JPH07137312A - Electrothermal transfer ink medium - Google Patents

Electrothermal transfer ink medium

Info

Publication number
JPH07137312A
JPH07137312A JP28699593A JP28699593A JPH07137312A JP H07137312 A JPH07137312 A JP H07137312A JP 28699593 A JP28699593 A JP 28699593A JP 28699593 A JP28699593 A JP 28699593A JP H07137312 A JPH07137312 A JP H07137312A
Authority
JP
Japan
Prior art keywords
layer
recording
thickness
ink
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28699593A
Other languages
Japanese (ja)
Inventor
Hidekazu Akutsu
英一 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP28699593A priority Critical patent/JPH07137312A/en
Publication of JPH07137312A publication Critical patent/JPH07137312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)

Abstract

PURPOSE:To provide an electrothermal transfer ink medium easy in the reduc tion of thickness or the simplification of production by simple constitution without damaging recording capacity due to an electrophermal transfer recording system and more inexpensive than a conventional product. CONSTITUTION:A conductive layer 3 and a heat generating layer 4 are laminated to the single surface of an insulating polymer film support material and a thermal transfer ink layer 5 is laminated to the other surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通電転写記録方式におい
て使用される通電転写インク媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric transfer ink medium used in an electric transfer recording system.

【0002】[0002]

【従来の技術】通電転写インク媒体は、基本的に、通電
により発熱する発熱層と、通電記録ヘッドからの画像信
号電流を発熱層へ通電させるための導電層と、発熱層の
発熱により転移性を示すインク組成物からなる感熱転移
性インク層とでその主要部が構成されている。
2. Description of the Related Art Generally, an electrically conductive transfer ink medium has a heat generating layer which generates heat when energized, a conductive layer for supplying an image signal current from a current recording head to the heat generating layer, and a transfer property due to heat generation of the heat generating layer. And a heat-sensitive transferable ink layer composed of the ink composition shown in FIG.

【0003】このような通電転写インク媒体を用いて通
電転写記録を行うに当たっては、まず、通電転写インク
媒体の発熱層面に、その先端部に複数の独立した記録電
極が並列状態で設けられた通電記録ヘッドを接触させ
る。また同時に、インク媒体の通電層には帰路用電極を
接触させる。そして、通電記録ヘッドから各記録電極を
介して画像情報に対応した通電を行い、通電した部分の
発熱層のみを選択的に発熱させて、その発熱部分に対応
する感熱転移性インク層部分のインクを例えば溶融さ
せ、そのインクをインク層と対向配置させた記録紙に転
写することにより、通電転写記録方式による画像形成が
行われるようになっている。
In conducting energization transfer recording using such an energization transfer ink medium, first, energization in which a plurality of independent recording electrodes are provided in parallel at the tip of the heating layer surface of the energization transfer ink medium. Touch the recording head. At the same time, the return electrode is brought into contact with the conductive layer of the ink medium. Then, the current corresponding to the image information is applied from the energization recording head through each recording electrode to selectively heat only the heat generating layer of the energized portion, and the ink of the heat-sensitive transferable ink layer portion corresponding to the heat generating portion. Is melted, and the ink is transferred to a recording paper which is arranged so as to face the ink layer, whereby an image is formed by an electric transfer recording method.

【0004】ところで、従来の通電転写インク媒体とし
ては、具体的には、支持材が発熱層としても機能するよ
う、カーボン粒子等を樹脂材料に分散してなる導電性樹
脂フィルムを発熱層兼支持材として用い、その導電性樹
脂フィルムの片面に導電層とインク層を順次積層したも
のが主に知られている(画像電子学会誌第16、第1号
(1987)27頁や、沢井らによる「通電転写記録ヘ
ッドの開発」画像電子学会第102回研究会講演予稿集
(1988)25頁、参照)。その他にも、異方導電特
性を有する支持材上に、発熱層、導電層及びインク層を
順次積層して形成したもの(米国特許第4,897,6
69号公報等)等が知られている。
By the way, as a conventional electric transfer ink medium, specifically, a conductive resin film, which is made by dispersing carbon particles or the like in a resin material, also serves as a heat generating layer, so that the supporting material also functions as a heat generating layer. A material in which a conductive layer and an ink layer are sequentially laminated on one side of a conductive resin film is known (see Journal of Image Electronics Engineers, No. 16, No. 1 (1987), page 27, and Sawai et al. "Development of Electric Transfer Recording Head", Proceedings of 102nd Research Meeting of the Institute of Image Electronics Engineers of Japan (1988), page 25). In addition, a heat-generating layer, a conductive layer, and an ink layer are sequentially laminated on a support material having anisotropic conductive characteristics (US Pat. No. 4,897,6).
No. 69, etc.) are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の通電転写インク媒体は、その支持材とし
て、いずれも導電性物質を分散して導電性を付与した樹
脂フィルムを使用するものが多く、かかる導電性樹脂フ
ィルムが比較的高価であることからインク媒体自体もコ
スト高となるという問題があった。
However, in many of the conventional electro-transfer ink media as described above, as a supporting material thereof, a resin film in which a conductive substance is dispersed to impart conductivity is used. However, since the conductive resin film is relatively expensive, the cost of the ink medium itself is high.

【0006】また、導電性樹脂フィルムは、導電性物質
の分散により低下する強度を補うためそのフィルム厚を
ある程度厚く(少なくとも15〜20μm以上に)しな
ければならないという制約があり、これによってもコス
トアップを招いていた。しかも、支持材はインク媒体全
体に占める厚さの割合が高いため、インク媒体を巻回し
た際にはその巻径が常に一定以上の大きさになってしま
い、例えばその小径化が不可能である等の不具合を有し
ていた。
Further, the conductive resin film has a constraint that the film thickness must be increased to a certain degree (at least 15 to 20 μm or more) in order to compensate for the strength lowered by the dispersion of the conductive substance, which also results in the cost reduction. I was invited up. Moreover, since the support material has a high ratio of the thickness to the entire ink medium, when the ink medium is wound, the winding diameter is always a certain size or more, and it is impossible to reduce the diameter, for example. There were some problems.

【0007】なお、この種のインク媒体の構成を簡素化
するため、樹脂フィルムの片面に導電性物質を分散させ
た樹脂液を塗布して発熱層を設け、その他面にインク層
を設けてインク媒体を構成し、その通電転写記録に際し
ては発熱層に接触する記録ヘッドの記録電極間で通電さ
せて発熱を起こさせる記録ヘッドを使用する方法が提供
されている。しかし、かかる技術は、記録ヘッドの記録
電極間で発熱現象を生じさせるものであるため記録時の
パルス駆動方法が複雑化してその記録システムはコスト
が高くなる上、発熱層は樹脂液からなる塗工膜であって
厚く導電性物質等の分散ばらつきがあり、得られる転写
画像は印字率やドット径のばらつき等の記録性能が低い
等により、高画質の画像が得られ難かった。
In order to simplify the structure of this kind of ink medium, a resin film in which a conductive substance is dispersed is applied to one surface of a resin film to provide a heat generating layer, and an ink layer is provided to the other surface to form an ink. There has been provided a method of using a recording head which constitutes a medium and causes heat generation by energizing between recording electrodes of the recording head which is in contact with a heat generating layer at the time of electric transfer recording. However, since such a technique causes a heat generation phenomenon between the recording electrodes of the recording head, the pulse driving method at the time of recording is complicated, the cost of the recording system is high, and the heat generating layer is coated with a resin liquid. It was difficult to obtain a high-quality image because it was a work film and had a thick dispersion of conductive materials and the like, and the obtained transfer image had low recording performance such as variations in printing rate and dot diameter.

【0008】本発明の目的は、通電転写記録方式による
記録性能を損なうことなく高画質の画像記録ができる
上、簡易な構成で厚さの低減化や製造の簡略化が容易
で、しかも、従来品に比してより安価な通電転写インク
媒体を提供することにある。
An object of the present invention is to enable high-quality image recording without deteriorating the recording performance of the electric transfer recording system, and also to reduce the thickness and simplify the manufacturing with a simple structure. An object of the present invention is to provide an electrically conductive transfer ink medium that is cheaper than a commercial product.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の通電
転写インク媒体は、絶縁性高分子フィルム支持材の片面
にいずれも薄膜化した導電層と発熱層をこの順に積層す
ると共に、その他面に感熱転移性インク層を積層する層
構造からなることを特徴とするものである。
That is, in the electrotransfer ink medium of the present invention, a conductive layer and a heat generating layer, both of which are thinned, are laminated in this order on one surface of an insulating polymer film support, and the other surface is formed. It is characterized by having a layered structure in which heat-sensitive transferable ink layers are laminated.

【0010】また、本発明の通電転写インク媒体は、望
ましくは上記の技術的手段において、絶縁性高分子フィ
ルム支持材の厚さが0.5〜20μmであったり、導電
層の厚さが0.6μm以下であったり、発熱層の厚さが
0.8μm以下であったり、あるいは、導電層及び発熱
層が金属材料とセラミックス材料を主成分とする材料か
らなる薄膜層であることを特徴とするものである。
In the electrotransfer ink medium of the present invention, preferably, the insulating polymer film support has a thickness of 0.5 to 20 μm or the conductive layer has a thickness of 0 according to the above technical means. .6 μm or less, the thickness of the heat generating layer is 0.8 μm or less, or the conductive layer and the heat generating layer are thin film layers made of a material mainly containing a metal material and a ceramic material. To do.

【0011】上記絶縁性高分子フィルム支持材は、体積
抵抗値が5×1011Ω・cm以上の絶縁性を有する可撓
性の高分子フィルムからなるものである。体積抵抗値が
上記数値よりも小さい場合には印字パルス電流のリーク
現象発生等の不具合がある。このような絶縁性高分子フ
ィルム支持材としては、例えば、ポリアラミド、ポリイ
ミド、ポリエステル、ポリスルホン等からなる合成樹脂
フィルム等が用いられ、好ましくは製造時や印字記録時
における高熱による変形等を防止するため耐熱性を有す
るものが使用される。上記合成樹脂フィルムのうちで
も、フィルム全体における体積抵抗値の均一性に優れて
いることからポリアラミドフィルムが最も好ましい。
The insulating polymer film support material is composed of a flexible polymer film having an insulating property with a volume resistance value of 5 × 10 11 Ω · cm or more. When the volume resistance value is smaller than the above value, there is a problem such as a print pulse current leak phenomenon. As such an insulating polymer film supporting material, for example, a synthetic resin film made of polyaramid, polyimide, polyester, polysulfone or the like is used, and preferably for preventing deformation due to high heat at the time of manufacturing or printing / recording. A material having heat resistance is used. Among the above synthetic resin films, the polyaramid film is most preferable because it has excellent uniformity of volume resistance value in the whole film.

【0012】また、絶縁性高分子フィルム支持材の厚さ
は、0.5〜20μm、好ましくは2〜6μmである。
この厚さが0.5μmよりも薄いと、充分な強度が得ら
れず、インク媒体製造時において取扱いにくかったり通
電記録時の搬送工程においてしわが発生する等の問題が
ある。反対に厚さが20μmよりも厚くなると、巻回時
の巻径が大きくなったり、記録時において発熱層からイ
ンク層への熱の伝達効率が低下してより多くの印字エネ
ルギーを要し、しかも、印字効率ドットがぼけたりその
ドット径がばらついて画質低下を招く等の不具合があ
る。さらに、この厚さを2〜6μmの範囲のものとすれ
ば、充分な強度が確保されて印字押圧力等の印字条件の
選択自由度が広がったり、インク媒体の巻回時の巻径を
より小さくできたり、最適な熱伝達効率が得られ印字ド
ットも鮮明で均一なものとなり、より高画質の印字記録
が可能となる。
The thickness of the insulating polymer film support material is 0.5 to 20 μm, preferably 2 to 6 μm.
If the thickness is less than 0.5 μm, sufficient strength cannot be obtained, and there is a problem that it is difficult to handle at the time of manufacturing the ink medium, and wrinkles occur at the transporting step at the time of energization recording. On the other hand, if the thickness is more than 20 μm, the winding diameter at the time of winding becomes large, or the efficiency of heat transfer from the heat generating layer to the ink layer at the time of recording is lowered, and more printing energy is required. However, there is a problem in that the printing efficiency dots are blurred and the dot diameters vary, leading to deterioration in image quality. Further, if the thickness is in the range of 2 to 6 μm, sufficient strength is ensured, the degree of freedom in selecting printing conditions such as printing pressure is expanded, and the winding diameter of the ink medium when wound is more improved. The size can be reduced, the optimum heat transfer efficiency can be obtained, and the printed dots can be made clear and uniform, which enables higher quality printing and recording.

【0013】導電層は、体積抵抗値が5×10-7〜2×
10Ω・cm、好ましくは1×10 -6〜6×10-3Ω・
cmの範囲にある導電性を有する材料からなる薄膜であ
る。体積抵抗値が上記数値範囲よりも大きくなると、印
字記録時の通電回路抵抗値が高くなり印字エネルギーロ
スの割合が大きくなる。また、導電層の厚さは0.6μ
m以下、より好ましくは0.05〜0.3μmの範囲で
ある。この厚さが0.6μmよりも厚いと、発熱エネル
ギーの熱のリーク量が大きくなって印字エネルギー効率
が低下する。また、導電層の体積抵抗値の均一性の確保
のため層厚は0.05μm以上であることが必要であ
る。
The conductive layer has a volume resistance value of 5 × 10.-7~ 2x
10 Ω · cm, preferably 1 × 10 -6~ 6 × 10-3Ω ・
A thin film made of a conductive material in the cm range.
It If the volume resistance value exceeds the above numerical range,
The resistance value of the energizing circuit at the time of character recording becomes high and the printing energy
The ratio of the space increases. The thickness of the conductive layer is 0.6μ
m or less, more preferably in the range of 0.05 to 0.3 μm
is there. If this thickness is thicker than 0.6 μm, the heat generation energy
Printing energy efficiency
Is reduced. Also, ensure the uniformity of the volume resistance of the conductive layer.
Therefore, the layer thickness must be 0.05 μm or more.
It

【0014】この導電層は、金、銀、銅、白金、アルミ
ニウム、クロム、スズ、ニッケル、タングステン、ミリ
ブテン等の金属材料や、この金属材料に酸化ルテニウ
ム、炭化ホウ素等の導電性セラミックス材料を含有させ
た材料にて形成される。導電層の形成手段は、薄膜状に
形成することができれば特に限定されないが、層厚の均
一性ひいては抵抗値の均一性の確保や製造効率の観点か
ら真空蒸着法、高周波スパッタリング法、電解又は無電
解メッキ法、クラスターイオンビーム法、イオンプレー
ティング法等が望ましい。
This conductive layer contains a metal material such as gold, silver, copper, platinum, aluminum, chromium, tin, nickel, tungsten, millibutene, or a conductive ceramic material such as ruthenium oxide or boron carbide. It is made of the material. The means for forming the conductive layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of ensuring the uniformity of the layer thickness and thus the uniformity of the resistance value and the manufacturing efficiency, a vacuum deposition method, a high frequency sputtering method, electrolysis or no electroless method. Electrolytic plating, cluster ion beam method, ion plating method, etc. are preferable.

【0015】発熱層は、体積抵抗値が2×10-3〜8×
103Ω・cm、好ましくは2×10-2〜5×10Ω・
cmの範囲にある薄膜である。この体積抵抗値が上記下
限値よりも小さいと、印字記録に必要な効率のよい発熱
が得られず、その発熱に最適な駆動抵抗値を得るには層
厚の極端な薄膜化が必要なりその薄膜形成が難しくな
る。反対に体積抵抗値が上記の上限値よりも大きいと、
発熱抵抗が大きなりすぎて印字記録時における適正な発
熱が得られず画質低下をもたらす。また、発熱層の厚さ
は0.8μm以下、好ましくは0.05〜0.4μmで
ある。この厚さが0.8μmを越えると、発熱リーク量
が大きくなって印字エネルギー効率が低下する。また、
0.05μmより薄いと発熱層の均一性が得にくく、発
熱むらが生じ易い。
The heating layer has a volume resistance value of 2 × 10 −3 to 8 ×.
10 3 Ω · cm, preferably 2 × 10 −2 to 5 × 10 Ω ·
It is a thin film in the range of cm. If this volume resistance value is smaller than the above lower limit value, efficient heat generation required for printing and recording cannot be obtained, and in order to obtain the optimum drive resistance value for the heat generation, it is necessary to make the layer thickness extremely thin. Thin film formation becomes difficult. On the contrary, if the volume resistance value is larger than the above upper limit value,
Since the heat generation resistance is too large, proper heat generation cannot be obtained during printing and recording, resulting in image quality deterioration. The thickness of the heat generating layer is 0.8 μm or less, preferably 0.05 to 0.4 μm. If this thickness exceeds 0.8 μm, the amount of heat leakage increases and the printing energy efficiency decreases. Also,
If the thickness is less than 0.05 μm, it is difficult to obtain the uniformity of the heat generating layer, and uneven heat generation easily occurs.

【0016】この発熱層は、金属材料、導電性又は絶縁
性セラミックス材料等を単独であるいは複数組み合せて
使用する材料にて形成される。その金属材料としては、
C、Ni、Au、Ag、Fe、Al、Ti、Pd、C
r、Cu、Co、Pt、Mo、W、Rb、Ru、InR
h等が使用できる。また、導電性セラミックス材料とし
ては、VO2、Ru2O、TaN、SiC、ZrN、Zr
2、InO、Ta2N、VN、TiB2、ZrB2、Hf
2、TaB2、MoB2、CrB2、B4C、MoB、Z
rC、VC、TiC等又はこれらの含有化合物が使用で
き、絶縁性セラミックス材料としては、AlN、SiN
4S、SiO2、Al23、MgO、VO2、ZrO2、B
23、MO2、TiO2、MoO2、WO2、ReO3
又はこれらの含有化合物が使用できる。また、発熱層の
形成手段としては、一元又は多元型の真空蒸着法、高周
波スパッタリング法、DCスパッタリング法、電解又は
無電解メッキ法、クラスターイオンビーム法、イオンプ
レーティング法等が好ましい。
The heat generating layer is formed of a metal material, a conductive or insulating ceramic material, or the like, which is used alone or in combination. As the metal material,
C, Ni, Au, Ag, Fe, Al, Ti, Pd, C
r, Cu, Co, Pt, Mo, W, Rb, Ru, InR
h etc. can be used. The conductive ceramic materials include VO 2 , Ru 2 O, TaN, SiC, ZrN, Zr.
O 2 , InO, Ta 2 N, VN, TiB 2 , ZrB 2 , Hf
B 2, TaB 2, MoB 2 , CrB 2, B 4 C, MoB, Z
rC, VC, TiC or the like or a compound containing them can be used, and as the insulating ceramic material, AlN, SiN
4 S, SiO 2 , Al 2 O 3 , MgO, VO 2 , ZrO 2 , B
i 2 O 3, MO 2, TiO 2, MoO 2, WO 2, ReO 3 , etc., or these containing compounds. Further, as a means for forming the heat generating layer, a single or multi-source type vacuum deposition method, a high frequency sputtering method, a DC sputtering method, an electrolytic or electroless plating method, a cluster ion beam method, an ion plating method and the like are preferable.

【0017】また、発熱層は、印字記録時の発熱により
200°C以上の高温になると推測されるため300°
C以上の耐熱性を有するように構成することが必要であ
る。そのため、このような耐熱性を確保する意味で発熱
層は、金属やセラミックス材料を主成分とする無機材料
にて形成することが好ましい。そして、このような材料
を用いることにより、その発熱層は薄膜化が容易で耐熱
性に優れ、しかも層内の体積抵抗値のばらつきが少な
く、効率のよい形成が可能なものとなる。
Further, the heat generating layer is presumed to reach a high temperature of 200 ° C. or higher due to the heat generated during printing and recording, and is therefore 300 ° C.
It is necessary to configure so as to have heat resistance of C or higher. Therefore, in order to ensure such heat resistance, the heat generating layer is preferably formed of an inorganic material containing a metal or a ceramic material as a main component. By using such a material, the heat generating layer can be easily thinned, has excellent heat resistance, has less variation in volume resistance value in the layer, and can be efficiently formed.

【0018】感熱転移性インク層は、加熱により溶融若
しくは昇華して記録紙へ転移するインク材料にて構成さ
れるものである。具体的には、熱可塑性樹脂にカーボン
ブラック等の色材等を分散させたインク材料や、結着材
と昇華性染料を主成分とするインク材料が使用される。
The heat transferable ink layer is composed of an ink material which is melted or sublimated by heating and transferred to the recording paper. Specifically, an ink material in which a coloring material such as carbon black is dispersed in a thermoplastic resin, or an ink material containing a binder and a sublimable dye as main components is used.

【0019】本発明の通電記録インク媒体は、上記各層
の以外に、必要に応じてインクは剥離層(例えば、低表
面エネルギー層)、オフセット防止層、画像グロス層
(例えば、マット表面層)等の機能層を適宜積層させる
ことができる。
In the electrically conductive recording ink medium of the present invention, in addition to the above-mentioned layers, if necessary, the ink may include a peeling layer (for example, a low surface energy layer), an offset prevention layer, an image gloss layer (for example, a matte surface layer) and the like. These functional layers can be appropriately laminated.

【0020】また、この通電記録インク媒体の製造は、
基本的に、絶縁性高分子フィルム支持材の片面に導電
層、発熱層をこの順に積層形成した後、そのフィルム支
持材の他面側にインク層を積層形成することによって行
うことができる。この場合、導電層と発熱層をともに前
記した薄膜形成手段にて形成するようにすれば、層厚が
均一で高精度の層形成ができ、しかも、同じ真空系製造
ラインを併用できるため効率の良い製造が可能になる。
The production of this electrically conductive recording ink medium is
Basically, a conductive layer and a heat generating layer are laminated in this order on one surface of the insulating polymer film support material, and then an ink layer is laminated on the other surface side of the film support material. In this case, if both the conductive layer and the heat generating layer are formed by the above-mentioned thin film forming means, it is possible to form a layer with a uniform layer thickness and high accuracy, and moreover, since the same vacuum system production line can be used in combination, the efficiency can be improved. Good manufacturing is possible.

【0021】本発明の通電記録インク媒体を用いて通電
転写記録を行うに当たっては、感熱転移性インク層面側
を記録紙に圧接するとともに、発熱層面側に通電記録ヘ
ッドを圧接させる。そして、駆動回路から発せられた画
像情報信号を通電記録ヘッドの各記録電極を介してイン
ク媒体に印加すると、その印加された発熱層部分が通電
により発熱し、その熱が導電層及び高分子フィルム支持
材を通じてインク層に伝達され、その発熱部分に対応す
るインク材料が溶融若しくは昇華して記録紙にされ、も
って記録がなされる。
In conducting electric transfer recording using the electric recording ink medium of the present invention, the surface of the heat-sensitive transfer ink layer is pressed against the recording paper and the surface of the heat generating layer is pressed against the electric recording head. Then, when the image information signal emitted from the drive circuit is applied to the ink medium via each recording electrode of the energization recording head, the applied heat generating layer portion generates heat by energization, and the heat is generated in the conductive layer and the polymer film. The ink material is transferred to the ink layer through the support material, and the ink material corresponding to the heat generating portion is melted or sublimated to form recording paper, and recording is performed.

【0022】[0022]

【実施例】以下、実施例及び比較例を挙げて本発明につ
いてさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0023】実施例1 厚さ1.5μmのポリアラミドフィルム(体積抵抗値:
1013〜1015Ω・cm)を到達真空度2×10-6To
rrにした真空系内に設置して200°Cに加熱制御し
た状態で、その片面に電子ビーム加熱型蒸着法によりア
ルミニウムを着膜して厚さ0.2μmの導電層(体積抵
抗値:106Ω・cm)を設けた。続いて、その導電層
の上に2元蒸発源の電子ビーム加熱型蒸着法により、S
iO2とAuを別々の蒸発源から同時に蒸発させて着膜
して厚さ0.4μmの発熱層を設けた。このときの発熱
層の体積抵抗値は7×10-1Ω・cmであった。
Example 1 A polyaramid film having a thickness of 1.5 μm (volume resistance value:
10 13 to 10 15 Ω · cm) reached vacuum degree 2 × 10 −6 To
In a state of being installed in a vacuum system set to rr and controlled to be heated to 200 ° C., an aluminum film is deposited on one surface thereof by an electron beam heating evaporation method to form a conductive layer having a thickness of 0.2 μm (volume resistance value: 10 6 Ω · cm). Then, S is deposited on the conductive layer by an electron beam heating evaporation method using a dual evaporation source.
iO 2 and Au were simultaneously evaporated from different evaporation sources and deposited to form a heat generating layer having a thickness of 0.4 μm. At this time, the volume resistance value of the heat generating layer was 7 × 10 −1 Ω · cm.

【0024】次いで、真空系より取り出して発熱層面と
は反対側のフィルム面に、顔料を10重量%含有するポ
リエステル樹脂(融点96°C)溶液からなるインク材
料をロールコーターにて塗布して乾燥し、厚さ2μmの
インク層を形成した。これにより、図1に示すような層
構造からなる通電記録インク媒体1を得た。図中2は絶
縁性高分子フィルム支持材、3は導電層、4は発熱層、
5は感熱転移性インク層を示す。
Next, after taking out from the vacuum system, an ink material composed of a polyester resin (melting point 96 ° C.) solution containing 10% by weight of pigment is applied to a film surface opposite to the heat generating layer surface by a roll coater and dried. Then, an ink layer having a thickness of 2 μm was formed. As a result, an electrically conductive recording ink medium 1 having a layer structure as shown in FIG. 1 was obtained. In the figure, 2 is an insulating polymer film support material, 3 is a conductive layer, 4 is a heat generating layer,
Reference numeral 5 represents a heat transferable ink layer.

【0025】得られた通電記録インク媒体1を用い、図
2に示すように、その発熱層4面に200DPIの通電
記録ヘッド6を線圧力300g/cmで圧接させ、記録
紙7に対して印加電圧17V、パルス幅400μsec
の画像(ドット)信号を印加して印字記録を行い、その
ときの印字エネルギー、印字率及び印字ドット径のばら
つきを測定した。結果を表1に示す。なお、図2中8は
記録電極、9はヘッドに一体的に設けられた帰路用電
極、10は背圧ロールをそれぞれ示す。
Using the electrically conductive recording ink medium 1 thus obtained, as shown in FIG. 2, the electrically conductive recording head 6 of 200 DPI was pressed against the surface of the heat generating layer 4 at a linear pressure of 300 g / cm and applied to the recording paper 7. Voltage 17V, pulse width 400μsec
The image (dot) signal was applied to perform printing and recording, and the variations in printing energy, printing rate, and printing dot diameter at that time were measured. The results are shown in Table 1. In FIG. 2, 8 is a recording electrode, 9 is a return electrode integrally provided on the head, and 10 is a back pressure roll.

【0026】ここで、印字エネルギーは1ドット印字当
たりの印字熱量を示し、印字に必要になった入力した電
圧、電流及びパルス幅を測定して算出したものであり、
一般に0.5mJ/ドット以下が最良であるとされてい
る。印字率は画像入力信号に対して印字された1ドット
の縦横の平均ドット径が50μm以上となったドットの
印字割合を示す。印字ドット径のばらつきは印字ドット
をランダムを100個サンプリングしたときの標準偏差
σn(n=100)で示す。
Here, the printing energy indicates the amount of printing heat per dot printing, and is calculated by measuring the input voltage, current and pulse width required for printing,
Generally, 0.5 mJ / dot or less is considered to be the best. The print ratio indicates the print ratio of dots in which the average dot diameter in the vertical and horizontal directions of one dot printed for an image input signal is 50 μm or more. The variation in the print dot diameter is indicated by the standard deviation σ n (n = 100) when 100 print dots are sampled at random.

【0027】実施例2 厚さ3μmのポリエステルフィルム(体積抵抗値:約1
14Ω・cm)を到達真空度2×10-6Torrにした
真空系内に設置して100°Cに加熱制御した状態で、
その片面に電子ビーム加熱型蒸着法によりアルミニウム
を着膜して厚さ0.1μmの導電層(体積抵抗値:5×
10-6Ω・cm)を設けた。続いて、その真空系内にア
ルゴンガスを微量導入すると共に真空度を3×10-3
orrにした状態で、その導電層の上に高周波スパッタ
リング法により、SiO2とTaを65対35の体積比
にした複合材料からなるスパッタターゲットによるスパ
ッタ膜を着膜して厚さ0.2μmの発熱層を設けた。こ
のときの発熱層の体積抵抗値は3×10-1Ω・cmであ
った。
Example 2 Polyester film having a thickness of 3 μm (volume resistance value: about 1
(0 14 Ω · cm) is installed in a vacuum system having an ultimate vacuum of 2 × 10 −6 Torr and heated at 100 ° C.,
An aluminum film was formed on one surface of the conductive layer by electron beam heating evaporation method to form a conductive layer having a thickness of 0.1 μm (volume resistance value: 5 ×).
10 −6 Ω · cm). Then, a small amount of argon gas was introduced into the vacuum system, and the vacuum degree was 3 × 10 −3 T.
In the state of orr, a sputtering film made of a composite material of SiO 2 and Ta in a volume ratio of 65:35 was deposited on the conductive layer by a high frequency sputtering method to form a 0.2 μm thick film. An exothermic layer was provided. At this time, the volume resistance value of the heat generating layer was 3 × 10 −1 Ω · cm.

【0028】次いで、真空系より取り出して発熱層面と
は反対側のフィルム面に、実施例1と同じインク材料か
らなる乾燥後厚さ3μmのインク層を形成して、通電記
録インク媒体とした。
Then, after being taken out from the vacuum system, an ink layer having a thickness of 3 μm after drying and made of the same ink material as in Example 1 was formed on the film surface opposite to the heat generating layer surface to obtain an electrically conductive recording ink medium.

【0029】得られたインク媒体を用い、線圧力を40
0g/cm、印加電圧を5V、パルス幅800μsec
とした以外は実施例1と同じ印字条件にて印字記録を行
った後、実施例1と同じ測定を行い、その結果を表1に
あわせて示す。
Using the obtained ink medium, a linear pressure of 40
0g / cm, applied voltage 5V, pulse width 800μsec
After printing and recording under the same printing conditions as in Example 1 except for the above, the same measurement as in Example 1 was performed, and the results are also shown in Table 1.

【0030】実施例3 厚さ3μmのポリイミドフィルム(体積抵抗値:約10
15Ω・cm)を到達真空度1×10-6Torrにした真
空系内に設置して250°Cに加熱制御した状態で、そ
の片面に電子ビーム加熱型蒸着法によりニッケルを着膜
して厚さ0.3μmの導電層(体積抵抗値:3×10-5
Ω・cm)を設けた。
Example 3 Polyimide film having a thickness of 3 μm (volume resistance value: about 10
(15 Ω · cm) is installed in a vacuum system with an ultimate vacuum of 1 × 10 −6 Torr and heated to 250 ° C., and nickel is deposited on one side by electron beam heating type vapor deposition. 0.3 μm thick conductive layer (volume resistance value: 3 × 10 −5
Ω · cm).

【0031】次に、真空系より取り出してその導電層の
上にルテニューム/クロムからなるペーストをスピンコ
ート法により塗布した後、真空系内で350°Cの加熱
焼成を行い、厚さ0.4μmの発熱層を設けた。このと
きの発熱層の体積抵抗値は3×10Ω・cmであった。
Next, after taking out from the vacuum system and applying a paste of ruthenium / chromium on the conductive layer by a spin coating method, it is heated and baked at 350 ° C. in a vacuum system to have a thickness of 0.4 μm. Of the heat generation layer. At this time, the volume resistance value of the heat generating layer was 3 × 10 Ω · cm.

【0032】次いで、真空系より取り出して発熱層面と
は反対側のフィルム面に、昇華性染料を70重量%含有
するポリビニルアルコール樹脂の溶液からなるインク材
料を実施例1と同じ方法にて塗布して乾燥させ、厚さ
1.5μmのインク層を形成して、通電記録インク媒体
とした。
Then, after taking out from the vacuum system, an ink material comprising a solution of a polyvinyl alcohol resin containing 70% by weight of a sublimable dye is applied to the film surface opposite to the heat generating layer surface by the same method as in Example 1. And dried to form an ink layer having a thickness of 1.5 μm, which was used as an electrically conductive recording ink medium.

【0033】得られたインク媒体を用い、線圧力を50
0g/cm、印加電圧を18V、パルス幅1msecと
した以外は実施例1と同じ印字条件にて印字記録を行っ
た後、実施例1と同じ測定を行い(但し、印字ドット径
のばらつきの測定は不実施)、その結果を表1にあわせ
て示す。
Using the obtained ink medium, the linear pressure was set to 50.
After recording and recording under the same printing conditions as in Example 1 except that the applied voltage was 0 g / cm, the applied voltage was 18 V, and the pulse width was 1 msec, the same measurement as in Example 1 was performed (however, measurement of variations in print dot diameter). Is not performed), and the results are also shown in Table 1.

【0034】比較例1 厚さ25μmのポリアラミドフィルム(体積抵抗値:約
1015Ω・cm)を到達真空度2×10-6Torrにし
た真空系内に設置して80°Cに加熱制御した状態で、
その片面に電子ビーム加熱型蒸着法によりアルミニウム
を着膜して厚さ0.3μmの導電層(体積抵抗値:5×
10-6Ω・cm)を設けた。続いて、その導電層の上
に、実施例1と同様に2元蒸発源の電子ビーム加熱型蒸
着法によりSiO2とAuを別々の蒸発源から同時に蒸
発させて着膜し、厚さ0.5μmの発熱層を設けた。こ
のときの発熱層の体積抵抗値は1×10Ω・cmであっ
た。
Comparative Example 1 A 25 μm thick polyaramid film (volume resistance value: about 10 15 Ω · cm) was placed in a vacuum system having an ultimate vacuum of 2 × 10 −6 Torr and heated to 80 ° C. With the
An aluminum film was deposited on one surface of the conductive film by an electron beam heating evaporation method to form a conductive layer having a thickness of 0.3 μm (volume resistance value: 5 ×
10 −6 Ω · cm). Then, on the conductive layer, SiO 2 and Au were simultaneously evaporated from different evaporation sources by an electron beam heating evaporation method using a dual evaporation source as in Example 1 to form a film having a thickness of 0. A heating layer of 5 μm was provided. At this time, the volume resistance value of the heat generating layer was 1 × 10 Ω · cm.

【0035】次いで、真空系より取り出して発熱層面と
は反対側のフィルム面に、実施例1と同じインク材料か
らなる乾燥後厚さ2μmのインク層を形成して、通電記
録インク媒体とした。
Next, after being taken out from the vacuum system, an ink layer having a thickness of 2 μm after drying and made of the same ink material as in Example 1 was formed on the film surface opposite to the heat generating layer surface to obtain an electrically conductive recording ink medium.

【0036】得られたインク媒体を用い、印加電圧を2
6V、パルス幅1.2msecとした以外は実施例1と
同じ印字条件にて印字記録を行った後、実施例1と同じ
測定を行い、その結果を表1にあわせて示す。
Using the obtained ink medium, the applied voltage was set to 2
After printing and recording under the same printing conditions as in Example 1 except that the voltage was 6 V and the pulse width was 1.2 msec, the same measurement as in Example 1 was performed, and the results are also shown in Table 1.

【0037】比較例2 厚さ5μmのポリイミドフィルム(体積抵抗値:約10
15Ω・cm)を到達真空度1×10-6Torrにした真
空系内に設置して250°Cに加熱制御した状態で、そ
の片面に電子ビーム加熱型蒸着法によりニッケルを着膜
して厚さ0.3μmの導電層(体積抵抗値:3×10-5
Ω・cm)を設けた。
Comparative Example 2 A polyimide film having a thickness of 5 μm (volume resistance value: about 10
(15 Ω · cm) is installed in a vacuum system with an ultimate vacuum of 1 × 10 −6 Torr and heated to 250 ° C., and nickel is deposited on one side by electron beam heating type vapor deposition. 0.3 μm thick conductive layer (volume resistance value: 3 × 10 −5
Ω · cm).

【0038】次に、真空系より取り出してその導電層の
上にカーボンブラックを分散したポリイミドの前駆体を
スピンコート法により塗布して200°Cで加熱乾燥し
た後、真空系内で350°Cの加熱硬化させて、厚さ7
μmの発熱層を設けた。このときの発熱層の体積抵抗値
は6×10Ω・cmであった。次いで、真空系より取り
出して発熱層面とは反対側のフィルム面に、実施例1と
同じインク材料からなる乾燥後厚さ2μmのインク層を
形成して、通電記録インク媒体とした。
Next, after taking out from the vacuum system, a polyimide precursor in which carbon black is dispersed is applied on the conductive layer by a spin coating method and dried by heating at 200 ° C., and then 350 ° C. in the vacuum system. Heat cured to a thickness of 7
A heating layer of μm was provided. At this time, the volume resistance value of the heat generating layer was 6 × 10 Ω · cm. Next, after taking out from the vacuum system, an ink layer having a thickness of 2 μm after drying and made of the same ink material as in Example 1 was formed on the film surface opposite to the heat generating layer surface to obtain an electrically conductive recording ink medium.

【0039】得られたインク媒体を用い、線圧力を50
0g/cm、印加電圧を34V、パルス幅0.5mse
cとした以外は実施例1と同じ印字条件にて印字記録を
行った後、実施例1と同じ測定を行い、その結果を表1
にあわせて示す。
Using the obtained ink medium, the linear pressure was set to 50.
0g / cm, applied voltage 34V, pulse width 0.5mse
After printing and recording were performed under the same printing conditions as in Example 1 except that c was used, the same measurement as in Example 1 was performed, and the results are shown in Table 1.
It is shown together with.

【0040】比較例3 発熱層兼支持材としての厚さ15μmのカーボンブラッ
ク分散ポリカーボネートフィルム(体積抵抗値:2.3
Ω・cm)を、到達真空度4×10-6Torrにした真
空系内に設置して30°Cに加熱制御した状態で、その
片面に電子ビーム加熱型蒸着法によりアルミニウムを着
膜して厚さ0.2μmの導電層(体積抵抗値:5×10
-6Ω・cm)を設けた。
Comparative Example 3 A carbon black-dispersed polycarbonate film having a thickness of 15 μm (volume resistance value: 2.3) serving as a heating layer and a supporting material.
Ω · cm) is installed in a vacuum system having an ultimate vacuum of 4 × 10 −6 Torr and is heated to 30 ° C., and aluminum is deposited on one surface thereof by an electron beam heating type vapor deposition method. 0.2 μm thick conductive layer (volume resistance value: 5 × 10
-6 Ω · cm).

【0041】次に、真空系より取り出して導電層面とは
反対側のフィルム面に、実施例1と同じインク材料から
なる乾燥後厚さ3μmのインク層を形成した。これによ
り、図3に示すような従来の層構造からなる従来の通電
記録インク媒体10を得た。図中11は発熱層兼支持材
フィルム、12は導電層、13は感熱転移性インク層を
示す。
Next, after taking out from the vacuum system, an ink layer having a thickness of 3 μm after drying and made of the same ink material as in Example 1 was formed on the film surface opposite to the conductive layer surface. As a result, the conventional electrically conductive recording ink medium 10 having the conventional layer structure as shown in FIG. 3 was obtained. In the figure, 11 is a heat generating layer / supporting material film, 12 is a conductive layer, and 13 is a heat transferable ink layer.

【0042】得られたインク媒体を用い、線圧力を50
0g/cm、印加電圧を14V、パルス幅0.5mse
cとした以外は実施例1と同じ印字条件にて印字記録を
行った後、実施例1と同じ測定を行い、その結果を表1
にあわせて示す。
Using the obtained ink medium, the linear pressure was set to 50.
0g / cm, applied voltage 14V, pulse width 0.5mse
After printing and recording under the same printing conditions as in Example 1 except that the result was c, the same measurement as in Example 1 was performed, and the results are shown in Table 1.
It is shown together with.

【0043】比較例4 厚さ6μmのポリカーボネートフィルムの片面に、金属
粉末とカーボンブラックを分散したポリエステル樹脂液
を塗布して乾燥した後厚さ3μmの発熱層(体積抵抗
値:5×10-2Ω・cm)を設け、次に、そのフィルム
他面にワックス材に顔料を分散した材料からなる厚さ3
μmのインク層を設け、通電記録インク媒体とした。
Comparative Example 4 A polyester resin solution in which metal powder and carbon black were dispersed was applied to one side of a polycarbonate film having a thickness of 6 μm and dried, and then a heating layer having a thickness of 3 μm (volume resistance value: 5 × 10 −2) was used. Ω · cm), and then, on the other side of the film, a thickness of 3 consisting of a material in which a pigment is dispersed in a wax material.
An electric recording ink medium was provided by providing an ink layer of μm.

【0044】そのインク媒体を用い、印字すべき部位に
相当する記録ヘッドの記録電極間に対して印加電圧パル
スを+10V、−10Vずつペアーで入力することによ
り該電極間で印字記録を行うようにした以外は実施例1
と同じ印字条件にて印字記録を行った後、実施例1と同
じ測定を行った。その結果を表1にあわせて示す。
By using the ink medium and applying a pair of applied voltage pulses of +10 V and -10 V to the recording electrodes of the recording head corresponding to the portion to be printed, the recording and recording are performed between the electrodes. Example 1 except that
After printing and recording under the same printing conditions as above, the same measurement as in Example 1 was performed. The results are also shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したように、本発明の通電転写
インク媒体は、支持材として導電性フィルムを使用せ
ず、絶縁性高分子フィルム支持材を使用したものである
上、その片面に導電層及び発熱層を積層するとともにそ
の他面にインク層を積層するという独特の層構造からな
るものである。従って、簡易な構成であってその製造も
容易であり、しかも導電性フィルムを使用していた従来
品に比べて低コストで提供できるものである。また、印
字記録に際しても記録ヘッドの記録電極間で通電して発
熱を起こさせる方式ではなく、従来品に劣らず高画質で
良好な印字記録を行うことができる。
As described above, the electrically conductive transfer ink medium of the present invention does not use a conductive film as a supporting material but uses an insulating polymer film supporting material, and has a conductive surface on one side. It has a unique layered structure in which a layer and a heat generating layer are laminated and an ink layer is laminated on the other surface. Therefore, it has a simple structure and is easy to manufacture, and can be provided at a lower cost than the conventional product using the conductive film. Further, also in the case of print recording, it is not the method of generating heat by energizing between the recording electrodes of the recording head, and it is possible to perform good print recording with high image quality as in the conventional product.

【0047】絶縁性高分子フィルム支持材は、導電性フ
ィルムのような導電性物質を分散させてないため優れた
強度を備えており、その厚さを薄くても充分な強度が得
られることにより、インク媒体全体の厚さを薄くするこ
とが従来に比べて容易にできる。その結果、巻回した際
にはその巻径を小さくすることができ、その取扱いがき
わめて便利となる。本発明ではフィルム支持材の厚さが
0.5〜20μmであっても充分な強度が確保され、そ
の巻径の小径化の効果がより顕著に得られる。
The insulating polymer film support material has excellent strength because it does not contain a conductive substance such as a conductive film. Even if the thickness is thin, sufficient strength can be obtained. The thickness of the entire ink medium can be reduced more easily than in the past. As a result, when wound, the winding diameter can be reduced and the handling becomes extremely convenient. In the present invention, sufficient strength is secured even when the thickness of the film support material is 0.5 to 20 μm, and the effect of reducing the winding diameter is more remarkably obtained.

【0048】また、導電層及び発熱層が金属材料とセラ
ミックス材料を主成分とする材料からなる薄膜層とする
ことにより、蒸着法等の薄膜形成手段によりいずれの層
形成もできるため、製造工程の簡略化と生産効率の向上
を図ることが可能となる。また、耐熱性に優れた導電層
及び発熱層が得られ、しかも蒸着法等の薄膜形成手段に
より形成することにより膜厚が均一で体積抵抗値が均一
な層が得られるため、高画質の印字記録が行うことが可
能になる。
Further, since the conductive layer and the heat generating layer are thin film layers made of a material containing a metal material and a ceramic material as main components, any layer can be formed by a thin film forming means such as a vapor deposition method. It is possible to simplify and improve production efficiency. Further, since a conductive layer and a heat generating layer having excellent heat resistance can be obtained, and a layer having a uniform film thickness and a uniform volume resistance value can be obtained by forming by a thin film forming means such as a vapor deposition method, high quality printing can be achieved. Records can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例(実施例1)に係る通電転
写インク媒体を示す断面図である。
FIG. 1 is a cross-sectional view showing an electric transfer ink medium according to one embodiment (Example 1) of the present invention.

【図2】 本発明の通電転写インク媒体を用いた記録方
法を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a recording method using the electric transfer ink medium of the present invention.

【図3】 従来の通電転写インク媒体例(比較例3)を
示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a conventional energization transfer ink medium (Comparative example 3).

【符号の説明】[Explanation of symbols]

1…通電転写インク媒体、2…絶縁性高分子支持材、3
…通電層、4…発熱層、5…感熱転移性インク層。
1 ... Electric transfer ink medium, 2 ... Insulating polymer support material, 3
... current-carrying layer, 4 ... heat-generating layer, 5 ... heat-sensitive transferable ink layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性高分子フィルム支持材の片面に導
電層と発熱層をこの順に積層すると共に、その他面に感
熱転移性インク層を積層する層構造からなることを特徴
とする通電転写インク媒体。
1. An electric transfer ink comprising a layer structure in which a conductive layer and a heat generating layer are laminated in this order on one surface of an insulating polymer film support material, and a heat-sensitive transfer ink layer is laminated on the other surface. Medium.
【請求項2】 上記絶縁性高分子フィルム支持材の厚さ
が0.5〜20μmである請求項1記載の通電転写イン
ク媒体。
2. The electric transfer ink medium according to claim 1, wherein the insulating polymer film support material has a thickness of 0.5 to 20 μm.
【請求項3】 上記導電層の厚さが0.6μm以下であ
る請求項1記載の通電転写インク媒体。
3. The electrotransfer ink medium according to claim 1, wherein the conductive layer has a thickness of 0.6 μm or less.
【請求項4】 上記発熱層の厚さが0.8μm以下であ
る請求項1記載の通電転写インク媒体。
4. The electric transfer ink medium according to claim 1, wherein the heat generating layer has a thickness of 0.8 μm or less.
【請求項5】 上記導電層及び発熱層が、金属材料とセ
ラミックス材料を主成分とする材料からなる薄膜層であ
る請求項1記載の通電転写インク媒体。
5. The electric transfer ink medium according to claim 1, wherein the conductive layer and the heat generating layer are thin film layers made of a material containing a metal material and a ceramic material as main components.
JP28699593A 1993-11-16 1993-11-16 Electrothermal transfer ink medium Pending JPH07137312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28699593A JPH07137312A (en) 1993-11-16 1993-11-16 Electrothermal transfer ink medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28699593A JPH07137312A (en) 1993-11-16 1993-11-16 Electrothermal transfer ink medium

Publications (1)

Publication Number Publication Date
JPH07137312A true JPH07137312A (en) 1995-05-30

Family

ID=17711662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28699593A Pending JPH07137312A (en) 1993-11-16 1993-11-16 Electrothermal transfer ink medium

Country Status (1)

Country Link
JP (1) JPH07137312A (en)

Similar Documents

Publication Publication Date Title
EP0031453B1 (en) Ribbons for thermal transfer printing and methods of printing using such ribbons
JPH04219246A (en) Print head
JPH0710601B2 (en) Thermal head
US5122409A (en) Ink transfer medium of the electrically fusible type
US4897669A (en) Thermal transfer recording media
JPH07137312A (en) Electrothermal transfer ink medium
JP2696935B2 (en) Thermal transfer recording medium
JPH0274356A (en) Recording head of electrification type
US5387460A (en) Thermal printing ink medium
JP2668946B2 (en) Sublimation transfer type recording ink medium
JP2001246770A (en) Thermal print head and method of making the same
JPS6381074A (en) Recording ribbon
JPS6384982A (en) Electro-thermal recording method
JPS63207659A (en) Heating element for conduction recording
JPH0667628B2 (en) Thermal head
JPH04173152A (en) Temperature control device of ink jet recording device
JPH0729460B2 (en) Ink media for energized thermal recording
JPS63135285A (en) Electric-conduction thermal recording method
JPS63160888A (en) Electrothermal recording method
JPS63160885A (en) Electrothermai transfer recording method
JPS6151356A (en) Direct heating type sublimation transfer image recording system
JPS63122573A (en) Thermal head
JPS63112170A (en) Thermal transfer recording system
JPH03106662A (en) Thermal head and printer
JPS58188694A (en) Printing medium