80 μm to 1 μm. Further, as the metal to be impregnated into the matrix of this continuous porous glass, silver (Ag), copper (Cu), etc. are suitable.

板状体は上述の構成となされているので該板状体の厚み
方向へ選択的に電流が流れる電気的異方性のものである
。従って、板状体の厚みが大きくなっても導電性は損な
われないので厚みを大きくすることができ、取り扱い易
い厚さを選択することができる。また、このようになる
板状体は、面内の導電性部分の均一分布がよく保たれる
ので、通電記録針がどの位置にあたっても均一な通電条
件が得られるものである。また、それとともに製造条件
の範囲が広いため、製造が容易である。
Since the plate-like body has the above-described structure, it is electrically anisotropic in that a current flows selectively in the thickness direction of the plate-like body. Therefore, even if the thickness of the plate-shaped body increases, the conductivity is not impaired, so the thickness can be increased, and a thickness that is easy to handle can be selected. In addition, since such a plate-like body maintains a uniform distribution of conductive portions within its plane, uniform current-carrying conditions can be obtained no matter where the current-carrying recording needle hits. In addition, since the range of manufacturing conditions is wide, manufacturing is easy.

通電発熱層の厚みは2〜50μmが好ましく、該通電発
熱層を構成する導電性無機材料としては、表面抵抗が1
0〜10?Ωの範囲のものであればよく、例えば、酸化
ルテニウム−ガラス、酸化錫(SnOz) 、その他低
導電性セラミックスが好適である。
The thickness of the current heating layer is preferably 2 to 50 μm, and the conductive inorganic material constituting the current heating layer has a surface resistance of 1
0-10? It may be in the range of Ω, and for example, ruthenium oxide glass, tin oxide (SnOz), and other low-conductivity ceramics are suitable.

上記通電発熱層面に積層される導電性層は、通電記録針
の対電極となるとともに、該通電発熱層で発熱した熱を
感熱記録媒体もしくは感熱発色紙に伝導するものであり
、導電外層自体はある程度発熱するが破壊されることの
ないものである。この導電性層の表面抵抗は大きくなる
と対電極として作用しなくなるので、導電性層の表面抵
抗は50Ω以下でかつ、前記通電発熱層のそれより小さ
くなされる。また、通電発熱層と導電性層の表面抵抗の
比は50〜108の範囲になるように決定される。
The conductive layer laminated on the surface of the current-carrying heat-generating layer serves as a counter electrode for the current-carrying recording needle, and also conducts the heat generated by the current-carrying heat-generating layer to the heat-sensitive recording medium or heat-sensitive coloring paper, and the conductive outer layer itself is Although it generates some heat, it will not be destroyed. If the surface resistance of this conductive layer increases, it will no longer function as a counter electrode, so the surface resistance of the conductive layer is made to be 50Ω or less and smaller than that of the electricity-generating layer. Further, the ratio of the surface resistances of the current heating layer and the conductive layer is determined to be in the range of 50 to 108.

導電性層の厚みは0.05μmよりも薄くすると表面抵
抗が大きくなり対電極として充分に作用せず、5μm以
上に厚くすると熱の伝導性が悪くなり、また通電破壊さ
れ難くなり発熱板からの熱が拡散されたり伝熱に時間を
要する等不利となるので、厚みは0.05〜5pmとな
される。
If the thickness of the conductive layer is thinner than 0.05 μm, the surface resistance will increase and it will not function sufficiently as a counter electrode, and if it is thicker than 5 μm, the thermal conductivity will be poor and it will be difficult to be destroyed by current, making it difficult for the heat generating plate to The thickness is set at 0.05 to 5 pm, since heat is diffused and heat transfer takes time.

導電性層としては、金属薄膜もしくは導電性セラミック
スが好適である。金属薄膜としては、例えばアルミニウ
ム、ステンレス鋼、金、銀等の金属薄膜もしぐは金属箔
が好適である。また、導電性セラミックスとしては、ケ
イ化モリブデン(MoSit)、炭化チタン(TiN)
 、炭化タングステン(WC)、ホウ化ジルコニウム(
ZrBz)、窒化チタン(TiN)等のような遷移金属
のケイ化物、炭化物、ホウ化物、窒化物が好適である。
As the conductive layer, a metal thin film or conductive ceramics is suitable. As the metal thin film, a metal thin film such as aluminum, stainless steel, gold, silver, or a metal foil is suitable. In addition, examples of conductive ceramics include molybdenum silicide (MoSit) and titanium carbide (TiN).
, tungsten carbide (WC), zirconium boride (
Silicides, carbides, borides, nitrides of transition metals such as ZrBz), titanium nitride (TiN), etc. are suitable.

本発明においては、上記のようになる発熱板の導電性層
面側に、感熱転写記録媒体と普通紙等の被記録体をこの
順に重ね合わせるか、または導電性層面側に感熱発色紙
を重ね合わせ、通電発熱層と反対側の発熱板の表面に通
電記録針を当接し、該通電記録針に通電することにより
感熱記録を行うものである。すなわち、通電記録針に通
電すると、発熱板の通電記録針が当接された部分の直下
で点発熱が起こり、この熱は、導電性層を伝わって感熱
転写記録媒体のインクを溶解し、該感熱転写記録媒体に
重ね合わせた普通紙等の被記録体の表面に転写し、もし
くは導電性層を伝わって該導電性層に重ね合わせた感熱
発色紙を発色させるものである。なお、導電性層を流れ
た電流は発熱板に接触させた別の帰路電極を通じて電源
に戻るようになされている。
In the present invention, a heat-sensitive transfer recording medium and a recording material such as plain paper are stacked in this order on the conductive layer side of the heating plate as described above, or a heat-sensitive coloring paper is stacked on the conductive layer side. , a current-carrying recording needle is brought into contact with the surface of the heat-generating plate opposite to the current-carrying heat-generating layer, and thermal recording is performed by energizing the current-carrying recording needle. In other words, when the current-carrying recording needle is energized, point heat generation occurs directly below the portion of the heat-generating plate that the current-carrying recording needle contacts, and this heat is transmitted through the conductive layer and dissolves the ink on the thermal transfer recording medium, causing the ink on the thermal transfer recording medium to melt. The color is transferred onto the surface of a recording medium such as plain paper overlaid on a heat-sensitive transfer recording medium, or transmitted through a conductive layer to develop color on a heat-sensitive coloring paper overlaid on the conductive layer. Note that the current flowing through the conductive layer is returned to the power source through another return electrode that is in contact with the heat generating plate.

本発明によれば、熱転写記録に際し通電記録針と発熱板
の相対位置を移動しつつ通電することにより発熱板に蓄
熱されることがなく、能率よく記録することができる。
According to the present invention, during thermal transfer recording, by applying electricity while moving the relative positions of the energizing recording needle and the heat generating plate, heat is not stored in the heat generating plate, and recording can be performed efficiently.

また、発熱板の厚み方向にm電性が高いので発熱板の厚
みを大きくしても画像濃度や鮮明さを損なうことがない
。さらに、発熱板は耐摩耗性にすぐれ、耐久性がよく半
永久的に使用できるので経済的であり、従来のように長
尺の発熱シートを必要としないのでプリンタの構造を簡
単にすることができる。
Furthermore, since the heat generating plate has high m-electricity in the thickness direction, image density and sharpness are not impaired even if the thickness of the heat generating plate is increased. Furthermore, the heating plate has excellent abrasion resistance, is durable, and can be used semi-permanently, making it economical. It also simplifies the structure of the printer because it does not require a long heating sheet as in the past. .

(実施例) 次に本発明の実施例について説明する。以下単に「部」
とあるのは「重量部」を意味する。
(Example) Next, an example of the present invention will be described. Hereafter simply "department"
"parts by weight" means "parts by weight".

〔実施例1〕 厚さ200μmの連通性多孔質ガラス中に銀(Ag)を
含浸させ、膜厚方向に電気的異方性の板状体を得た。次
に、酸化ルテニウム−ガラス系の抵抗ベーストを上記板
状体の片面にスクリーン印刷し、焼付けて膜厚20μm
、表面抵抗5にΩの通電発熱層を形成した。続いて、該
通電発熱層面にCVD法により膜厚2μmのホウ化ジル
コニウム(ZrBg)からなる導電性層を形成し発熱板
を得た。該導電性層の表面抵抗は0.5X 10−’Ω
であった。
[Example 1] Silver (Ag) was impregnated into a continuous porous glass having a thickness of 200 μm to obtain a plate-like body having electrical anisotropy in the film thickness direction. Next, a ruthenium oxide-glass based resistance base was screen printed on one side of the plate and baked to a thickness of 20 μm.
, an energizing heating layer of Ω was formed on the surface resistance 5. Subsequently, a conductive layer made of zirconium boride (ZrBg) having a thickness of 2 μm was formed on the surface of the current heating layer by CVD to obtain a heat generating plate. The surface resistance of the conductive layer is 0.5X 10-'Ω
Met.

ケトン樹脂(本州化学社製、商品名nn:z80)  
 100部含金属染料(保土谷化学社製、商品名ZヒU
ンプラフクBNH)                
             25 部ミツロウ    
            15部カルナバワックス  
         15部酢酸エチル        
      50部トルエン            
   25部次に、上記組成からなる配合物を溶解分散
せしめ、表面抵抗が0.8Ωのアルミニウム蒸着層より
なる導電性層が一面に形成されたポリエステルフィルム
の他面に塗布し乾燥して、厚さ3μmの感熱転写層を形
成し、厚さ9μmの感熱転写記録材料を得た。
Ketone resin (manufactured by Honshu Kagaku Co., Ltd., product name nn:z80)
100 parts metal-containing dye (manufactured by Hodogaya Chemical Co., Ltd., trade name: ZhiU)
Npurafuku BNH)
25 Part Beeswax
15 parts carnauba wax
15 parts ethyl acetate
50 parts toluene
25 parts Next, the compound having the above composition was dissolved and dispersed, and applied to the other side of the polyester film on which a conductive layer consisting of an aluminum vapor-deposited layer with a surface resistance of 0.8 Ω was formed, and dried to give a thick A heat-sensitive transfer layer with a thickness of 3 μm was formed to obtain a heat-sensitive transfer recording material with a thickness of 9 μm.

得られた感熱転写記録材料を幅711に裁断し、発熱板
の導電性層面を感熱転写記録材料のポリエステルフィル
ム面に重ね合わせ、謄写原紙製版機(ゲステラトナー社
製、商品名ゲストファックス1100を改良したもの)
に供給し、感熱記録材料の下に上質紙を当接し、発熱板
上に通電記録針を当接し、該通電記録針に直流20Vの
電圧を印加し、走査線密度161 / as、記録スピ
ード1.2 m/secの条件で通電記録を行ったとこ
ろ、煤やカーボンブラックの飛散および悪臭はなく、発
熱板およびポリエステルフィルムに貫通孔が生じること
もなく、導電性層は放電破壊されず、記録中に切断する
ことなく上質紙・に黒色の鮮明な画像が得られた。
The obtained thermal transfer recording material was cut to a width of 711 mm, the conductive layer surface of the heat generating plate was superimposed on the polyester film surface of the thermal transfer recording material, and a mimeograph paper making machine (manufactured by Gestellatner, trade name: Guest Fax 1100, modified) was used. thing)
A high-quality paper is brought into contact with the bottom of the heat-sensitive recording material, an energized recording needle is brought into contact with the heat-generating plate, a DC voltage of 20 V is applied to the energized recording needle, the scanning line density is 161/as, and the recording speed is 1. When recording electricity under the conditions of .2 m/sec, there was no scattering of soot or carbon black, no bad odor, no through holes were formed in the heating plate or polyester film, the conductive layer was not destroyed by discharge, and no recording was made. Clear black images were obtained on high-quality paper without any cutting.

得られた画像の濃度は1.35であり、解像度は167
!/龍であった。発熱板を20回繰返し使用後も同様の
結果であった。
The density of the obtained image is 1.35, and the resolution is 167
! /It was a dragon. Similar results were obtained after using the heating plate 20 times.

〔実施例2〕 実施例1において導電性層を導電性セラミックスの代わ
りに厚さ3μmのステンレススチール箔を用いた。この
場合、ステンレススチール箔を張り合わせで使用し、表
面抵抗は0.2X10−”Ωであった。
[Example 2] In Example 1, a stainless steel foil with a thickness of 3 μm was used as the conductive layer instead of the conductive ceramic. In this case, stainless steel foil was used as a laminate, and the surface resistance was 0.2 x 10-''Ω.

実施例1と同様の条件で通電記録を行ったところ、煤や
カーボンブラックの飛散および悪臭はなく、発熱板に貫
通孔が生ずることもなく、上質紙に黒色の鮮明な画像が
得られた。得られた画像の濃度は1.30であり、解像
度は161/wであった。発熱板を10回繰返し使用後
も同様の結果であった。
When energization recording was carried out under the same conditions as in Example 1, there was no scattering of soot or carbon black, no bad odor, no through holes were formed in the heating plate, and a clear black image was obtained on the high-quality paper. The density of the obtained image was 1.30, and the resolution was 161/w. Similar results were obtained after using the heating plate 10 times.

(発明の効果) 本発明は上述の構成となされているので、発熱板を長期
間反覆使用しても取替える必要がなく、ランニングコス
トを大幅に下げることができる。
(Effects of the Invention) Since the present invention has the above-described structure, there is no need to replace the heating plate even if it is repeatedly used for a long period of time, and running costs can be significantly reduced.

また、発熱板は電気的異方性を有しているので厚くする
ことができ、耐久性に優れている。さらに、発熱板を補
強する補強部材が不要であるからプリンタ印字ユニット
の構造を簡素化することができ、プリンタ印字ユニット
全体の製作費を低減することができる。さらにまた、発
熱板を構成する電気的異方性の板状体の面内の4電性部
分の均一分布がよく保たれるので、通電記録針がどの位
置にあたっても均一な通電条件が得られる。加えて発熱
板は、その製造条件の範囲が広いので製作が容易である
Furthermore, since the heating plate has electrical anisotropy, it can be made thicker and has excellent durability. Furthermore, since a reinforcing member for reinforcing the heat generating plate is not required, the structure of the printer printing unit can be simplified, and the manufacturing cost of the entire printer printing unit can be reduced. Furthermore, since the uniform distribution of the four-electrode portion within the plane of the electrically anisotropic plate-like body that constitutes the heating plate is well maintained, uniform energization conditions can be obtained no matter where the energization recording needle hits. . In addition, the heating plate is easy to manufacture because it can be manufactured under a wide range of conditions.

特許出廓人 積水化学工業株式会社 代表者 廣1)馨Patent distributor: Sekisui Chemical Co., Ltd. Representative Hiro 1) Kaoru

Claims (1)

【特許請求の範囲】 1)体積抵抗が10^9Ω−cm以上である絶縁性の連
通性多孔質ガラスのマトリクスに体積抵抗が10^−^
2Ω−cm以下の金属を含浸させてなる電気的異方性の
板状体の片面に、表面抵抗が10〜10^7Ωである導
電性無機材料からなる通電発熱層が積層され、さらに該
通電発熱層面に、表面抵抗が50Ω以下でかつ該通電発
熱層より表面抵抗が小である金属薄膜もしくは導電性セ
ラミックスからなる導電性層が積層された発熱板の該導
電性層面側に感熱転写記録媒体と被記録体、または感熱
発色紙を重ね合わせ、前記板状体の他面に通電記録針を
当接し、該通電記録針と前記発熱板の相対位置を移動し
つつ通電し、該発熱板内の通電発熱層で発熱した熱で前
記感熱転写記録もしくは感熱発色記録を行うことを特徴
とする通電感熱記録方法。 2)通電発熱層と導電性層の表面抵抗の比が50〜10
^8である特許請求の範囲第1項記載の通電感熱記録方
法。
[Claims] 1) A matrix of insulating open porous glass having a volume resistivity of 10^9 Ω-cm or more and a volume resistivity of 10^-^
An electrically conductive heating layer made of a conductive inorganic material with a surface resistance of 10 to 10^7 Ω is laminated on one side of an electrically anisotropic plate-like body impregnated with a metal of 2 Ω-cm or less, and A heat-sensitive transfer recording medium is placed on the side of the conductive layer of a heat-generating plate in which a conductive layer made of a metal thin film or conductive ceramics having a surface resistance of 50 Ω or less and a surface resistance lower than that of the current-carrying heat-generating layer is laminated on the heat-generating layer side. and a recording medium or heat-sensitive coloring paper are superimposed, an energizing recording needle is brought into contact with the other surface of the plate-like body, and electricity is applied while moving the relative position of the energizing recording needle and the heat generating plate, so that the inside of the heat generating plate is An electrically conductive thermal recording method, characterized in that the thermal transfer recording or thermosensitive color recording is performed using heat generated in the electrically conductive heat generating layer. 2) The ratio of the surface resistance of the current heating layer and the conductive layer is 50 to 10.
^8. The electrically conductive thermal recording method according to claim 1.
JP61310348A 1986-12-25 1986-12-25 Electrothermal recording method Pending JPS63160886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310348A JPS63160886A (en) 1986-12-25 1986-12-25 Electrothermal recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310348A JPS63160886A (en) 1986-12-25 1986-12-25 Electrothermal recording method

Publications (1)

Publication Number Publication Date
JPS63160886A true JPS63160886A (en) 1988-07-04

Family

ID=18004150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310348A Pending JPS63160886A (en) 1986-12-25 1986-12-25 Electrothermal recording method

Country Status (1)

Country Link
JP (1) JPS63160886A (en)

Similar Documents

Publication Publication Date Title
JPH0710601B2 (en) Thermal head
JPS58162369A (en) Resistive ribbon for thermo-transfer printing
EP0037664A1 (en) Two-dimensional thermal head
JPS63160886A (en) Electrothermal recording method
JPS63160888A (en) Electrothermal recording method
JPS63160887A (en) Electrothermal transfer recording method
JPS63160889A (en) Electrothermal transfer recording method
JPS63160884A (en) Electrothermal recording method
JPH0274356A (en) Recording head of electrification type
JPS63160885A (en) Electrothermai transfer recording method
JPS63139788A (en) Electrothermo transfer recording method
JPS6384982A (en) Electro-thermal recording method
JP3371881B2 (en) Thermal head
JPH05261948A (en) Recording head for power connection transfer
JPS61199996A (en) Electrifying transfer type recording method
JPH0773944B2 (en) Electric thermal transfer recording material
JP2757432B2 (en) Ink recording medium
JPH02220857A (en) Thermal head
JPS61130091A (en) Electric energizing thermal transfer recording material
JPH115364A (en) Non-impact recording method
JPS61179764A (en) Current supply type recording apparatus
JPS6381074A (en) Recording ribbon
JPS58162675A (en) Ink medium
JP2001001562A (en) Thick film type thermal head
JPS61185467A (en) Electrifying transfer device