JPS63129362A - Discharging device - Google Patents

Discharging device

Info

Publication number
JPS63129362A
JPS63129362A JP27527386A JP27527386A JPS63129362A JP S63129362 A JPS63129362 A JP S63129362A JP 27527386 A JP27527386 A JP 27527386A JP 27527386 A JP27527386 A JP 27527386A JP S63129362 A JPS63129362 A JP S63129362A
Authority
JP
Japan
Prior art keywords
discharge
dielectric
electrodes
discharging
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27527386A
Other languages
Japanese (ja)
Inventor
Kazutoshi Shimada
島田 和俊
Yoshihiko Hirose
広瀬 吉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27527386A priority Critical patent/JPS63129362A/en
Publication of JPS63129362A publication Critical patent/JPS63129362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To efficiently, dehumidify the periphery of the electrode of a device, to reduce the power consumption, and to perform uniform and stable discharging by providing the discharging device with a humidity detecting means and controlling a heat generating body according to the output of this humidity detecting means. CONSTITUTION:When an AC voltage above is specific discharging start voltage is applied between embedded electrodes 11 and 12 from an AC power source 14, discharging is carried out in a single area 15 around a part facing the periphery of the part between the electrodes on the bottom surface of the discharging device 1 to generate positive and negative ions alternately. A bare electrode 13, on the other hand, is applied with a bias voltage by a bias power source 19, so ions having a desired polarity are extracted toward a member 2 to be charged electrostatically, so the member 2 is charged electrostatically. A microcomputer 22 supplies electric power to the heater 21 when the value of a current inputted from a humidity sensor 23 varies exceeding a recording current value recorded in the microcomputer to raise the temperature of a dielectric 10, there removing moisture around the discharging device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放電技術の分野において利用され、特に電子写
真複写機の感光体等を帯電・除電するための放電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is used in the field of discharge technology, and particularly relates to a discharge device for charging and neutralizing a photoreceptor of an electrophotographic copying machine.

(従来の技術) この種の放電装置としては、誘電体を挟むように設けら
れた電極間に交流電圧を印加して一方の電極の近傍に放
電を行なわせて正・負イオンを生成し、このイオンのう
ち所定極性のイオンを、該一方の電極と被帯電部材との
間に印加したバイアス電圧で形成される電界によって被
帯電部材に向けて抽出し、該部材に付着させる帯電装置
が、例えば米国特許第=1,155,09:1号明細書
に示されるように公知である。
(Prior Art) This type of discharge device applies an alternating current voltage between electrodes disposed to sandwich a dielectric material to generate a discharge near one electrode to generate positive and negative ions. A charging device extracts ions of a predetermined polarity among the ions toward the charged member by an electric field formed by a bias voltage applied between the one electrode and the charged member, and makes them adhere to the charged member, For example, it is known as shown in US Pat. No. 1,155,09:1.

この方法では、放電か行なわれる電極は露出しており、
放電はこの露出した電極の近傍に強く行なわれるため、
該電極か放電に起因するプラズマエツチング作用、酸化
作用などによって容易に腐食する。このような腐食が発
生すると放電にムラか生じ、従って除・帯電作用が不均
一となるので、実用上耐久性に問題かあった。
In this method, the electrodes where the discharge takes place are exposed;
Since the discharge occurs strongly near this exposed electrode,
The electrodes are easily corroded by plasma etching, oxidation, etc. caused by discharge. When such corrosion occurs, the discharge becomes uneven, resulting in uneven charge removal and charging effects, which poses a problem in practical durability.

そこで、本件出願人は上述の耐久性向上を目的として、
誘電体と、該誘電体に埋設された少なくとも2個の電極
と、裸出した電極とを有し、埋設電極は、それらの間に
交流電圧を印加したときに所定の放電開始電圧で、誘電
体の表面の一部の近傍に放電か発生ずる位置に配置され
Therefore, with the aim of improving the above-mentioned durability, the applicant has
It has a dielectric material, at least two electrodes buried in the dielectric material, and an exposed electrode, and the buried electrode is capable of discharging the dielectric material at a predetermined discharge starting voltage when an alternating current voltage is applied between them. It is placed in a position where an electrical discharge is generated near a part of the body's surface.

一方、裸出電極は、前記表面の一部またはその近傍の位
置てあって、いずれの埋設電極との間の放電開始電圧も
前記所定の放電開始゛電圧よりも高くなる位置に設けら
れた構成の放電装置を特願昭61−18954号として
案出した。
On the other hand, the exposed electrode is located at or near a part of the surface, and has a structure in which the discharge starting voltage between it and any buried electrode is higher than the predetermined discharge starting voltage. This discharge device was devised in Japanese Patent Application No. 18954/1983.

上述案により、放電による電極腐食の耐久性は著しく向
上した。
With the above-mentioned proposal, the durability against electrode corrosion due to electric discharge has been significantly improved.

(解決すべき問題点) このようにL配室によれば、耐久性向上か図れるか、表
面ての吸湿という問題かある。すなわち、放電装置は使
用していないと誘電体及び電極の面に空気中の水分か付
着するため、電源か投入されても電極及び誘電体表面の
湿度が下がらないかぎり放電を起さないという欠点を有
している。このため、大気の湿度か高い時や、寒冷時に
装置か結露を生じた際は、放電することは非常に難しい
(Problems to be Solved) As described above, with the L-chamber arrangement, there is a problem of whether durability can be improved or that the surface absorbs moisture. In other words, if the discharge device is not in use, moisture in the air will adhere to the surface of the dielectric and electrode, so even if the power is turned on, a discharge will not occur unless the humidity on the surface of the electrode and dielectric decreases. have. For this reason, it is very difficult to discharge when the humidity of the atmosphere is high or when there is condensation on the device in cold weather.

上記問題を解決するためには、放電装置近傍や放電装置
の電極の形成されていない面に発熱体を接着もしくは圧
着し、放電装置全体を昇温させ、誘電体及び電極の湿気
を無くす方法か考えられる。
In order to solve the above problem, there is a method of gluing or pressure-bonding a heating element near the discharge device or on the surface of the discharge device where electrodes are not formed, raising the temperature of the entire discharge device, and eliminating moisture from the dielectric and electrodes. Conceivable.

しかしながら、発熱体に常に電力を投入するようにする
ときは、本来、低電流で放電か行なえる消費電力の少な
い放電装置にもかかわらず、消費電力は多くなってしま
うことになる。
However, when power is constantly supplied to the heating element, the power consumption increases despite the fact that the discharge device has low power consumption and is capable of discharging with a low current.

また、広範囲にわたる環境条件下において、均一かつ安
定した放電を速やかにかつ効率よく行なうことも期待で
きない。
Further, it cannot be expected to perform uniform and stable discharge quickly and efficiently under a wide range of environmental conditions.

(問題点を解決するための手段) 本発明は、上述のととくの問題を解決するためになされ
たものであり、 交流電圧印加用の電極が少なくとも2個埋設せられる誘
電体にバイアス電圧印加用の裸出電極か設けられると共
に、上記誘電体を加熱する発熱体と、湿度を検出する湿
度検出手段と、この湿度検出手段の出力により上記発熱
体を制御する制御手段とを備える、 ことを特徴とするものである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned particular problems, and includes a method for applying a bias voltage to a dielectric body in which at least two electrodes for applying an AC voltage are embedded. and a heating element for heating the dielectric, a humidity detection means for detecting humidity, and a control means for controlling the heating element based on the output of the humidity detection means. This is a characteristic feature.

(実施例) 以下、添付図面にもとづいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の一実施例による放電装置の断面図であ
る。
FIG. 1 is a sectional view of a discharge device according to an embodiment of the present invention.

本実施例の放電装置lは、誘電体lO内に埋設された少
なくとも2個の埋設電極II、 12と、上記誘電体1
0の表面に設けられた裸出電極13とを有している。J
:、記2個の埋設電極11.12は、放電を発生させる
ための交流電圧印加用電極であり、裸出電極13は放電
により生成されたイオンを被帯電部材2に向は抽出する
ためのバイアス電圧か印加される電極である。
The discharge device 1 of this embodiment includes at least two buried electrodes II, 12 buried in a dielectric 10, and the dielectric 1
It has a bare electrode 13 provided on the surface of 0. J
The two buried electrodes 11 and 12 are electrodes for applying an alternating current voltage to generate a discharge, and the exposed electrode 13 is for extracting ions generated by the discharge toward the charged member 2. It is the electrode to which the bias voltage is applied.

誘電体10上には、湿度検出手段としての湿度センサー
23が電極を避けて設けられている。湿度センサー23
は、Cr 20x v F e t O:ly S n
 02* Z n Oe T i O2+NiFe2O
4,Al2O□、 MCr20z、M、SnO<等の複
合金属酸化物、MgC:r204−TiO□系セラミッ
クス、塩化リチウム等を利用した電解質系、PAPA(
P−アミノフドルアセチレン)等を利用した有機物系等
、種々のものが必要とする特性に合せて利用できる。
A humidity sensor 23 as a humidity detection means is provided on the dielectric 10, avoiding the electrodes. Humidity sensor 23
is Cr 20x v F e t O:ly S n
02* Z n Oe T i O2+NiFe2O
4. Electrolyte systems using composite metal oxides such as Al2O□, MCr20z, M, SnO<, etc., MgC:r204-TiO□-based ceramics, lithium chloride, etc., PAPA (
Various materials can be used depending on the required characteristics, such as organic materials using P-aminophdoracetylene) and the like.

さらに誘電体lOには、発電体としてのヒーター21が
設けられており、これはカーボン、Ni・Cr、91等
を用いた抵抗発熱体で形成されている。
Furthermore, the dielectric IO is provided with a heater 21 as a power generator, which is made of a resistance heating element using carbon, Ni.Cr, 91, or the like.

上記湿度センサー23の出力は制御手段としてのマイク
ロコンピュータ22に与えられるようになっており、マ
イクロコンピュータ22は、湿度センサー23からの出
力を基に上記ヒーター21への電力投入等を制御するよ
うになっている。
The output of the humidity sensor 23 is given to a microcomputer 22 as a control means, and the microcomputer 22 controls power input to the heater 21 based on the output from the humidity sensor 23. It has become.

以下、上記の誘電体10、埋設電極11.12及び裸出
電極13について、それらの材質を含めて詳述する。
The dielectric 10, buried electrodes 11, 12, and exposed electrodes 13 will be described in detail below, including their materials.

誘電体lOは耐放電性の高い無機誘電材料、例えばガラ
ス、セラミック、 SiO□、MgO,AI□03など
の酸化物、または窒化シリコン(S!:+Na 、窒化
アルミニウム(AIN)などの窒化物でできており、本
実施例では矩形の断面を有する長尺の部材である。
The dielectric IO is an inorganic dielectric material with high discharge resistance, such as glass, ceramic, oxides such as SiO□, MgO, and AI□03, or nitrides such as silicon nitride (S!:+Na) and aluminum nitride (AIN). In this example, it is a long member with a rectangular cross section.

誘電体lOに埋設されている電極11.12は、図で誘
電体の底面(被除・帯電部材2に対向する面)に平行に
、かつそれから等距離で配置されている。これは必須で
はないか、製造上好ましい。埋設電極11.12の埋設
位置は、それらの間に交流電圧を印加したときに所定の
放電開始電圧で誘電体10の表面の一部の近傍に放電が
発生する位置に設定されている。これらの電極の材料と
しては、AI、Cr、Au、Niなどを用い得る。ここ
て注目すべきは、本発明ではこれらの電極は埋設され露
出しておらず、その腐食は発生しないので上記のような
材料を使用しても高耐久性を維持できることである。
The electrodes 11, 12 embedded in the dielectric 1O are arranged parallel to the bottom surface of the dielectric (the surface facing the target/charging member 2) and equidistant therefrom in the figure. This is not essential or preferred for manufacturing reasons. The buried positions of the buried electrodes 11 and 12 are set at positions where, when an alternating voltage is applied between them, a discharge occurs near a part of the surface of the dielectric 10 at a predetermined discharge starting voltage. As materials for these electrodes, AI, Cr, Au, Ni, etc. can be used. What should be noted here is that in the present invention, these electrodes are buried and not exposed, and corrosion does not occur, so that high durability can be maintained even when the above materials are used.

埋設電極間の距離は絶縁耐圧を考慮して、1gem以上
、特に3〜200 p−taとすることが好ましい。
The distance between the buried electrodes is preferably 1 gem or more, particularly 3 to 200 p-ta, in consideration of dielectric strength.

誘電体10は本実施例ては一体のものとしたか、誘電体
10および/または埋設電極11の上方の面または下方
の面で接合された2層の誘電体としてもよい。この場合
それぞれの層の材料は同一ても異なってもよい。特に、
誘電体層を2層とした場合、裏面で放電の生じる誘電体
層を耐放電性の高い無機材料等を用いて誘電体材料の寿
命を保証し、反対側の誘電体材料としては有機誘電体を
使用してもよい。一体構成、2層構成いずれの場合でも
、埋設電極の下部の誘電体の厚さは、1gm以上、50
0 gm以下、特に31Lm以上200 grn以下か
好ましい。裸出電極13は本実施例では前記交流電圧に
よる放電か発生する放電装置lの底面に固定される。該
裸出電極13には昇温用電源20か接続せられている。
The dielectric 10 may be integrated in this embodiment, or may be a two-layer dielectric joined at the upper surface or lower surface of the dielectric 10 and/or the buried electrode 11. In this case, the materials of each layer may be the same or different. especially,
When the dielectric layer is made of two layers, the dielectric layer on the back side where discharge occurs is made of an inorganic material with high discharge resistance to guarantee the life of the dielectric material, and the dielectric material on the other side is an organic dielectric material. may be used. In either case of an integrated structure or a two-layer structure, the thickness of the dielectric material below the buried electrode should be 1 gm or more, 50 gm or more.
It is preferably 0 gm or less, particularly 31 Lm or more and 200 grn or less. In this embodiment, the bare electrode 13 is fixed to the bottom surface of the discharge device 1 in which discharge is generated by the alternating current voltage. A temperature increasing power source 20 is also connected to the exposed electrode 13.

この電極13の材料としては、耐腐食性、#酸化性の高
い導電性金属、例えばTi 、tli、Cr、Te、M
o、Fe、Go、Ni 。
The material of this electrode 13 is a conductive metal with high corrosion resistance and oxidizability, such as Ti, tri, Cr, Te, M
o, Fe, Go, Ni.

Au、Ptなどの高融点金属またはこれらの金属を含む
合金、もしくは酸化物などが使用される。
High melting point metals such as Au and Pt, alloys containing these metals, or oxides are used.

その厚さは0.1〜100終11好ましく0.2〜20
ル層で、幅はIILm以上、好ましくはlO〜500用
lである。裸出電極の位置は前記放電発生領域15の端
部近傍であって、いずれの埋設電極(11及び12)と
の間に放電開始を生ずる交流印加電圧が前記所定の放電
開始電圧よりも高くなる位置である。ここて放電領域の
近傍とはその外部および内部を含む近傍であり、外部の
場合か好ましいが、内部であっても放電領域端部近傍て
あれば、機能的に満足できる。
Its thickness is 0.1-100, preferably 0.2-20
The width of the layer is IILm or more, preferably lO to 500 l. The position of the bare electrode is near the end of the discharge generation region 15, and the AC applied voltage that causes discharge initiation between it and any of the buried electrodes (11 and 12) is higher than the predetermined discharge initiation voltage. It's the location. Here, the vicinity of the discharge area refers to the vicinity including the outside and inside thereof, and it is preferable to be outside, but even if it is inside, it is functionally satisfactory as long as it is near the end of the discharge area.

以上のととくの本実施例では、次のように放電か行なわ
れる。なお、本実施例の放電装置lは、誘電体層または
感光体層17そして導電性基体18から成る液腺・帯電
部材2を除電または帯電するために使用可能であるか、
除・帯電原理は同様であるので、帯電を行う場合につい
てのみ説明する。
In this particular embodiment described above, discharge is performed as follows. Note that the discharge device l of this embodiment can be used to neutralize or charge the liquid gland/charging member 2 consisting of the dielectric layer or photoreceptor layer 17 and the conductive substrate 18.
Since the principles of electrification removal and charging are the same, only the case where electrification is performed will be explained.

埋設電極11と埋設電極12どの間に交流電源14によ
って所定の放電開始電圧以上の交流電圧が印加されると
、これによって図示の放電装falの底面(交流電圧が
印加される電極11と同12とを結ぶ線にほぼ平行な面
)の電極間近傍に対向する部分を中心して、参照符号1
5で示す単一領域において放電か行われ、正・負のイオ
ンが交互に生成される。しかるに、裸出電極13にはバ
イアス電源19によってバイアス電圧が印加されている
ために上記イオンのうちの所望の極性のイオンは被帯電
部材2に向けて抽出され、該被帯電部材2は帯電される
。尚、抽出されるイオンの極性は印加されるバイアス電
圧の極性によって決定される。
When an AC voltage higher than a predetermined discharge starting voltage is applied between the buried electrode 11 and the buried electrode 12 by the AC power supply 14, this causes the bottom surface of the illustrated discharge device fal (the electrode 11 and the same 12 to which the AC voltage is applied) to be applied between the buried electrodes 11 and 12. With reference numeral 1, centering on the part facing the vicinity of the electrodes (a plane substantially parallel to the line connecting
A discharge is performed in a single region indicated by 5, and positive and negative ions are generated alternately. However, since a bias voltage is applied to the exposed electrode 13 by the bias power supply 19, ions of a desired polarity among the ions are extracted toward the member to be charged 2, and the member to be charged 2 is not charged. Ru. Note that the polarity of the extracted ions is determined by the polarity of the applied bias voltage.

また1発電体であるヒーター21はマイクロコンピュー
タ22からの指令により電力を投入され、誘電体10を
昇温させる。
Further, the heater 21, which is one power generator, is powered on by a command from the microcomputer 22 to raise the temperature of the dielectric 10.

すなわち、マイクロコンピュータ22は、常に湿度セン
サー23からの出力を見ており、ヒーター21の制御を
行なっている。ここで、湿度が変化し、空気中の水分量
か増大すると、湿度センサー23からの出力電流が変化
する。マイクロコンピュータ22は、湿度センサー23
から入力された電流値が変化しマイクロコンピュータ内
に記録された記録電流値を超えると、ヒーター21に電
力を投入し、誘電体10を昇温させ放電装置回りの温度
を除かせる。前記記録電流値は、良好に放電が行なえる
湿度範囲の内、最も湿度が高い条件で湿度センサーから
出力された電流値である。又記録電流値は、放電装置の
仕様等により変化し、装置種類ごとに適性条件は異なる
That is, the microcomputer 22 constantly monitors the output from the humidity sensor 23 and controls the heater 21. Here, when the humidity changes and the amount of moisture in the air increases, the output current from the humidity sensor 23 changes. The microcomputer 22 has a humidity sensor 23
When the current value input from the microcomputer changes and exceeds the recorded current value recorded in the microcomputer, power is applied to the heater 21 to raise the temperature of the dielectric 10 and remove the temperature around the discharge device. The recording current value is a current value output from the humidity sensor under the highest humidity condition within the humidity range in which discharge can be performed satisfactorily. Furthermore, the recording current value changes depending on the specifications of the discharge device, and suitability conditions differ depending on the type of device.

上述マイクロコンピュータ22の働きは放電中も行なわ
れており環境に合せてヒーター21への電力投入の入・
切を常に制御している。
The operation of the microcomputer 22 described above continues even during discharging, and it turns on and off power to the heater 21 according to the environment.
The cut is always controlled.

なお、上述実施例において湿度センサーは、放電装置の
訪電体上に載設されているか、本発明においては、誘電
体」−に接着により湿度センサーを設けても、更には誘
電体を保持する保持体に湿度センサーを設けても良い。
In the above-mentioned embodiments, the humidity sensor is mounted on the current-visiting body of the discharge device, or in the present invention, the humidity sensor may be provided on the dielectric by adhesive, or even if the humidity sensor is mounted on the dielectric to hold the dielectric. A humidity sensor may be provided on the holding body.

また、マイクロコンピュータによるヒーターの制御は、
電流の供給停止あるいは電流量の制御など、発熱量をコ
ントロールすればよい。
In addition, the heater is controlled by a microcomputer.
The amount of heat generated can be controlled by stopping the supply of current or controlling the amount of current.

(発明の効果) 以北のように、本発明装置によれば、放電装置に湿度検
出手段を設け、この湿度検出手段からの出力を基に発熱
体を制御する事により、効率良く装置の電極回りの除湿
が可能となり、消費電力の低減を図る事か可能となると
共に、広範囲の環境条件において、均一かつ安定な放電
を速やかにかつ効率良く行なうことができる、という効
果が得られる。
(Effects of the Invention) As described above, according to the device of the present invention, the discharge device is provided with a humidity detection means, and the heating element is controlled based on the output from the humidity detection means, thereby efficiently controlling the electrodes of the device. It becomes possible to dehumidify the surrounding area, reduce power consumption, and achieve the effect that uniform and stable discharge can be performed quickly and efficiently under a wide range of environmental conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置を示す概要構成断面図であ
る。 1・・・・・・・・・・・・放電装置 10・・・・・・・・・・・・誘電体 11.12・・・・・・埋設電極 13・・・・・・・・・・・・裸出電極21・・・・・
・・・・・・・発熱体(ヒーター)22・・・・・・・
・・・・・制御手段(マイクロコンピュータ)
FIG. 1 is a schematic cross-sectional view showing a device according to an embodiment of the present invention. 1...Discharge device 10...Dielectric 11.12...Embedded electrode 13... ...Bare electrode 21...
...Heating element (heater) 22...
...Control means (microcomputer)

Claims (1)

【特許請求の範囲】 交流電圧印加用の電極が少なくとも2個埋設せられる誘
電体にバイアス電圧印加用の裸出電極が設けられると共
に、上記誘電体を加熱する発熱体と、湿度を検出する湿
度検出手段と、この湿度検出手段の出力により上記発熱
体を制御する制御手段とを備える、 ことを特徴とする放電装置。
[Scope of Claims] A dielectric body in which at least two electrodes for applying an alternating current voltage are embedded is provided with an exposed electrode for applying a bias voltage, and a heating element for heating the dielectric body and a humidity sensor for detecting humidity. A discharge device comprising: a detection means; and a control means for controlling the heating element based on the output of the humidity detection means.
JP27527386A 1986-11-20 1986-11-20 Discharging device Pending JPS63129362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27527386A JPS63129362A (en) 1986-11-20 1986-11-20 Discharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27527386A JPS63129362A (en) 1986-11-20 1986-11-20 Discharging device

Publications (1)

Publication Number Publication Date
JPS63129362A true JPS63129362A (en) 1988-06-01

Family

ID=17553124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27527386A Pending JPS63129362A (en) 1986-11-20 1986-11-20 Discharging device

Country Status (1)

Country Link
JP (1) JPS63129362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123939A (en) * 2001-10-12 2003-04-25 Sharp Corp Ion generator and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123939A (en) * 2001-10-12 2003-04-25 Sharp Corp Ion generator and air conditioner

Similar Documents

Publication Publication Date Title
EP0360529B1 (en) Electrostatic chuck
US4541898A (en) Method for heating
US4505790A (en) Oxygen concentration regulation
JPH02130568A (en) Ion generating device
JPS63129362A (en) Discharging device
US20090220279A1 (en) Ion generating element, charging device and image forming apparatus
JPS62141578A (en) Electrostatic discharging and charging method
JPH11317302A (en) Positive temperature coefficient thermistor element and heating device using the same
JPS6321673A (en) Discharging device
JPS63132270A (en) Discharging device
JPS6375762A (en) Electric discharge device
JPH0251186B2 (en)
JPS61191953A (en) Gas detector
JPS63129363A (en) Discharging device
JPS63159882A (en) Electrostatic discharging device
JPS63129364A (en) Discharging device
JPS63132268A (en) Discharging device
JPS63131157A (en) Electrostatic discharging device
JPH0611996Y2 (en) Electrostatic adsorption device
JPS6127570A (en) Discharge device
JPS63136060A (en) Electrifying device
JPS63159881A (en) Electrostatic discharging device
JPH0719089B2 (en) Charging device
JPH0446847A (en) Heating device for window glass
JP2001257054A (en) Electrification device