JPS6315989B2 - - Google Patents

Info

Publication number
JPS6315989B2
JPS6315989B2 JP10911481A JP10911481A JPS6315989B2 JP S6315989 B2 JPS6315989 B2 JP S6315989B2 JP 10911481 A JP10911481 A JP 10911481A JP 10911481 A JP10911481 A JP 10911481A JP S6315989 B2 JPS6315989 B2 JP S6315989B2
Authority
JP
Japan
Prior art keywords
cemented carbide
hard phase
type hard
carbide member
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10911481A
Other languages
Japanese (ja)
Other versions
JPS5743982A (en
Inventor
Masaaki Tobioka
Naoharu Fujimori
Takeshi Asai
Takaharu Yamamoto
Masaya Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10911481A priority Critical patent/JPS5743982A/en
Publication of JPS5743982A publication Critical patent/JPS5743982A/en
Publication of JPS6315989B2 publication Critical patent/JPS6315989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、WCを主成分とし、a,a,
a族遷移金属の一種もしくはそれ以上の主として
炭化物の一つもしくはそれ以上を主として鉄族金
属にて結合した、いわゆる超硬合金部材の一層優
れたものを、工業上安価に提供することにある。
[Detailed description of the invention] The present invention has WC as a main component, a, a,
It is an object of the present invention to provide an even better so-called cemented carbide member, which is made by combining one or more carbides of one or more group A transition metals and mainly an iron group metal, at an industrially low cost.

一般に実用に供している、いわゆる超硬合金部
材にはWC相をCoにて結合したものと、WC相お
よびa,a,a族遷移金属の一種、もしく
はそれ以上の炭化物にて、B−1型の結晶構造を
もつ複炭化物(以後B−1型硬質相とよぶ)を
Coにて結合したものである。本発明はこのうち
後者に関するものである。
Generally, the so-called cemented carbide members used in practical use include those in which the WC phase is bonded with Co, and the B-1 in which the WC phase and one or more carbides of the a, a, and a group transition metals are combined. A double carbide with a type crystal structure (hereinafter referred to as the B-1 type hard phase) is
It is bonded with Co. The present invention relates to the latter of these.

WC相と、B−1型硬質相とをCoにて結合した
超硬合金部材は、WCのもつ強靭性と、B−1型
硬質相のもつ、高硬度、および鋼に対する化学的
安定性による優れた耐摩耗性とを兼ね備えてお
り、鋼切削用工具として広く実用に供している。
A cemented carbide member in which the WC phase and the B-1 type hard phase are bonded with Co is due to the toughness of WC, the high hardness of the B-1 type hard phase, and the chemical stability against steel. It has excellent wear resistance and is widely used as a steel cutting tool.

一般にかゝる超硬合金部材では、B−1型硬質
相の該超硬合金中の含有率が大なるほど、その超
硬合金部材は耐摩耗性が優れ靭性が劣る。逆にB
−1型硬質相の含有率が小なるほど靭性が優れ、
耐摩耗性が劣る。したがつて従来の超硬業界で
は、このB−1型硬質相量の該超硬合金部材中の
含有率を調整することによつて、靭性と耐摩耗性
とのバランスをとつてきた。
Generally, in such a cemented carbide member, the higher the content of the B-1 type hard phase in the cemented carbide, the better the wear resistance and the poorer the toughness. On the contrary, B
-The smaller the content of type 1 hard phase, the better the toughness.
Poor wear resistance. Therefore, in the conventional cemented carbide industry, a balance between toughness and wear resistance has been achieved by adjusting the content of the B-1 type hard phase in the cemented carbide member.

発明者は、このB−1型硬質相量が、該超硬合
金部材の表面と内部とで、異なつたものをもつ、
複合組織をもつ超硬合金部材を考えれば、従来か
らの超硬合金部材より、より優れたものを提供し
うるのではないかと考えた。このような考えは、
発明者以外でもすでに多数提案されており、超硬
合金部材の表面部のB−1型硬質相量をその内部
より著しく大なるものが、表面の耐摩耗性と内部
の強靭性を兼ねそなえており、より優れた切削工
具であると提案されている。
The inventor has discovered that the amount of this B-1 type hard phase is different between the surface and the inside of the cemented carbide member.
We thought that if we considered a cemented carbide member with a composite structure, we could provide something better than conventional cemented carbide members. This kind of thinking is
Many proposals have already been made by people other than the inventor, and a cemented carbide member with a significantly larger amount of B-1 type hard phase on the surface than the inside has both surface wear resistance and internal toughness. It has been proposed that it is a better cutting tool.

これ等の提案はいずれも、超硬合金部材の表面
部のB−1型硬質相量が、その内部より著しく大
なもののみが提案されているが、発明者は逆に超
硬合金部材の表面部のB−1型硬質相量がその内
部より小なものも、切削工具として優れているの
ではないかと考えた。これは一般に超硬合金部材
において、B−1型硬質相量が小になると、該超
硬合金部材の熱伝導率が大になるので、転削のよ
うに熱キレツによる欠損が工具寿命を支配する場
合、表面が内部より熱伝導率が大きいと、工具表
面に発生すを温度勾配が著しく緩和される為に、
熱応力が小になるため熱キレツによる欠損が著し
く減少するのではないかと考えた。
In all of these proposals, the amount of B-1 type hard phase on the surface of the cemented carbide member is significantly larger than that inside the material, but the inventor has conversely proposed It was thought that a tool in which the amount of B-1 hard phase in the surface portion is smaller than that in the inside may also be excellent as a cutting tool. Generally, in cemented carbide parts, when the amount of B-1 type hard phase decreases, the thermal conductivity of the cemented carbide part increases, so chips due to thermal cracking, such as in milling, dominate tool life. If the surface has a higher thermal conductivity than the inside, the temperature gradient generated on the tool surface will be significantly alleviated.
We thought that because the thermal stress would be reduced, the number of defects caused by thermal cracks would be significantly reduced.

また、該超硬合金部材の表面部のB−1型硬質
相量がその内部より小であれば、当然表面の方が
内部よりも靭性が大であるために、切削時チツピ
ングしにくゝなり、好ましいのではないかと考え
た。
Furthermore, if the amount of B-1 type hard phase on the surface of the cemented carbide member is smaller than on the inside, the surface naturally has greater toughness than the inside, making it difficult to chip during cutting. I thought this might be a good thing.

そこでかゝる超硬合金部材表面のB−1型硬質
相量が内部より著しく少なる切削工具を、工業上
安価に提供する方法を発明者は検討した。
Therefore, the inventor investigated a method of providing a cutting tool in which the amount of B-1 type hard phase on the surface of the cemented carbide member is significantly lower than that inside the material at an industrially low cost.

発明者のうち一部は、(以後一部発明者と称す)
B−1型硬質相と、焼結時に発生する液相との濡
れ性、B−1型硬質相と、焼結雰囲気との平衡、
およびB−1型硬質相の安定性について、詳細な
る検討を行つた。そして、B−1型硬質相の安定
性が鍵となるとの知見を得た。今回、発明者は、
さらに前回の検討をより詳細に調べた結果、B−
1型硬質相の非金属構成元素としては、一部発明
者が考慮にいれていたCおよびNの外にOも全く
同様に考えられるとの知見を得た。ところで従来
からの超硬業界における常識では、Oというもの
は、まつたく有害元素であり、いかに原料中のO
量を減小させ、かつ焼結雰囲気中のOの化学ポテ
ンシヤルを減少せしめるかゞ、主たる生産技術で
さえあつた。これは原料もしくは焼結雰囲気中の
Oが、焼結工程において、該超硬合金部材中の各
種炭化物と反応し、COおよび/またはCO2とい
う気体となつて、該超硬合金部材よりCをうばい
去る。この際の気体発生が該超硬合金部材の焼結
を著しく損う。またC量も低下している為、該超
硬合金部材の脆化すらもたらす為である。
Some of the inventors (hereinafter referred to as "partial inventors")
Wettability between the B-1 type hard phase and the liquid phase generated during sintering, equilibrium between the B-1 type hard phase and the sintering atmosphere,
A detailed study was conducted on the stability of the B-1 type hard phase. Furthermore, we obtained the knowledge that the stability of the B-1 type hard phase is the key. This time, the inventor is
Furthermore, as a result of a more detailed investigation of the previous study, B-
It has been found that, in addition to C and N, which some of the inventors had taken into consideration, O can also be considered as a nonmetallic constituent element of the type 1 hard phase. By the way, the conventional wisdom in the cemented carbide industry is that O is an extremely harmful element, and how to reduce O in raw materials.
Reducing the amount and reducing the chemical potential of O in the sintering atmosphere was even the predominant production technology. This is because O in the raw material or sintering atmosphere reacts with various carbides in the cemented carbide member during the sintering process, converting into gases such as CO and/or CO2 , and removing C from the cemented carbide member. Go away. The gas generated at this time significantly impairs the sintering of the cemented carbide member. Moreover, since the amount of C is also reduced, the cemented carbide member even becomes brittle.

しかるに発明者は、かゝるOを出発原料の一つ
であるB−1型硬質相中の、非金属元素として含
有させ、かつその焼結雰囲気を十分に注意深く調
整することによつて、かゝる不都合を十分に防ぎ
得るとの知見を得た。
However, the inventors have discovered that by incorporating such O as a nonmetallic element in the B-1 type hard phase, which is one of the starting materials, and by carefully adjusting the sintering atmosphere, We have found that this inconvenience can be sufficiently prevented.

さらに、このような知見にしたがつて実際にO
を含有させた超硬合金部材を製作したところ、従
来の超硬合金部材に比して一層すぐれた切削工具
であることが判明した。それは以下の理由による
と考えられる。
Furthermore, based on this knowledge, O
When we manufactured a cemented carbide member containing the following materials, we found that it was an even better cutting tool than conventional cemented carbide members. This is thought to be due to the following reasons.

第1に一般に超硬合金部材にて、鋼を切削した
場合、工具切刃表面を、Ti,Al,Si,Ca等の複
酸化物系のガラス状物質がおゝい、それが鋼と工
具切刃との潤滑材として働くことが、超硬合金部
材が鋼切削工具として優れた耐摩耗性を示す一大
要因と考えられている。しからば逆にあらかじ
め、工具そのものに、Oを含有させておけば、
かゝるTi,Al,Si,Ca等の複酸化物系ガラス状
物質が、切削時工具切刃表面をおゝうことに好都
合なので、切削工具として、Oを含有することが
好ましいと考えられる。
Firstly, when cutting steel using a cemented carbide member, the surface of the tool cutting edge is covered with a glassy substance based on double oxides such as Ti, Al, Si, Ca, etc. The ability of cemented carbide members to act as a lubricant with the cutting edge is considered to be a major factor in their excellent wear resistance as steel cutting tools. Conversely, if the tool itself contains O in advance,
It is considered preferable for the cutting tool to contain O because it is convenient for such double oxide-based glassy substances such as Ti, Al, Si, and Ca to cover the cutting edge surface of the tool during cutting. .

第2に微量のOは、超硬合金部材のいわゆる硬
質相(この場合WC相とB−1型硬質相の両者)
以外の結合相にわずかに固溶することによつて、
結合相の耐熱性を向上せしめ、総体としての超硬
合金部材の耐熱性を向上させる効果があると考え
られる。従つて切削工具として、高温での耐塑性
変形性に優れていると考えられる。
Second, a small amount of O is the so-called hard phase of the cemented carbide member (in this case, both the WC phase and the B-1 type hard phase).
By slightly solid dissolving in a binder phase other than
It is thought that this has the effect of improving the heat resistance of the binder phase and improving the heat resistance of the cemented carbide member as a whole. Therefore, as a cutting tool, it is considered to have excellent plastic deformation resistance at high temperatures.

以上、Oを超硬合金部材へ含有させることによ
る利点を述べてきた。
The advantages of including O in cemented carbide members have been described above.

次に、本発明の主たる目的である表面部B−1
型硬質相量が、内部より著しく少ない超硬合金部
材に関して、その実現方法についての発明を述べ
る。
Next, surface portion B-1 which is the main objective of the present invention
An invention will be described regarding a method for realizing a cemented carbide member in which the amount of mold hard phase is significantly smaller than that in the interior.

かゝる実現法は一部発明者によつて、B−1型
硬質相と焼結時に発生する液相との濡れ性を調整
する。具体的には該超硬合金部材表面近傍ほど、
焼結時存在するB−1型硬質相の含有窒素量を小
ならしめ、焼結時発生する液相との濡れ性を改善
せしめることによつて、焼結時表面近傍にあつた
B−1型硬質相が、該超硬合金内部へおし流され
てしまう現象を利用することによつて達成し得
た。さらにこの焼結時、該超硬合金部材表面近傍
ほどB−1型含有窒素量を小にする為には、焼結
雰囲気のNの化学ポテンシヤルを、B−1型硬質
相のNの化学ポテンシヤルとの平衡状態より小な
らしめると、脱窒現象がおこり達成しうる。また
かゝる現象はB−1型硬質相がある程度以上不安
定な場合にのみ見られ、かつ、B−1型硬質相の
安定性は、外殻電子数(Valence Electron
Concentration以下VECと略記)によつて示さ
れ、VECが大なる程、不安定であるとの知見を
得た。今回発明者は、さらに詳細にB−1型硬質
相に関し、検討を続けた結果、非金属構成元素と
して、従来考えていたC,Nと全く同じようにO
も考え得るとの知見が得られた。即ちB−1型硬
質相が一般に分子式(MA,MB′,MC″)(Cu,
Nv,,Ow)xと表わされると VEC=4A+5B+6C+x(4u+5v+6w) 但し、A+B+C=1,u+v+w=1 であり、VEC≧8.4でかゝるB−1型硬質相は
不安定にて、焼結時、焼結雰囲気中のNおよび/
またはOの化学ポテンシヤルが、該B−1型硬質
相のNおよび/またはOの化学ポテンシヤルとの
平衡値より低い場合は、B−1型硬質相の脱窒お
よび/または脱酸現象が、該超硬合金部材表面近
傍ほどおこる。すると焼結時発生する液相との濡
れ性が改善されるため、表面近傍にあつたB−1
型硬質相が内部へおし流されてしまうために、著
しく表面近傍のB−1型硬質相量が、内部より小
なる超硬合金部材を提供しうる知見を得た。
Some inventors have implemented such a method by adjusting the wettability between the B-1 type hard phase and the liquid phase generated during sintering. Specifically, the closer to the surface of the cemented carbide member,
By reducing the nitrogen content of the B-1 type hard phase present during sintering and improving the wettability with the liquid phase generated during sintering, the B-1 type hard phase present near the surface during sintering is reduced. This was achieved by utilizing the phenomenon in which the mold hard phase is flushed into the interior of the cemented carbide. Furthermore, during this sintering, in order to reduce the amount of B-1 type nitrogen content near the surface of the cemented carbide member, the chemical potential of N in the sintering atmosphere should be adjusted to the chemical potential of N in the B-1 type hard phase. If it is made smaller than the equilibrium state, denitrification phenomenon can occur and be achieved. Moreover, such a phenomenon is observed only when the B-1 type hard phase is unstable to a certain extent, and the stability of the B-1 type hard phase depends on the number of outer shell electrons (Valence Electron
Concentration (abbreviated as VEC hereafter)), and it was found that the larger the VEC, the more unstable it is. This time, the inventor continued to study the B-1 type hard phase in more detail, and found that O
We obtained the knowledge that it is also possible. That is, the B-1 type hard phase generally has the molecular formula (M A , M B ′, M C ″) (Cu,
Nv,, Ow) , N in the sintering atmosphere and/or
Or, if the chemical potential of O is lower than the equilibrium value with the chemical potential of N and/or O of the B-1 type hard phase, the denitrification and/or deoxidation phenomenon of the B-1 type hard phase This occurs closer to the surface of the cemented carbide member. This improves wettability with the liquid phase generated during sintering, so B-1 near the surface
It has been found that because the mold hard phase is washed away into the interior, a cemented carbide member can be provided in which the amount of the B-1 hard phase near the surface is significantly smaller than that inside.

以上のような考えにしたがつて、超硬合金部材
を試作してみたところ、予想どおりの一段と優れ
た切削工具が得られた。なおB−1型硬質相中の
O量に関しては、OはVECが6と最大であり、
B−1型硬質相のVECを8.4以上に保つ為には、
効果が絶大であり、かつOを含有することが、切
削工具として好ましい点から考えてもwは0.001
以上が好ましい。wが0.001以下では、Oを含有
する効果が該超硬合金部材に認められない。又、
wが0.5以上では、該超硬合金部材の焼結性を著
しく害するために好ましくない。N量に関して
は、NはVECが5とやはりCに比べ大きいこと
からVECを8.4以上に保つには好ましい。従つて
vもwと同じく0.001以上が好ましい。一方Nは
Oに比べればやはりVECが小さいためvが0.45以
上になると、必然的にwが小さくならざるを得な
いため好ましくない。C量に関しては0.5以下で
は焼結性が不足するため、0.95以上ではv,wが
小さくなることからいずれも好ましくない。次
に、a族金属量に関しては、Aが0.2以下では
耐摩耗性が不足し、0.8以上ではVECを小さくし
すぎるため好ましくない。
When we tried making a cemented carbide member based on the above idea, we obtained a cutting tool that was even better than expected. Regarding the amount of O in the B-1 type hard phase, O has the maximum VEC of 6,
In order to maintain the VEC of type B-1 hard phase at 8.4 or higher,
W is 0.001 considering that the effect is tremendous and that containing O is preferable as a cutting tool.
The above is preferable. When w is 0.001 or less, the effect of containing O is not recognized in the cemented carbide member. or,
If w is 0.5 or more, it is not preferable because it significantly impairs the sinterability of the cemented carbide member. Regarding the amount of N, since N has a VEC of 5, which is also larger than C, it is preferable to keep the VEC at 8.4 or higher. Therefore, like w, v is preferably 0.001 or more. On the other hand, since N has a small VEC compared to O, when v becomes 0.45 or more, w inevitably becomes smaller, which is not preferable. Regarding the amount of C, if it is less than 0.5, the sinterability will be insufficient, and if it is more than 0.95, v and w will become small, which is not preferable. Next, regarding the amount of group a metal, if A is less than 0.2, the wear resistance will be insufficient, and if A is more than 0.8, the VEC will become too small, which is not preferable.

a族金属のVECが5で好ましいが、Bが0.5
以上では耐摩耗性が不足し、0.01以下では添加し
た効果が認められず好ましくない。
VEC of group a metal is preferably 5, but B is 0.5
If it is more than 0.01, the abrasion resistance will be insufficient, and if it is less than 0.01, the effect of addition will not be recognized, which is not preferable.

a族金属はVECが6と好ましいものゝ、C
が0.8以上では耐摩耗性が不足し、0.2以下では
VECが小さくなり好ましくない。xに関しては、
xはB−1型硬質相中の金属構成元素と、非金属
構成元素との比を示さず、xが0.6以下になれず、
いわゆる化学量論値よりのずれが甚だしく、B−
1型硬質相そのものゝ強度低下が著しいので好ま
しくない。またxが小さいとVECも小になり同
じく好ましくない。
Group A metals preferably have a VEC of 6, C
If it is 0.8 or more, the wear resistance will be insufficient, and if it is less than 0.2, the wear resistance will be insufficient.
VEC becomes small, which is not desirable. Regarding x,
x does not indicate the ratio of the metal constituent elements and nonmetallic constituent elements in the B-1 type hard phase, and x cannot be less than 0.6,
The deviation from the so-called stoichiometric value is significant, and B-
The type 1 hard phase itself is not preferred because it significantly reduces the strength. Furthermore, if x is small, VEC will also be small, which is also not desirable.

次に本発明の実施態様について述べる。 Next, embodiments of the present invention will be described.

B−1型硬質相のNおよび/またはOの化学ポ
テンシヤルより低いNおよび/またはOの化学ポ
テンシヤルをもつ焼結雰囲気とは、工業上は十分
にNおよびOの分圧の低い焼結雰囲気である。即
ち/Torr以下の高真空であればよく、したがつ
て、ロータリーポンプにて十分到達可能な真空度
ではあるが、メカニカルブースター、油拡散ポン
プ等の併用は一層好ましい。
A sintering atmosphere with a chemical potential of N and/or O that is lower than that of the B-1 type hard phase is a sintering atmosphere in which the partial pressure of N and O is sufficiently low for industrial purposes. be. That is, it is sufficient to use a high vacuum of /Torr or less. Therefore, although the degree of vacuum can be sufficiently achieved with a rotary pump, it is more preferable to use a mechanical booster, an oil diffusion pump, etc. in combination.

次に出発原料たるB−1型硬質相が 4A+5B+6C+x(4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0.5 0.6≦x≦1 からなる群より選ばれた1つもしくはそれ以上を
満さない場合に関しても、かゝる原料を用い、通
常の粉末冶金法にて製造した圧粉体を焼結する
際、600℃以上、焼結温度まで加温雰囲気のNお
よび/またはOの化学ポテンシヤルを十分に、高
いものにすることによつて、焼結後のB−1型硬
質相が、 4A+5B+6C+x(4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0.5 0.6≦x≦1 の三者を満たし得るとの知見が得られた。
Next, the B-1 type hard phase which is the starting material is 4A+5B+6C+x (4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦ v≦0.45 0.001 ≦w≦0.5 0.6≦x≦1 Even if one or more of the conditions selected from the group consisting of When sintering, by making the chemical potential of N and/or O in the heating atmosphere sufficiently high above 600℃ to the sintering temperature, the B-1 type hard phase after sintering becomes 4A + 5B + 6C + x (4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0. 5 The three parties 0.6≦x≦1 We found that the requirements can be met.

このことは一見、B−1型硬質相が 4A+5B+6C+x(4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0.5 0.6≦x≦1 を満たしてはじめて、脱窒および/または脱酸現
象を見せるとの知見と相反するがごとくみなされ
る。しかしながら、この事実は、該圧粉体を焼結
する際、焼結温度まで加温中は、該圧粉体が完全
に焼結していない為に、各粉末粒子が完全に焼結
されていない為に、各所に焼結雰囲気と通ずる開
孔をもつために、かゝる反応がおこり得るのであ
つて、いわゆる焼結温度では、十分に焼結が進行
するため、かゝる開孔が全く存在しない為に、 4A+5B+6C+x(4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0.5 0.6≦x≦1 を満さないかぎり、脱窒および/または脱酸現象
が認められないからである。
At first glance, this means that the B-1 type hard phase is 4A+5B+6C+x (4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦ v≦0.45 0.001 This is contradictory to the knowledge that denitrification and/or deoxidation phenomena occur only when the following conditions are satisfied: ≦w≦0.5 0.6≦x≦1. However, this fact means that when the green compact is sintered, each powder particle is not completely sintered because the green compact is not completely sintered while being heated to the sintering temperature. Therefore, such a reaction can occur because there are holes in various places that communicate with the sintering atmosphere, and at the so-called sintering temperature, sintering progresses sufficiently, so such holes do not occur. Since it does not exist at all, 4A+5B+6C+x (4u+5v+6w)≧8.4 A+B+C=1 u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0 .45 0.001≦w≦0.5 0.6≦ This is because denitrification and/or deoxidation phenomena are not observed unless x≦1.

なお、実際にかゝる現象は600℃以下では、反
応速度が工業上遅すぎて効果が認めがたい。
In fact, when such a phenomenon occurs at temperatures below 600°C, the reaction rate is too slow for industrial purposes, making it difficult to recognize the effect.

また、かゝる現象を実際に工業上応用する場
合、600℃以上焼結温度までの一部もしくは全部
を、Nおよび/またはCの化学ポテンシヤルの充
分に高い雰囲気にて加温すればよいが、N雰囲気
を用いてかゝる現象を行うよりも、O雰囲気を用
いた方が、該圧粉体中により大なるOを含有せし
め得る為に好ましく、かつ工業上はCO雰囲気が
もつとも容易で、1〜600Torrであればよい。
1Torr以下では効果が認められず600Torr以上で
は効果が飽和する為に工業上意味がない。
In addition, when actually applying such a phenomenon industrially, it is sufficient to heat a part or all of it above 600°C to the sintering temperature in an atmosphere with a sufficiently high chemical potential of N and/or C. , it is preferable to use an O atmosphere rather than using a N atmosphere to carry out such a phenomenon because it allows a larger amount of O to be contained in the compact, and industrially it is easier to carry out such a phenomenon than a CO atmosphere. , 1 to 600 Torr is sufficient.
Below 1 Torr, no effect is observed, and above 600 Torr, the effect is saturated, making it industrially meaningless.

なお、本発明品は単体としても、十分に優れた
切削工具たりうるが、近年特に広く使用されるよ
うになつた超硬合金部材の表面に、a,Va,
a族遷移金属の1つもしくはそれ以上の炭化
物、窒化物および/または酸化物およびAlの酸
化物よりなる群から選んだ1つもしくはそれ以上
を1層もしくはそれ以上に被覆したいわゆる被覆
超硬合金部材は表面の耐摩耗性と、内部の強靭性
を兼ねそなえており、従来からの超硬合金部材よ
り、より優れた切削工具において、表面薄層はた
しかに非常に耐摩耗性があるものゝ、超硬合金部
材と比較すれば、非常に脆い為に、切削時たゞち
にキレツが入る。かゝるキレツが超硬合金部材を
貫通すれば欠損につながるが、本発明のごとく、
該超硬合金表面にB−1型硬質相の著しく小さい
部分が存在すれば、かゝるキレツはこの部分でと
まつてしまうために、全体としては著しく靭性が
向上することがわかつた。
Although the product of the present invention can be used as a sufficiently excellent cutting tool as a single unit, it has been found that a, Va,
A so-called coated cemented carbide coated with one or more layers of one or more carbides, nitrides and/or oxides of Group A transition metals and oxides of Al. The parts have both surface wear resistance and internal toughness, and the thin surface layer is certainly extremely wear resistant in cutting tools that are better than conventional cemented carbide parts. Compared to cemented carbide parts, it is extremely brittle and will easily crack when cut. If such a crack penetrates the cemented carbide member, it will lead to damage, but as in the present invention,
It has been found that if a very small portion of the B-1 type hard phase exists on the surface of the cemented carbide, such cracks are stopped at this portion, and the toughness as a whole is significantly improved.

なお、一部発明者は、かゝる被覆超硬合金母材
としては、遊離炭素を0.01〜0.50重量%析出させ
たものを用いればよいとの知見を得ているが本発
明でも同じことがいえる。
It should be noted that some inventors have obtained the knowledge that it is sufficient to use a material in which 0.01 to 0.50% by weight of free carbon is precipitated as such a coated cemented carbide base material, but the same applies to the present invention. I can say that.

以下実施例で詳しく説明する。 This will be explained in detail in Examples below.

実施例 1 市販のTiC粉末を23.4重量%、同じく市販の
WCを76.6重量%からなる混合粉末を真空下(2
×10-2Torr)カーボンモールドを用いて、1900
℃、100Kg/cm2の圧力のもと、1時間ホツトプレ
スを行つた後、得られた複炭化物をボールミルに
て粉砕して(Ti0.5W0.5)C1.0を作成した。
Example 1 23.4% by weight of commercially available TiC powder and 23.4% by weight of commercially available TiC powder
A mixed powder consisting of 76.6% by weight of WC was prepared under vacuum (2
×10 -2 Torr) using carbon mold, 1900
After hot pressing for 1 hour at a temperature of 100 Kg/cm 2 at a pressure of 100 Kg/cm 2 , the resulting double carbide was ground in a ball mill to produce (Ti 0.5 W 0.5 ) C 1.0 .

この(Ti0.5W0.5)C1.04重量%、WC85.5重量
%、NbC5重量%、Co5.5重量%秤量し、エタノ
ールを加え超硬ボールを用い、ステンレス製ボー
ルミルにて湿式混合を行つた。この混合粉末にカ
ンフアーを3重量%添加し、2t/cm2の圧力にて型
押し圧粉体(型番TNMG432ENZ)を作つた。
This (Ti 0.5 W 0.5 )C 1.0 4% by weight, WC 85.5% by weight, NbC 5% by weight, Co 5.5% by weight were weighed, ethanol was added, and wet mixing was performed using a stainless steel ball mill using a carbide ball. . Camphor was added in an amount of 3% by weight to this mixed powder, and an embossed green compact (model number TNMG432ENZ) was produced under a pressure of 2 t/cm 2 .

かゝる圧粉体を、10-3Torr、1450℃まで真空
で焼結したものをC、600℃まで10-3Torr、600
℃〜1450℃までCO雰囲気にて、PCO=300Torrに
て加温後、1450℃、10Torrにて1時間焼結した
ものをDとした。CおよびDに公知の化学蒸着法
にてTiCを6μ被覆した。
The compacted powder is sintered in vacuum at 10 -3 Torr and 1450 °C.
C. to 1450.degree. C. in a CO atmosphere at P.sub.CO =300 Torr, and then sintered at 1450.degree. C. and 10 Torr for 1 hour. C and D were coated with 6μ of TiC using a known chemical vapor deposition method.

なお、CのB−1型硬質相の組成は(Ti0.09
Nb0.29W0.62)(C0.998N0.001O0.0010.98であり、ま

Dの組成は(Ti0.12Nb0.38W0.50)(C0.80N0.002
O0.1980.95であつた。
The composition of the B-1 type hard phase of C is (Ti 0.09
The composition of D is ( Ti 0.12 Nb 0.38 W 0.50 ) ( C 0.80 N 0.002
O 0.198 ) was 0.95 .

CおよびDを以下の条件にて切削テストを行つ
た。
A cutting test was conducted on C and D under the following conditions.

被削材 S55C鍛造材 φ50mm×2300mm 切削速度 150m/min 送 り 0.50mm/rev 切り込み 1〜5mm 切削用油使用せず 本発明のDチツプは、48本加工可能であつたの
に比して、Cは31本しか加工できなかつた。
Work material S55C forged material φ50mm x 2300mm Cutting speed 150m/min Feed 0.50mm/rev Depth of cut 1~5mm No cutting oil used Compared to the D chip of the present invention, which could process 48 pieces, Only 31 pieces of C could be processed.

実施例 2 実施例1のCとほゞ同様の方法でWC−(Ti,
Ta,W)(C,N,O)−Co合金、但しWCが85
重量%、Co5重量%、残(Ti,Ta,W)(C,
N,O)の組成が原子比で(Ti0.4Ta0.1W0.5
(C0.99N0.005O0.0050.92なる超硬合金(型番
CNMG432ENZ)を作成した。
Example 2 WC-(Ti,
Ta, W) (C, N, O)-Co alloy, however, WC is 85
Weight%, Co5% by weight, balance (Ti, Ta, W) (C,
N, O) composition in atomic ratio (Ti 0.4 Ta 0.1 W 0.5 )
(C 0.99 N 0.005 O 0.005 ) 0.92 cemented carbide (model number
CNMG432ENZ) was created.

このチツプに公知の化学蒸着法によつてTiCを
3μAl2O3を3μコーテイングしたチツプをE,TiC
を1.5μ、TiNを1.5μ、最後にAl2O3を3μコーテイ
ングしたチツプをF,TiCを3μ,ZrNを3μコーテ
イングしたチツプをGとし、以下の条件で切削試
験を行つた。
TiC is applied to this chip using a known chemical vapor deposition method.
Chips coated with 3μ Al 2 O 3 are E, TiC.
A cutting test was carried out under the following conditions: F was a chip coated with 1.5μ of TiN, 1.5μ of TiN, and 3μ of Al 2 O 3 was designated as F, and G was a chip coated with 3μ of TiC and 3μ of ZrN.

被削材 SCM435鍛造材(φ50mm×l200mm) 切削速度 100m/min 送 り 0.50mm/rev 切込み 1〜5mm 切削用油使用せず 本発明のチツプEは125本、Fは139本、Gは69
本切削出来たのに対し、実施例1のDと同じ製法
で作成した超硬合金母材に化学蒸着法にてTiCを
3μ、Al2O3を3μコーテイングしたチツプでは12本
切削した際に欠損してしまい、それ以上切削でき
なかつた。
Work material SCM435 forged material (φ50mm x l200mm) Cutting speed 100m/min Feed 0.50mm/rev Depth of cut 1~5mm No cutting oil used Chips E of the present invention are 125, F is 139, and G is 69.
While the main cutting was successful, TiC was applied to the cemented carbide base material using the same manufacturing method as D in Example 1 using the chemical vapor deposition method.
A chip coated with 3μ and 3μ of Al 2 O 3 broke off after cutting 12 chips and could not be cut any further.

Claims (1)

【特許請求の範囲】 1 分子式が一般に(MA,MB′,MC″)(Cu,
Nv,Ow)x 但し Mはa族遷移金属の一種もしくはそ
れ以上、 M′はa族遷移金属の一種もしくはそれ以上、 M″はa族遷移金属の一種もしくはそれ以上、 Cは炭素、Nは窒素、Oは酸素を示し、 A,B,C,u,v,wはそれぞれの原子比、
xは構成元素に対する非金属構成元素の比を示
す。 と表わされ、かつ構成元素としてWを含有し、結
晶構造がB−1型である固溶体相と、WC相との
2相を硬質相とし、鉄族金属にて結合した超硬合
金部材であつて、WCは5重量%以上95重量%以
下、鉄族金属は3重量%以上40重量%以下であ
り、残部が該B−1型硬質相であつて、A,B,
C,u,v,w,xの間に 4A+5B+6C+x(4u+5v+6w)≧8.4 A+B+C=1,u+v+w=1 0.8≧A≧0.2 0.50≧B≧0.01 0.8≧C≧0.2 0.50≦u≦0.95 0.001≦v≦0.45 0.001≦w≦0.5 0.6≦x≦1 という関係があり、かつ母材の表面部分が内部に
比べ著しくB−1型硬質量が少ない超硬合金部材
を母材として、その表面にa,a,a族遷
移の炭化物、窒化物および/または酸化物および
Alの酸化物よりなる群より選んだ一種もしくは
それ以上の0.1〜20μの薄層を一層もしくはそれ以
上被覆してなることを特徴とする被覆超硬合金部
材。
[Claims] 1. The molecular formula is generally (M A , M B ′, M C ″) (Cu,
Nv, Ow) Nitrogen and O indicate oxygen, A, B, C, u, v, w are their respective atomic ratios,
x indicates the ratio of the nonmetallic constituent elements to the constituent elements. It is a cemented carbide member that contains W as a constituent element and has two hard phases: a solid solution phase with a B-1 crystal structure and a WC phase, and is bonded with an iron group metal. WC is 5% by weight or more and 95% by weight or less, iron group metal is 3% by weight or more and 40% by weight or less, and the remainder is the B-1 type hard phase, A, B,
4A+5B+6C+x (4u+5v+6w)≧8.4 between C, u, v, w, and x ≦0.45 0.001≦w≦0.5 0.6≦x≦1, and the surface part of the base material is made of a cemented carbide member whose B-1 type hard mass is significantly less than the inside. Group a transition carbides, nitrides and/or oxides and
A coated cemented carbide member characterized in that it is coated with one or more thin layers of 0.1 to 20μ of one or more selected from the group consisting of oxides of Al.
JP10911481A 1981-07-13 1981-07-13 Coating super hardness alloy component Granted JPS5743982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10911481A JPS5743982A (en) 1981-07-13 1981-07-13 Coating super hardness alloy component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10911481A JPS5743982A (en) 1981-07-13 1981-07-13 Coating super hardness alloy component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52159752A Division JPS5929665B2 (en) 1977-12-30 1977-12-30 Cemented carbide parts and their manufacturing method

Publications (2)

Publication Number Publication Date
JPS5743982A JPS5743982A (en) 1982-03-12
JPS6315989B2 true JPS6315989B2 (en) 1988-04-07

Family

ID=14501911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10911481A Granted JPS5743982A (en) 1981-07-13 1981-07-13 Coating super hardness alloy component

Country Status (1)

Country Link
JP (1) JPS5743982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317796U (en) * 1989-06-28 1991-02-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049989A2 (en) * 2000-12-19 2002-06-27 Honda Giken Kogyo Kabushiki Kaisha Composite material
JP4959202B2 (en) * 2006-02-17 2012-06-20 瓜生製作株式会社 Grip for absorbing the reaction force of rotary drive tools
WO2008153070A1 (en) * 2007-06-14 2008-12-18 Lion Corporation Toothbrush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317796U (en) * 1989-06-28 1991-02-21

Also Published As

Publication number Publication date
JPS5743982A (en) 1982-03-12

Similar Documents

Publication Publication Date Title
US4447263A (en) Blade member of cermet having surface reaction layer and process for producing same
US8602131B2 (en) Process for manufacturing a part comprising a block of dense material constituted of hard particles and of binder phase having a gradient of properties, and resulting part
CN101743091B (en) Polycrystalline diamond composites
US4497874A (en) Coated carbide cutting tool insert
US5310605A (en) Surface-toughened cemented carbide bodies and method of manufacture
CA1174438A (en) Preferentially binder enriched cemented carbide bodies and method of manufacture
US4022584A (en) Sintered cermets for tool and wear applications
WO2010128492A1 (en) Ultra-hard diamond composites
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
JPS621853A (en) Method for adhering oxide coating on cobalt enriched region and article produced thereby
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPS6246507B2 (en)
Lengauer et al. Carbides: Transition metal solid-state chemistry
JPS6053721B2 (en) Composite sintered parts for cutting tools
JPS6315989B2 (en)
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JPS5946907B2 (en) Sintered cermets for wear-resistant materials and tools
US5306676A (en) Silicon carbide bodies and methods of making the same
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPH058153B2 (en)
JPH04280805A (en) Hard material of charcoal nitride of transition metal (m,m+ and m++) of 5th (m+) and 6th (m++) number duplicate family in element periodic table method for their production and use thereof
JPH0135041B2 (en)
JP2819648B2 (en) Coated cemented carbide for wear-resistant tools
JPH0547633B2 (en)