JPS63159881A - Electrostatic discharging device - Google Patents

Electrostatic discharging device

Info

Publication number
JPS63159881A
JPS63159881A JP30634486A JP30634486A JPS63159881A JP S63159881 A JPS63159881 A JP S63159881A JP 30634486 A JP30634486 A JP 30634486A JP 30634486 A JP30634486 A JP 30634486A JP S63159881 A JPS63159881 A JP S63159881A
Authority
JP
Japan
Prior art keywords
voltage
discharge
electrode
buried
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30634486A
Other languages
Japanese (ja)
Other versions
JPH0713769B2 (en
Inventor
Yukio Nagase
幸雄 永瀬
Hiroshi Satomura
里村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30634486A priority Critical patent/JPH0713769B2/en
Priority to EP87300799A priority patent/EP0232136B1/en
Priority to DE19873782179 priority patent/DE3782179T2/en
Publication of JPS63159881A publication Critical patent/JPS63159881A/en
Publication of JPH0713769B2 publication Critical patent/JPH0713769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize control in any environment and to perform uniform electrostatic charging and discharging by controlling a bias voltage between the bare electrode of an electrostatic discharging device and a member to be charged electrostatically by a control means within a predetermined range, and controlling an applied alternating voltage or its frequency when the bias voltage exceeds the control range. CONSTITUTION:Two buried electrodes 11 and 12 are buried in the electrostatic discharging member 1' of the electrostatic discharging device 1 and the bare electrode 13 is provided on the surface of a dielectric 10. Those electrodes 11 and 12 are applied with the voltage of an AC power source 14 to initiate electrostatic discharging. Then the electrode 13 is applied with the bias voltage which extracts ions generated by the electrostatic discharging toward the member 2 to be charged electrostatically. A detection part 20 which detects electrostatic charging and discharging currents flowing to the member 2 is provided between the electrode 13 and ground. A control circuit 21 is connected to the output side of this detection part 20 and the charging and discharging currents are controlled by the circuit 21 to preset values according to the output of the detection part 20. When the current exceeds the control range, the voltage or frequency of the power source 14 which applies the voltage to the electrodes 11 and 12 is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放電技術の分野において利用され、特に電子写
真複写機の感光体等を帯電・除電するだめの放電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is utilized in the field of discharge technology, and particularly relates to a discharge device for charging and neutralizing photoreceptors of electrophotographic copying machines.

(従来の技術) この種の放電装置としては、誘電体を挟むように設けら
れた電極間に交流電圧を印加して一方の電極の近傍に放
′市を行なわせて正・負イオンを生成し、このイオンの
うち所定極性のイオンを、該一方の電極と被帯電部材と
の間に印加したバイアス電圧で形成される電界によって
被帯電部材に向けて抽出し、該部材に付着させる帯電装
置か、例えば米国特許第4,155,093号明細書に
示されるように公知である。
(Prior art) This type of discharge device generates positive and negative ions by applying an alternating current voltage between electrodes that sandwich a dielectric material, and causing the discharge near one electrode. A charging device extracts ions of a predetermined polarity among these ions toward the charged member by an electric field formed by a bias voltage applied between the one electrode and the charged member, and makes them adhere to the charged member. or is known, for example as shown in US Pat. No. 4,155,093.

この方法ては、放電が行なわれる電極は露出しており、
放電はこの露出した電極の近傍に強く行なわれるため、
該電極が放電に起因するプラズマエッチンク作用、酸化
作用などによって容易に腐食する。このような腐食が発
生すると放電にムラか生じ、従って除・帯電作用が不均
一となるので、実用上耐久性に問題があった。
In this method, the electrodes where the discharge occurs are exposed;
Since the discharge occurs strongly near this exposed electrode,
The electrode is easily corroded by plasma etching, oxidation, etc. caused by discharge. When such corrosion occurs, the discharge becomes uneven, resulting in uneven charge removal and charging effects, which poses a problem in practical durability.

そこて、本件出願人は上述の耐久性向上を目的として、
誘電体と、該誘電体に埋設された少なくとも2個の電極
と、裸出した電極とを有し、埋設電極は、それらの間に
交流電圧を印加したときに所定の放電開始電圧で、誘電
体の表面の一部の近傍に放電が発生する位置に配置され
、一方、裸出電極は、前記表面の一部またはその近傍の
位置であって、いずれの埋設電極との間の放電開始電圧
も前記所定の放電開始電圧よりも高くなる位置に設けら
れた構成の放電装置を特願昭61−18954号として
案出した。
Therefore, with the aim of improving the above-mentioned durability, the applicant has
It has a dielectric material, at least two electrodes buried in the dielectric material, and an exposed electrode, and the buried electrode is capable of discharging the dielectric material at a predetermined discharge starting voltage when an alternating current voltage is applied between them. The exposed electrode is placed at a position where a discharge occurs near a part of the surface of the body, while the exposed electrode is located at or near a part of the surface and has a discharge starting voltage between it and any buried electrode. In Japanese Patent Application No. 61-18954, a discharge device was devised in which the discharge device was installed at a position higher than the predetermined discharge starting voltage.

上述案により、放’ifによる電極腐食の耐久性は著し
く向上した。
According to the above-mentioned plan, the durability against electrode corrosion due to radiation is significantly improved.

(解決すべき問題点) しかし、この放電装置で実際に除・帯電を行なうと、均
一な除・帯電を得るためには放電電極近傍の環境を無視
できない。すなわち、放電特性が周囲の環境(湿度、温
度および気圧)、とくに、湿度に依存して大きく変化し
、比較的高い湿度(例えば、相対湿度40%以上)の下
ては均一で安定した放電を得ることかできない9さらに
、この放電装置では、他の放電装置、たとえばコロナ放
電装置等に比較して、温度」二昇に伴うイオン発生量の
増加が著しく、それに伴い除・帯電電流も増加すること
か判)JJ シた。
(Problems to be Solved) However, when actually removing and charging electricity with this discharge device, the environment near the discharge electrode cannot be ignored in order to obtain uniform removal and charging. In other words, the discharge characteristics vary greatly depending on the surrounding environment (humidity, temperature, and atmospheric pressure), especially humidity, and it is difficult to maintain a uniform and stable discharge under relatively high humidity (e.g., relative humidity of 40% or more). Furthermore, in this discharge device, compared to other discharge devices such as corona discharge devices, the amount of ions generated increases significantly as the temperature rises, and the removal/charging current also increases accordingly. JJ Shita.

(問題点を解決するための手段) 本発明は、上述のととくの問題を解決するためになされ
たものであり、 交互電圧印加用の少なくとも2個の電極が誘電体に埋設
されると共に裸出電極を備える放電部材と、 被帯電部材へイオンを付与するためのバイアス電圧を上
記裸出電極と被帯電部材との間に印加するバイアス電源
と、 上記被帯電部材に流れる電流を検出する検出手段と、 h ri主電流予め設定された値に制御すべく。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned particular problems, and includes at least two electrodes for alternate voltage application that are embedded in a dielectric material and that are exposed. a discharge member including an output electrode; a bias power supply that applies a bias voltage for applying ions to the charged member between the bare electrode and the charged member; and a detection unit that detects a current flowing through the charged member. means for controlling the h ri main current to a preset value;

−ヒ記検出f段により検出された電流に応じて上記バイ
アス電圧を予め決められた範囲内で制御する制御手段と
を有し、 上記埋設電極は、それらの間に交互電圧を印加したとき
に所定の放電開始電圧で、:A重体の表面の一部の近傍
に放電か発生する位置に配置され、 上記裸出電極は、上記表面の一部またはその近傍の位置
であって、いずれの埋設電極との間の放電を生しるため
の電圧もL記所定の放電開始電圧よりも高くなる位置に
設けられていてバイアス電圧か印加され、 制御手段は、バイアス電圧か制御範囲を越える場合には
、埋設電極間に印加する交互電圧、又は交互電圧の周波
数を制御することによって、前記電流を予め設定された
値となるように制御する制御手段である、 ことを特徴とするものである。
- a control means for controlling the bias voltage within a predetermined range according to the current detected by the detection stage f; At a predetermined discharge starting voltage, the exposed electrode is placed at a position where a discharge occurs near a part of the surface of the A-heavy body, and the exposed electrode is located at or near a part of the surface, and is located at any buried The voltage for generating a discharge between the electrodes is also provided at a position higher than the predetermined discharge starting voltage, and a bias voltage is applied, and the control means controls when the bias voltage exceeds the control range. The present invention is characterized in that it is a control means that controls the current to a preset value by controlling the alternating voltage applied between the buried electrodes or the frequency of the alternating voltage.

(実施例) 以下、添付図面にもとづいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の一実施例による放電装置の断面図であ
る。
FIG. 1 is a sectional view of a discharge device according to an embodiment of the present invention.

本実施例の放電装置lは、誘電体IO内に埋設された少
なくとも2個の埋設電極11.12と、上記誘電体11
]の表面に設けられた裸出電極13とを有している。上
記2個の埋設゛1[極It、12は、放電を発生させる
ための交流′重圧印加用電極てあり、裸出電極13は放
電により生成されたイオンを被帯電部材2に向は抽出す
るだめのハイアス電圧が印加される電極である。
The discharge device l of this embodiment includes at least two buried electrodes 11 and 12 buried in the dielectric IO and the dielectric 11.
] and has a bare electrode 13 provided on the surface. The two buried electrodes 1 and 12 are electrodes for applying heavy alternating current pressure to generate discharge, and the exposed electrode 13 extracts ions generated by discharge toward the charged member 2. This is the electrode to which a high-ass voltage is applied.

上記電極11.12は交流電源14に接続されている。The electrodes 11 , 12 are connected to an AC power source 14 .

電極11と電極12との間に印加する電圧波形としては
サイン波および矩形波のパルス状の波形などのいずれて
もよい。要は、誘電体表面に交互電界が形成されるよう
な電圧てあればよい。
The voltage waveform applied between the electrodes 11 and 12 may be either a sine wave or a rectangular pulse waveform. In short, it is sufficient that the voltage is such that an alternating electric field is formed on the surface of the dielectric material.

上記裸出電極13は直流バイアス電源19に接続されて
いる。被帯電部材2の導電性基体18と裸出電極13間
に印加するバイアス電圧は直流に限らず、特定イオンか
抽出できるようにバイアスされた交流であってもよい。
The exposed electrode 13 is connected to a DC bias power supply 19. The bias voltage applied between the conductive base 18 and the bare electrode 13 of the member to be charged 2 is not limited to direct current, but may be alternating current biased so as to extract specific ions.

バイアス電源19とアース間には、液腺・帯電部材2を
除電または帯電するときに被帯電部材2に流れる除・帯
電電流を検出する検出手段としての検出部20が設けら
れている。検出部20の出力は、制御手段としての制御
回路21に与えられるようになっている。
A detection unit 20 is provided between the bias power supply 19 and the earth as a detection means for detecting the neutralization/charging current flowing through the charged member 2 when the liquid gland/charging member 2 is neutralized or charged. The output of the detection section 20 is given to a control circuit 21 as a control means.

この制御回路21は、検出部20の出力に応じて除・帯
電電流を予め設定された値となるように制御するもので
、本実施例では、検出された除・帯電電流に応じて上記
バイアス電源19のバイアス電圧を予め決められた範囲
内で制御することによってこれを行なうようにし、更に
はその制御範囲を越える場合には、埋設電極11.12
間に印加する交流電源14の交流電圧を制御することに
よって行なうようにしている。
This control circuit 21 controls the removal/charging current to a preset value according to the output of the detection unit 20. In this embodiment, the above-mentioned bias is controlled according to the detected removal/charging current. This is done by controlling the bias voltage of the power supply 19 within a predetermined range, and if it exceeds the control range, the buried electrodes 11, 12
This is done by controlling the AC voltage of the AC power supply 14 applied between them.

以下、上記の誘電体lO1埋設電極It、12及び裸出
電極13について、それらの材質を含めて詳述する。
The dielectric lO1 buried electrode It, 12 and exposed electrode 13 will be described in detail below, including their materials.

誘電体lOは耐放電性の高い無機訓電材料、例えばガラ
ス、セラミック、 SiO□、 MgO、八l□03な
どの酸化物、または窒化シリコン(SiJ4)、g化ア
ルミニウム(AIN)などの窒化物てできており、本実
施例では矩形の断面を有する長尺の部材である。
The dielectric IO is an inorganic electrically conductive material with high discharge resistance, such as glass, ceramic, oxides such as SiO□, MgO, and 81□03, or nitrides such as silicon nitride (SiJ4) and aluminum oxide (AIN). In this example, it is a long member with a rectangular cross section.

誘電体IOに埋設されている電極11.12は、図で誘
電体の底面(液腺・帯電部材2に対向する面)に平行に
、かつそれから等距離で配置されている。これは必須で
はないが、製造上好ましい。埋設電極11.12の埋設
位器は、それらの間に交流電圧を印加したときに所定の
放電開始電圧で誘電体10の表面の一部の近傍に放電が
発生する位置に設定されている。これらの電極の材料と
しては、AI、(:r、Au、Niなどを用い得る。こ
こで注目すべきは、末完用ではこれらの電極は埋設され
露出しておらず、その腐食は発生しないのて上記のよう
な材料を使用しても高耐久性を維持できることCある。
The electrodes 11.12 embedded in the dielectric IO are arranged in the figure parallel to the bottom surface of the dielectric (the surface facing the liquid gland/charging member 2) and equidistant therefrom. Although this is not essential, it is preferred for manufacturing reasons. The buried positions of the buried electrodes 11 and 12 are set at positions where a discharge occurs near a portion of the surface of the dielectric 10 at a predetermined discharge starting voltage when an alternating current voltage is applied between them. As the material for these electrodes, AI, (:r, Au, Ni, etc.) can be used.It should be noted here that in the end use, these electrodes are buried and not exposed, and corrosion does not occur. High durability can be maintained even when using materials such as those mentioned above.

埋設電極間の距離は絶縁耐圧を考慮して、1k11以−
し、特に3〜200μmとすることか好ましい。
The distance between buried electrodes should be 1k11 or more, considering dielectric strength.
However, it is particularly preferable that the thickness be 3 to 200 μm.

誘電体lOは上述の説明では一体のものとしたが、誘電
体IOおよび/または埋設電極11の上方の面または下
方の面で接合された2層の誘電体としてもよい。この場
合それぞれの層の材料は同一でも異なってもよい。特に
、7Aitt体層を図示のように誘電体10aと誘電体
10bの2層とした場合、裏面て放電の生じる誘電体層
を耐放電性の高い無機材料等を用いて誘電体材料の寿命
を保証し、反対側の誘電体材料としては有機誘電体を使
用してもよい。一体構成、2層構成いずれの場合ても、
埋設電極の下部の誘電体の厚さは、l終m以上、500
μm以下、特に3ルm以上2004m以下か好ましい。
In the above description, the dielectric IO is an integral body, but it may be a two-layer dielectric that is joined at the upper surface or lower surface of the dielectric IO and/or the buried electrode 11. In this case, the materials of each layer may be the same or different. In particular, when the 7Aitt body layer is made of two layers, dielectric 10a and dielectric 10b, as shown in the figure, the dielectric layer where discharge occurs on the back side is made of an inorganic material with high discharge resistance to extend the life of the dielectric material. However, an organic dielectric may be used as the dielectric material on the opposite side. Regardless of whether it is a one-piece structure or a two-layer structure,
The thickness of the dielectric under the buried electrode is 1m or more, 500m
It is preferably 3 m or more and 2004 m or less, particularly 3 m or more and 2004 m or less.

裸出電極13は本実施例では前記交流電圧による放電か
発生する放電装置lの底面に固定される。この電極13
の材料としては、耐腐食性、耐酸化性の高い導電性金属
、例えばTi 、W、Cr、Te、Mo、Fe、Co、
Ni 、Au、Ptなどの高融点金属またはこれらの金
属を含む合金、もしくは酸化物などが使用される。その
厚さは0.1〜100 μm、好ましく 0.2〜21
1 g triで。
In this embodiment, the bare electrode 13 is fixed to the bottom surface of the discharge device 1 in which discharge is generated by the alternating current voltage. This electrode 13
Examples of the material include conductive metals with high corrosion resistance and oxidation resistance, such as Ti, W, Cr, Te, Mo, Fe, Co,
High-melting point metals such as Ni, Au, and Pt, alloys containing these metals, or oxides are used. Its thickness is 0.1-100 μm, preferably 0.2-21
1g tri.

幅はlルI以上、好ましくはlO〜500JLIIIで
ある。裸出電極の位置は前記放電発生領域15の端部近
傍であっ”乙いずれの埋設電極(11及び12)との間
に放電開始を生ずる交流印加電圧が前記所定の放電開始
電圧よりも高くなる位置である、ここで放電領域の近傍
とはその外部および内部を含む近傍てあり、外部の場合
か好ましいか、内部てあっても放電領域端部近傍てあれ
ば、機能的に満足てきる。
The width is at least 100 JL, preferably 10 to 500 JLIII. The position of the bare electrode is near the end of the discharge generation region 15, and the AC applied voltage that causes discharge to start between it and either of the buried electrodes (11 and 12) is higher than the predetermined discharge start voltage. Here, the vicinity of the discharge area includes the vicinity including the outside and inside thereof, and it is preferable to be outside, or even if it is inside, it is functionally satisfactory if it is near the end of the discharge area.

以上のごとくの本実施例では、次のように放電か行なわ
れる。なお、本実施例の放電装置1は、誘電体層または
感光体層17そして導電性基体18から成る液腺・帯電
部材2を除電または帯電するために使用可能であるが、
除・帯電原理は同様であるので、帯電を行う場合につい
てのみ説明する。
In this embodiment as described above, discharge is performed as follows. Note that the discharge device 1 of this embodiment can be used to neutralize or charge the liquid gland/charging member 2 consisting of the dielectric layer or photoreceptor layer 17 and the conductive substrate 18;
Since the principles of electrification removal and charging are the same, only the case where electrification is performed will be explained.

埋設電極11と埋設電極12との間に交流電源14によ
って所定の放電開始電圧以上の交流電圧が印加されると
、これによって図示の放電装2tの底面(交流電圧が印
加される電極11と同12とを結ぶ線にほぼ平行な面)
の電極間近傍に対向する部分を中心して、参照符号15
で示す単一領域において放電が行われ、正・負のイオン
が交Vに生成される。しかるに、裸出電極13にはバイ
アス電源19によってバイアス電圧が印加されているた
めに上記イオンのうちの所望の極性のイオンは被帯電部
材2に向けて抽出され、該被帯電部材2は帯電される。
When an AC voltage higher than a predetermined discharge starting voltage is applied between the buried electrode 11 and the buried electrode 12 by the AC power supply 14, this causes the bottom surface of the illustrated discharge device 2t (same as the electrode 11 to which the AC voltage is applied) to be applied. 12)
Reference numeral 15 is centered on the portion facing the vicinity of the electrodes.
A discharge occurs in a single region shown by , and positive and negative ions are generated at an alternating voltage. However, since a bias voltage is applied to the exposed electrode 13 by the bias power supply 19, ions of a desired polarity among the ions are extracted toward the member to be charged 2, and the member to be charged 2 is not charged. Ru.

上記放電領域15の電界強度は、中心部程強く、外部に
向って徐々に弱くなっている。先出の従来のものCは、
放゛市領域の電界強度の非常に強い中心部に相当する部
分が従来の放電電極側端面と?A電体表面との接合部に
相当しており、強い放電のアタックにより電極の劣化(
特に酸化)、消耗か著しいのに対し、第1図の放電装置
lでは、交流放電は誘電体表面間で生じるため、誘電体
の劣化の!#響はほとんどなく長時間にわたって安定し
た交流放電か接続することになると共に、裸出電極13
を上記放電領域15の近傍の配置し、更に直流バイアス
電源19により導電性基体18との間に直流バイアス電
圧を印加することで、裸出′1ヒ極端面の劣化、消耗も
ほとんどなく、長期にわたって安定した?iF ’rt
f、を行なうことか可能となる(なお、除電の場合は交
流バイアスを印加すればよい)。
The electric field strength of the discharge region 15 is stronger toward the center and gradually becomes weaker toward the outside. The previous conventional one C is
Is the part corresponding to the center of the discharge area where the electric field strength is extremely strong the same as the end face of the conventional discharge electrode? Corresponds to the junction with the surface of the A-electrode, and a strong discharge attack can cause electrode deterioration (
In contrast, in the discharge device 1 shown in Fig. 1, alternating current discharge occurs between the surfaces of the dielectric, which causes deterioration of the dielectric. #There is almost no sound, and a stable AC discharge is connected for a long time, and the exposed electrode 13
By arranging the electrode near the discharge area 15 and applying a DC bias voltage between it and the conductive substrate 18 using the DC bias power supply 19, there is almost no deterioration or wear on the exposed end surface of the exposed electrode 1, and it can be used for a long period of time. Is it stable over time? iF'rt
(In addition, in the case of charge removal, an alternating current bias may be applied).

更に、次のような制御を行なっているので、温度の変化
など環境の変動に影響されず、均一で安定した除・帯電
を行なうことが可能である。
Furthermore, since the following control is performed, it is possible to perform uniform and stable charge removal and charging without being affected by environmental fluctuations such as temperature changes.

すなわち、前述のように、イオンの抽出によって被帯電
部材2の帯電が行なわれるが、この場合、該部材2に流
れる電流か検出部20によって検出されている。
That is, as described above, the member 2 to be charged is charged by extraction of ions, but in this case, the current flowing through the member 2 is detected by the detection unit 20.

第1図ではバイアス電圧として直流電圧を裸出電極13
に印加し、正イオンを選択的に抽出している例であるか
、この時帯電電流を電流検出部20により検出し検出さ
れた帯電電流に応じて制御回路21によりバイアス電源
19のバイアス電圧を制御し、外部電界の変化により上
記電流値を予め設定した値となるようにする。
In Fig. 1, a direct current voltage is applied as a bias voltage to the bare electrode 13.
At this time, the charging current is detected by the current detection unit 20, and the bias voltage of the bias power supply 19 is adjusted by the control circuit 21 according to the detected charging current. The current value is controlled to be a preset value by changing the external electric field.

更に、この場合、本例では、バイアス電圧の」二限を設
定し、制御回路21によりバイアス電圧をこの上限まで
上昇させても設定電流に達しない時は、次に、交流電源
14の交流電圧を制御し、交流電圧の変化により電極1
1と電極12どの間に印加されるAC電界を変化させて
、それ以上外部電界を変化させる(即ちバイアス電圧を
変化させる)ことなく、上記電流値を予め設定した値と
なるようにする。
Furthermore, in this case, in this example, the second limit of the bias voltage is set, and if the set current is not reached even if the bias voltage is increased to this upper limit by the control circuit 21, then the AC voltage of the AC power supply 14 is increased. is controlled, and electrode 1 is controlled by changing the AC voltage.
The AC electric field applied between electrode 1 and electrode 12 is changed so that the current value becomes a preset value without further changing the external electric field (i.e., changing the bias voltage).

第2図は、第1図に示す装置の用いられる交流電源14
、バイアス電源19、検出部20および制御回路21の
一具体例のブロック図を示す。
FIG. 2 shows an AC power source 14 used in the device shown in FIG.
, a block diagram of a specific example of the bias power supply 19, the detection section 20, and the control circuit 21 is shown.

検出部20は、電流検出回路22から成ると共に、制御
回路21は定電流制御回路23で構成されている。また
、バイアス電源19は、上記定電流制御回路23の出力
が供給させるP−W−M回路(パルス幅制御回路)24
と、インバター回路25と、整流回路26を備え、そし
て、交流電源14は、AC発振回路27と、上記定電流
制御回路23により制御されるAC増幅回路28と、A
Cトランス29を有している。
The detection section 20 includes a current detection circuit 22, and the control circuit 21 includes a constant current control circuit 23. Further, the bias power supply 19 is connected to a PWM circuit (pulse width control circuit) 24 supplied with the output of the constant current control circuit 23.
, an inverter circuit 25 , and a rectifier circuit 26 , and the AC power supply 14 includes an AC oscillation circuit 27 , an AC amplifier circuit 28 controlled by the constant current control circuit 23 , and an AC
It has a C transformer 29.

かかる構成において、電流検出部13により検出された
イ;シ電電流に応じ、制御回路14によりバイアス電源
19内部のP−W−M回路(パルス幅制御回路)24に
よりパルス幅を制御しバイアス電圧源19の出力電圧を
上記電流値が所定の値となるように;v制御する。
In this configuration, the control circuit 14 controls the pulse width by the P-W-M circuit (pulse width control circuit) 24 inside the bias power supply 19 in accordance with the electric current detected by the current detection unit 13 to adjust the bias voltage. The output voltage of the source 19 is controlled by v so that the above current value becomes a predetermined value.

そして、この時、バイアス電圧がある特定の」−限値に
達しても、所定の電流値が得られない状況が発生した場
合には、さらに制御回路14により交流電源14内部の
AC増幅回路28の増幅率を制御し交流電源14の出力
電圧を上記゛電流値か所定の値となるように制御する。
At this time, if a situation occurs in which a predetermined current value cannot be obtained even if the bias voltage reaches a certain limit value, the control circuit 14 further controls the AC amplifier circuit 28 inside the AC power supply 14. The output voltage of the AC power supply 14 is controlled to be the above-mentioned current value or a predetermined value.

このようにして、帯電電流か予め設定した値となるよう
にする。
In this way, the charging current is made to reach a preset value.

その結果、環境の湿度変化及び裸出電極近傍の温度変化
による放電状態、すなわち裸出電極13によるイオン発
生量の変化か起こってもバイアス電圧を変化させる事に
よる外部電界の制御、交流電圧を変化させる事による前
述のAC放電領域J5のAC電界の制御をすることで、
帯電電流の変動を除去することか可能となった。
As a result, the external electric field can be controlled by changing the bias voltage, and the alternating current voltage can be controlled even if the discharge state due to environmental humidity changes and temperature changes near the exposed electrode, that is, changes in the amount of ions generated by the exposed electrode 13, can occur by changing the bias voltage. By controlling the AC electric field in the AC discharge region J5 described above by
It became possible to eliminate fluctuations in charging current.

第3図は、電極11,12 、誘電体l口、電極13か
ら成る放電部材l°のたとえば温度変化に対し、第1図
の放電装置lの帯電電流の制御方法例を示している。
FIG. 3 shows an example of a method for controlling the charging current of the discharge device 1 shown in FIG. 1 in response to, for example, temperature changes in the discharge member 1° comprising the electrodes 11, 12, the dielectric port 13, and the electrode 13.

第3図を見るとわかるように、ある一定のバイアス電圧
を印加している時、たとえば、放電部材l゛の湿度が変
化すると、帯電電流か変動する。その変動を検出し、設
定電流になるように、バイアス電圧を制御する。そして
、本実施例では、更に、このバイアス電圧が、図に示す
上限値に達しても、また帯電電流か該定植に対し不足す
るような状況か発生すると、次に、交流電圧を制御し、
放電領域15の放電状態を変化させ、裸出゛電極近傍で
発生するイオン量を増加させ、帯電電流の不足を補充す
る。
As can be seen from FIG. 3, when a certain bias voltage is applied, for example, when the humidity of the discharge member l' changes, the charging current changes. This variation is detected and the bias voltage is controlled to maintain the set current. In this embodiment, even if this bias voltage reaches the upper limit value shown in the figure, if a situation occurs where the charging current is insufficient for the planting, next, the AC voltage is controlled,
The discharge state of the discharge region 15 is changed to increase the amount of ions generated near the bare electrode, thereby replenishing the shortage of charging current.

このような制御を行なうことにより、何らかの原因(例
えば、誘電体表面に抵抗抗物質か付着することによって
放電領域15が極端に減少した場合等)により、帯電電
流か激減し、バイアス電圧か異常に高くなり裸出電極と
被帯電部材間で異常放電か発生する事を防1トすること
か可使となるばかりか、そのような状況下においても、
放電状態を交流電圧の制御により変化させ、帯電の安定
化か可能となる。
By performing such control, due to some reason (for example, if the discharge area 15 is extremely reduced due to the adhesion of a resistive substance to the dielectric surface), the charging current will be drastically reduced, and the bias voltage will become abnormal. Not only can it be used to prevent abnormal discharge from occurring between the bare electrode and the charged member, but even under such circumstances,
By changing the discharge state by controlling the AC voltage, it is possible to stabilize the charging.

第3図では、−例として、放電部材l゛の温度変化に対
しての制御方法を示したが、温度に限らず、環境の湿度
の影響、放電部材l°の汚れ、あるいはまた、被帯電部
材の特性変化に伴う帯″iに電流の変動など、全ての要
因に対して、本発明の放電装置は、帯電を安定化させる
効果を有する。
Fig. 3 shows, as an example, a method of controlling temperature changes in the discharge member l゛; The discharge device of the present invention has the effect of stabilizing charging against all factors such as fluctuations in current in band i due to changes in characteristics of members.

またバイアス電圧の制御は、交流電圧の制御に較べ、液
腺・帯電部材2へのイオン付与敬を大11】に可変させ
る事か可能であると同時に、交流電圧の大l】な上昇は
誘電体表面の放電領域15の電界強度を著しく上昇させ
る事になりFA71!体10の耐久性を早める結果を生
じる為、バイアス電圧を固定し、交流電圧のみの制御に
よって液腺・帯電部材2に流れる除・帯電電流を制御す
る1hは望ましいものではない。第1図の放電装711
は、バイアス電圧制御を行なっているから、そのように
誘電体lOの耐久性を早めるという不都合も防止できる
し、イオン付着量を大巾に可変させることも可能となっ
ている。
Furthermore, compared to controlling the AC voltage, controlling the bias voltage can vary the amount of ions applied to the liquid glands/charging member 2 by a large 11%, and at the same time, a large increase in the AC voltage is caused by dielectric This will significantly increase the electric field strength in the discharge region 15 on the body surface, resulting in FA71! 1h in which the bias voltage is fixed and the neutralizing and charging current flowing through the fluid gland/charging member 2 is controlled by controlling only the alternating current voltage is not desirable because it shortens the durability of the body 10. Discharge device 711 in FIG.
Since the bias voltage is controlled, it is possible to prevent the disadvantage of shortening the durability of the dielectric IO, and it is also possible to vary the amount of ions attached over a wide range.

更に、もちろん帯電電流の定電流化は、上述の具体例に
限られているものではなく、基本的に次の機構、すなわ
ち帯電電流を検出し、その値によって外部電界を変化さ
せ、所定の帯電電流に設定し、さらにある一定の外部電
界に達した時は、次に放電領域15の放電状IEを変化
させ、所定の電流値に設定する機構を持つ構成のものて
あればよい。
Furthermore, of course, making the charging current constant is not limited to the above-mentioned specific example, but basically involves the following mechanism: detecting the charging current, changing the external electric field depending on its value, and achieving a predetermined charging current. It is sufficient to have a mechanism that sets the current to a predetermined current value, and then changes the discharge shape IE of the discharge region 15 when a certain external electric field is reached and sets the current value to a predetermined value.

例えば、交流電圧のイtiを制御するかわりに、交流電
圧の周波数を変化させる基によって、前述の効果を得る
事か出来る。ここで交流電圧の周波数の制御は、前述の
放電領域15の放電回数を変化させる事によって、放電
状態を変化させるものであり、このようにして放電状態
を変化させることによって帯電の安定化を1λlっても
よい。なお、このような定電流制御方法は、この構成の
放電装置に特有のもので、従来のコロナ放電装置におけ
るコロナ放電電圧の制御による一定電流制御方法とは根
本的に異なるものである。
For example, instead of controlling the ti of the alternating current voltage, the above-mentioned effect can be obtained by changing the frequency of the alternating voltage. Here, the control of the frequency of the AC voltage is to change the discharge state by changing the number of discharges in the discharge region 15 described above, and by changing the discharge state in this way, the stabilization of charging can be achieved by 1λl. You can. Note that such a constant current control method is unique to the discharge device having this configuration, and is fundamentally different from the constant current control method by controlling the corona discharge voltage in conventional corona discharge devices.

(発明の効果) 以−ヒ説明したことく、本発明製置によれば、被帯電部
材に流れる電流を予め設定された値に制御すべく、検出
手段により検出された電流に応じて裸出電極と被帯電部
材との間のバイアス電圧を予め決められた範囲内で制御
し、バイアス電圧か制u4WA囲を越える場合には、埋
設電極間に印加される交互電圧もしくはその周波数を制
御することとしたので、いかなる環境下においても安定
でかつ均一な除・帯電を行なうことが可能となる、とい
う効果が得られる。
(Effects of the Invention) As explained below, according to the device of the present invention, in order to control the current flowing through the member to be charged to a preset value, the naked output is detected in accordance with the current detected by the detection means. Control the bias voltage between the electrode and the charged member within a predetermined range, and if the bias voltage exceeds the limit u4wa range, control the alternating voltage applied between the buried electrodes or its frequency. Therefore, it is possible to perform stable and uniform charge removal and charging under any environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置を示す概要構成断面図第
2図は第1図のバイアス電源、交流電源、検出部及び制
御回路の一具体例を示すブロック図、第3図は本発明に
従う制御例の説明に供する特性図である。 l・・・・・・・・・・・・・・・放電装置l°・・・
・・・・・・・・・・・・放電部材IO・・・・・・・
・・・・・・・・誘電体11.12・・・・・・・・・
埋設電極13・・・・・・・・・・・・・・・裸出電極
19・・・・・・・・・・・・・・・バイアス電源20
・・・・・・・・・・・・・・・検出手段(検出部)2
1・・・・・・・・・・・・・・・制御手段(制御回路
)特許出願人       キャノン株式会社代理人 
  弁理士   藤  岡   微笑1図 第  3  図 バイアス電圧
FIG. 1 is a schematic cross-sectional view of a device according to an embodiment of the present invention. FIG. 2 is a block diagram showing a specific example of the bias power supply, AC power supply, detection section, and control circuit shown in FIG. 1. FIG. 3 is a characteristic diagram for explaining a control example according to the invention. l・・・・・・・・・・・・Discharge device l°...
・・・・・・・・・Discharge member IO・・・・・・・
・・・・・・・・・Dielectric 11.12・・・・・・・・・
Buried electrode 13...Exposed electrode 19...Bias power supply 20
.........Detection means (detection section) 2
1・・・・・・・・・・・・・・・Control means (control circuit) Patent applicant Canon Co., Ltd. Agent
Patent Attorney Fujioka Shoji Figure 1 Figure 3 Bias voltage

Claims (1)

【特許請求の範囲】 交互電圧印加用の少なくとも2個の電極が誘電体に埋設
されると共に裸出電極を備える放電部材と、 被帯電部材へイオンを付与するためのバイアス電圧を上
記裸出電極と被帯電部材との間に印加するバイアス電源
と、 上記被帯電部材に流れる電流を検出する検出手段と、 上記電流を予め設定された値に制御すべく、上記検出手
段により検出された電流に応じて上記バイアス電圧を予
め決められた範囲内で制御する制御手段とを有し、 上記埋設電極は、それらの間に交互電圧を印加したとき
に所定の放電開始電圧で、誘電体の表面の一部の近傍に
放電が発生する位置に配置され、 上記裸出電極は、上記表面の一部またはその近傍の位置
であって、いずれの埋設電極との間の放電を生じるため
の電圧も上記所定の放電開始電圧よりも高くなる位置に
設けられていてバイアス電圧が印加され、 制御手段は、バイアス電圧が制御範囲を越える場合には
、埋設電極間に印加する交互電圧、又は交互電圧の周波
数を制御することによって、前記電流を予め設定された
値となるように制御する制御手段である、 ことを特徴とする放電装置。
[Scope of Claims] A discharge member in which at least two electrodes for applying voltage alternately are buried in a dielectric material and also includes an exposed electrode, and a bias voltage for applying ions to a charged member is applied to the exposed electrode. a bias power source applied between the charged member and the charged member; a detection means for detecting the current flowing through the charged member; and a detecting means for detecting the current flowing through the charged member; and a control means for controlling the bias voltage within a predetermined range according to the buried electrode, and the buried electrode has a control means for controlling the bias voltage within a predetermined range, and the buried electrode has a predetermined discharge starting voltage when an alternating voltage is applied between them. The bare electrode is placed at a position where a discharge occurs near a part of the surface, and the exposed electrode is located at or near a part of the surface, and the voltage for causing a discharge between it and any of the buried electrodes is above the level above. The control means is provided at a position higher than a predetermined discharge starting voltage and applies a bias voltage, and when the bias voltage exceeds the control range, the control means controls the alternating voltage applied between the buried electrodes or the frequency of the alternating voltage. A discharge device characterized in that it is a control means that controls the current to a preset value by controlling the current.
JP30634486A 1986-01-30 1986-12-24 Discharge device Expired - Fee Related JPH0713769B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30634486A JPH0713769B2 (en) 1986-12-24 1986-12-24 Discharge device
EP87300799A EP0232136B1 (en) 1986-01-30 1987-01-29 Charging or discharging device
DE19873782179 DE3782179T2 (en) 1986-01-30 1987-01-29 LOADING OR UNLOADING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30634486A JPH0713769B2 (en) 1986-12-24 1986-12-24 Discharge device

Publications (2)

Publication Number Publication Date
JPS63159881A true JPS63159881A (en) 1988-07-02
JPH0713769B2 JPH0713769B2 (en) 1995-02-15

Family

ID=17955964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30634486A Expired - Fee Related JPH0713769B2 (en) 1986-01-30 1986-12-24 Discharge device

Country Status (1)

Country Link
JP (1) JPH0713769B2 (en)

Also Published As

Publication number Publication date
JPH0713769B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPS6232468B2 (en)
JPS62141578A (en) Electrostatic discharging and charging method
JPH08217412A (en) Corona discharge apparatus
GB2156597A (en) Charging or discharging a member
JPS63159881A (en) Electrostatic discharging device
JP3310311B2 (en) Ion generator and corona generator using the same
JPS63136061A (en) Electrifying device
JPS60195566A (en) Discharging device
JPS63159882A (en) Electrostatic discharging device
JPS63159883A (en) Electrostatic discharging device
JPS63131157A (en) Electrostatic discharging device
JPS6127570A (en) Discharge device
JPS63136060A (en) Electrifying device
JPH0719089B2 (en) Charging device
JPS63132270A (en) Discharging device
JP5193699B2 (en) Ion generator
JP2665903B2 (en) Removing / charging device
JPS63132268A (en) Discharging device
JPH02108B2 (en)
JPH0721669B2 (en) Removal / charging method
JPS6250858A (en) Electrostatic charger
JPS6117165A (en) Discharging device
JP3328856B2 (en) Discharger and recording head using the same
JPS63129364A (en) Discharging device
JPS63129362A (en) Discharging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees