JPS63159868A - Developing method - Google Patents

Developing method

Info

Publication number
JPS63159868A
JPS63159868A JP61309446A JP30944686A JPS63159868A JP S63159868 A JPS63159868 A JP S63159868A JP 61309446 A JP61309446 A JP 61309446A JP 30944686 A JP30944686 A JP 30944686A JP S63159868 A JPS63159868 A JP S63159868A
Authority
JP
Japan
Prior art keywords
magnetic field
developer
magnetic
particles
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61309446A
Other languages
Japanese (ja)
Other versions
JP2531651B2 (en
Inventor
Yuji Sakami
裕二 酒見
Katsumi Kurematsu
克巳 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61309446A priority Critical patent/JP2531651B2/en
Publication of JPS63159868A publication Critical patent/JPS63159868A/en
Application granted granted Critical
Publication of JP2531651B2 publication Critical patent/JP2531651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

PURPOSE:To obtain an image having picture quality by allowing two maximum values of the intensity of a magnetic field in the tangential direction on the surface of a developer carrying body to exist by inserting and holding a developer and the most adjacent part of a latent image carrying body between them, and setting the magnitude of the minimum value of a magnetic field in the tangential direction of the most adjacent part, to a prescribed ratio or above of the magnitude of the maximum value. CONSTITUTION:A photosensitive drum 1, and a conductive sleeve being a developer carrying body having a magnetic field generating device on the back are provided. Also, on the surface of the sleeve 2, a developer layer in which a magnetic grain and a non-magnetic grain have been mixed is provided, a horizontal magnetic field of the magnetic field generating device of the back of the sleeve 2 is operated, and a bias voltage by a series power source of a DC 5 and an AC 6 is applied to a development interval. In this state, by forming a magnetic field distribution in the tangential direction so that two maximum values of the intensity of a magnetic field in the tangential direction on the surface of the sleeve 2 exist by inserting and holding sleeve 2 and the most adjacent part of the drum 1 between them, and magnitude of the maximum value of the intensity of a magnetic field in the tangential direction in the vicinity of the most adjacent part becomes >=90% of the maximum value, a uniform developer layer is formed at a developing position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は潜像を現像するビクトリアル・カラーにも適用
可能な現像方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a developing method for developing a latent image, which is also applicable to Victorian color.

〔従来の技術〕[Conventional technology]

従来、現像方法の一つとして、絶縁性磁性トナー又は非
磁性トナーを現像剤担持体表面に薄く塗布し、現像部に
おいてこの薄層化された現像剤の表面と潜像保持体表面
との間に空隙を形成し、この現像部に交互電界を印加し
て現像剤担持体上よりトナーを飛翔させて潜像保持体上
の静電潜像を現像する方法が特開昭55−18656号
公報に開示されている。
Conventionally, as one of the developing methods, an insulating magnetic toner or a non-magnetic toner is applied thinly to the surface of a developer carrier, and a layer is formed between the surface of this thin layer of developer and the surface of the latent image carrier in a developing section. JP-A-55-18656 discloses a method in which an electrostatic latent image on a latent image carrier is developed by forming a gap in the developing area and applying an alternating electric field to the developing section to cause the toner to fly from above the developer carrier. has been disclosed.

しかしながら、この様な現像方法には次のような問題が
あった。すなわち、現像剤担持体表面上のトナー粒子を
それぞれ確実に目的の極性に帯電しようとすると、どう
しても現像剤担持体表面上のトナ一層の厚みは薄くなっ
てしまい、ベタ黒部分の現像濃度は充分高い値が得られ
ないことである。
However, such a developing method has the following problems. In other words, if you try to reliably charge each toner particle on the developer carrier surface to the desired polarity, the thickness of the toner layer on the developer carrier surface will inevitably become thinner, and the developed density of the solid black area will not be sufficient. The problem is that high values cannot be obtained.

又、2成分現像剤を用いて、これを現像部で交互電界を
印加して現像する特開昭55−32060号公報や特開
昭55−153970号公報は、画質の向上や画像濃度
の向上には優れた効果を発揮するものと知られている。
Furthermore, Japanese Patent Application Laid-open No. 55-32060 and Japanese Patent Application Laid-open No. 153970, in which a two-component developer is used and developed by applying an alternating electric field in a developing section, improve image quality and image density. It is known to have excellent effects.

しかし、この優れた現像方法でも高速現像を行うと、現
像部へ供給される現像剤の状態がある程度変化すると、
ベタ黒部のトナー濃度不足が見られた。
However, even with this excellent developing method, when high-speed development is performed, if the state of the developer supplied to the developing section changes to some extent,
Insufficient toner density in solid black areas was observed.

このベタ黒部のトナー濃度不足は、トナーとし′て樹脂
と磁性体より形成された磁性トナーを使って現像した時
よりも、主に樹脂から形成された非磁性トナーを使って
現像した時の方がより顕著である。したがって、白黒現
像よりもカラー現像を行う時により問題となることが判
明した。
This lack of toner concentration in solid black areas is more pronounced when developing with non-magnetic toner made mainly of resin than when developing with magnetic toner made of resin and magnetic material. is more prominent. Therefore, it has been found that this problem is more problematic when performing color development than black and white development.

特にビクトリアルカラーをねらった高画質現像のために
はエツジ効果や、ベタ黒部の濃度不足は重大な問題とな
る。
In particular, for high-quality image development aiming at Victorian colors, edge effects and lack of density in solid black areas become serious problems.

そこで、現像剤担持体表面上のトナ一層の厚みを厚くす
ると、特に1成分現像ではそれぞれのトナーは目的の極
性かつ帯電量に帯電されにくくなる。このため、非画像
部にも余分なトナーが付着するばかりでなく、得られる
トナー像も貧弱な悪質な画質となった。
Therefore, when the thickness of a layer of toner on the surface of the developer carrier is increased, it becomes difficult for each toner to be charged to the desired polarity and charge amount, especially in one-component development. For this reason, not only did excess toner adhere to non-image areas, but also the resulting toner image was poor in quality.

さらに、この様な背景に鑑み、本出願人は現像方式のさ
らに優れたものとして特願昭60−1887号を出願し
た。その内容は潜像保持体と、背面に磁界発生手段を有
する現像剤担持体表面に、磁性粉を40wt%以上含有
する磁性粒子と、主に樹脂からなる非磁性粒子とが混合
された現像剤層を担持し、現像部において該現像剤担持
体背面の磁界発生手段の磁極間を潜像保持体に対向せし
め、現像剤担持体表面上の接線方向の磁界の強さを20
0ガウス以上に設定し、かつ上記現像剤層の厚みよりも
大きな現像間隙を保持し、上記現像間隙に交互電界を形
成して、磁性粒子を現像剤担持体表面に拘束しつつ、該
現像剤担持体上の現像剤層から潜像保持体へ画像領域、
非画像領域共に非磁性粒子を飛翔させる工程と、余分な
非磁性粒子を現像剤担持体に戻す工程とを交互に繰り返
えして現像を行う現像方法である。これに依れば、エツ
ジ効果が少なく、かつベタ黒濃度も充分で、均一なビク
トリアル・カラー用の現像にも適用可能な高画質な現像
像が得られる。また、交互電界を現像部に印加してもキ
ャリアである磁性粒子は潜像保持体に転移せず、常に安
定した鮮明な色の画質が得られる利点がある。
Furthermore, in view of this background, the present applicant filed Japanese Patent Application No. 1887-1987 for an even more superior developing system. The content is a developer in which magnetic particles containing 40 wt% or more of magnetic powder and non-magnetic particles mainly made of resin are mixed on the surface of a latent image carrier and a developer carrier having a magnetic field generating means on the back surface. In the developing section, the magnetic poles of the magnetic field generating means on the back surface of the developer carrier are made to face the latent image carrier, and the strength of the magnetic field in the tangential direction on the surface of the developer carrier is set to 20.
0 Gauss or more, and maintains a development gap larger than the thickness of the developer layer, and forms an alternating electric field in the development gap to restrain the magnetic particles on the surface of the developer carrier. image area from the developer layer on the carrier to the latent image carrier;
This is a developing method in which development is performed by alternately repeating the process of making non-magnetic particles fly in both non-image areas and the process of returning excess non-magnetic particles to the developer carrier. According to this, it is possible to obtain a high-quality developed image that has little edge effect, sufficient solid black density, and is applicable to uniform Victorian color development. Further, even when an alternating electric field is applied to the developing section, the magnetic particles serving as the carrier do not transfer to the latent image carrier, and there is an advantage that stable and clear color image quality can always be obtained.

ところが、この優れた現像方法でも現像剤を小粒径とし
、高画質でしかも高速画像を実現しようとすると、画像
濃度が十分ではな(なり、これを解決しようとして、交
互電界゛の強度を高めたところ、静電像担持体の表面に
磁性キャリア粒子が付着し始め、現像容器内の現像剤の
濃度が大きく変化してしまい、現像像の濃度が制御でき
ないという不都合が発生した。
However, even with this excellent development method, when trying to achieve high-quality and high-speed images by reducing the particle size of the developer, the image density was insufficient (to solve this problem, the strength of the alternating electric field was increased). However, magnetic carrier particles began to adhere to the surface of the electrostatic image carrier, causing a large change in the concentration of the developer in the developer container, resulting in the inconvenience that the density of the developed image could not be controlled.

さらに高速化にした場合も濃度を増加させる為に現像剤
担持体であるスリーブの回転数を上げる必要が生じる。
Even when the speed is increased, it is necessary to increase the rotational speed of the sleeve, which is a developer carrier, in order to increase the density.

この場合にも、回転数の増加に従って遠心力がキャリア
に働き、ドラム上にキャリアが耐着し易くなり上と同様
の問題が生じた。
In this case as well, centrifugal force acts on the carrier as the rotational speed increases, making it easier for the carrier to adhere to the drum, resulting in the same problem as above.

以上の様に従来の方式で高速高解像の画像を長期に亘っ
て得ることは非常に困難であった。
As described above, it has been extremely difficult to obtain high-speed, high-resolution images over a long period of time using conventional methods.

〔発明の目的〕[Purpose of the invention]

本発明は上述従来例の欠点を除去し、エツジ効果の少な
い、かつベタ黒濃度も充分なビクトリアル・カラーにも
適用可能な高画質で高精細な画像を長期に亘って得るこ
とが出来、しかも高速化にも充分対応出来る現像方法を
提供することにある。
The present invention eliminates the drawbacks of the above-mentioned conventional examples, and makes it possible to obtain high-quality, high-definition images over a long period of time that have little edge effect and have sufficient solid black density and can be applied to Victorian colors. Moreover, it is an object of the present invention to provide a developing method that can sufficiently handle high-speed processing.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するもので、潜像保持体と、
背面に磁界発生手段を有する現像剤担持体表面に磁性粒
子と顕画剤粒子とが混合された現像剤層を担持し、潜像
担持体との現像部において該現像剤担持体背面の磁界発
生手段の水平磁界を作用させると共に上記現像剤層の厚
みよりも大きな現像間隙を保持し、上記現像間隙に交互
電界を形成して磁性粒子を現像剤担持体表面に拘束しつ
つ潜像を現像する現像方法において、 現像剤担持体表面上の接線方向の磁界の強さの極大値が
現像剤担持体と潜像担持体の最近接部を挟んで2つ存在
し、 かつ該最近接部の近傍の接線方向の磁界の強さの極小値
の大きさが、極大値の大きさの90%以上である接線方
向の磁界強度分布を形成することを特徴とする現像方法
である。
The present invention achieves the above object, and includes a latent image holder;
A developer layer in which magnetic particles and developer particles are mixed is supported on the surface of a developer carrier having a magnetic field generating means on the back surface, and a magnetic field is generated on the back surface of the developer carrier in the development section with the latent image carrier. A horizontal magnetic field of the means is applied and a development gap larger than the thickness of the developer layer is maintained, and an alternating electric field is formed in the development gap to develop the latent image while restraining the magnetic particles on the surface of the developer carrier. In the developing method, there are two maximum values of the strength of the magnetic field in the tangential direction on the surface of the developer carrier, sandwiching the closest part between the developer carrier and the latent image carrier, and in the vicinity of the closest part. This developing method is characterized by forming a tangential magnetic field strength distribution in which the minimum value of the tangential magnetic field strength is 90% or more of the maximum value.

さらに本発明の好ましい実施例を挙げれば顕画剤粒子と
して、平均粒径が7μm以下の粒子を前記磁性粒子とし
て、平均粒径が30μm以上90μm以下の粒子を用い
て、上記水平磁界を形成する該磁界発生手段の磁極位置
での現像剤担持体表面上の垂直方向の磁界の強さの極大
値をそれぞれ800ガウス以上にし、前記最近接部近傍
の現像剤担持体表面上の接線方向の磁界の強さの極大値
を700ガウス以上にすることである。
Further, in a preferred embodiment of the present invention, the horizontal magnetic field is formed using particles with an average particle size of 7 μm or less as the developer particles and particles with an average particle size of 30 μm or more and 90 μm or less as the magnetic particles. The maximum value of the magnetic field strength in the perpendicular direction on the surface of the developer carrier at the magnetic pole position of the magnetic field generating means is set to 800 Gauss or more, respectively, and the magnetic field in the tangential direction on the surface of the developer carrier in the vicinity of the nearest portion is The maximum value of the strength is to be 700 Gauss or more.

本発明によれば、高速現像時の現像剤担持体の高速回転
による磁性粒子の静電像担持体への付着を防止し、交互
電界の電界強度を強化したことによる磁性粒子の静電像
担持体への付着をも防止でき、かぶりの無い高画質の現
像像を高速現像で達成できる。
According to the present invention, it is possible to prevent magnetic particles from adhering to an electrostatic image carrier due to high-speed rotation of a developer carrier during high-speed development, and to strengthen the electric field strength of the alternating electric field, thereby supporting electrostatic image-bearing of magnetic particles. It can also prevent adhesion to the body, and high-quality developed images without fog can be achieved with high-speed development.

尚本発明者らによると、トナー粒子の粒径を小粒径でも
体積平均で7μm以下にすると、画像を形成する相互間
のトナー粒子が都合良(潜像電位に適切に対応してかぶ
りが無(なり、特にこれを平均4μm以上6μm以下の
範囲にしてやれば交互電界下の2成分税像で、かぶりが
なく、しかも印刷に近い画像が得られることが分った。
According to the present inventors, if the particle size of the toner particles is set to 7 μm or less on a volume average even if the particle size is small, the toner particles forming an image can be arranged in a convenient manner (corresponding appropriately to the latent image potential and fogging can be prevented). In particular, it has been found that if the average value is set in the range of 4 μm or more and 6 μm or less, a two-component image under an alternating electric field can be obtained without fogging, and in addition, an image close to printing can be obtained.

ただし、この場合には濃度を上げる為に交互電界のピー
ク値の値を通常の10μmトナーを現像する場合の1゜
5〜2倍程度に上げる必要があり、画質としては良質な
ものが得られる。しかし、現像バイアスが高い為に磁性
粒子もドラムに附着し易くなり、長期に亘って現像を行
なった場合、ドラムに附着した磁性粒子がドラム表面を
傷つけてしまい画像上に口による白ヌケが発生したり、
また現像機内のキャリアの量が変化してしまう。つまり
、このトナーを用いているにもかかわらず、その効果を
得ることができず、現像剤の濃度コントロールがうまく
働かなくなり、かぶりが発生したりするという問題があ
った。本発明に実施例においてはこれらの相互の問題を
も解決するものである。
However, in this case, in order to increase the density, it is necessary to increase the peak value of the alternating electric field to about 1.5 to 2 times that when developing a normal 10 μm toner, and a good image quality can be obtained. . However, because the developing bias is high, magnetic particles tend to adhere to the drum, and if development is carried out over a long period of time, the magnetic particles attached to the drum will damage the drum surface, causing white spots on the image. or
Moreover, the amount of carrier in the developing machine changes. In other words, even though this toner is used, its effects cannot be obtained, and the density control of the developer does not work well, resulting in problems such as fogging. Embodiments of the present invention also solve these mutual problems.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using Examples.

第3図は本発明の現像法を示す適用した現像装置の概略
図である。図中、lは静電潜像保持体で、llは背面電
極、12はこの上の静電潜像保持層であり絶縁体層であ
っても電子写真感光体層であってもよい。ここでは感光
ドラム1として示す。2は現像剤担持体であり、ここで
は非磁性体からなり矢印入方向に回転する導電性スリー
ブである。3はこのスリーブの内側に固定されて設けら
れた磁界発生手段で、この例では4極の磁極を有するマ
グネットローラである。4は樹脂中に磁性粉を含有する
磁性粒子と、これより平均粒径が小さくて主に樹脂から
なる非磁性粒子(トナー)とが混合された現像剤である
。矢印B方向に回転する感光ドラムlの背面電極11と
スリーブ2との間には、直流電源5及び交流電源6によ
り現像バイアスが印加されている。
FIG. 3 is a schematic diagram of a developing device to which the developing method of the present invention is applied. In the figure, 1 is an electrostatic latent image holding member, 11 is a back electrode, and 12 is an electrostatic latent image holding layer thereon, which may be an insulating layer or an electrophotographic photoreceptor layer. Here, it is shown as a photosensitive drum 1. A developer carrier 2 is a conductive sleeve made of a non-magnetic material and rotates in the direction indicated by the arrow. Reference numeral 3 denotes a magnetic field generating means fixedly provided inside the sleeve, which in this example is a magnet roller having four magnetic poles. 4 is a developer in which magnetic particles containing magnetic powder in a resin are mixed with non-magnetic particles (toner) having a smaller average particle diameter and mainly made of resin. A developing bias is applied between the back electrode 11 of the photosensitive drum l rotating in the direction of arrow B and the sleeve 2 by a DC power source 5 and an AC power source 6.

7は弾性部材、8はトナー補給ローラで、9は現像剤層
厚規制部材であり、ここではドクターブレードを示して
いる。
7 is an elastic member, 8 is a toner supply roller, and 9 is a developer layer thickness regulating member, which is a doctor blade here.

表面に静電潜像を保有し、矢印B方向に回転する感光ド
ラムlに対向して、スリーブ2を100〜800μm好
ましくは200〜500μmの間隙で設置する。
A sleeve 2 is placed with a gap of 100 to 800 μm, preferably 200 to 500 μm, facing a photosensitive drum 1 having an electrostatic latent image on its surface and rotating in the direction of arrow B.

表面に複数の凹部を有するトナー補給ローラ8は、感光
ドラム1の駆動ギアにかみ合ったスリーブ2の駆動ギア
の回動に伴ってゆっくり回転し、ホッパ一部9内にある
非磁性粒子(トナー)Tを弾性部材7により少しずつ下
の現像室内に落とし、トナー′rを供給する。
The toner replenishing roller 8, which has a plurality of recesses on its surface, rotates slowly as the drive gear of the sleeve 2 meshes with the drive gear of the photosensitive drum 1, and collects non-magnetic particles (toner) in the hopper part 9. T is dropped little by little into the lower developing chamber by the elastic member 7, and toner 'r is supplied.

現像室に供給されたトナーTは、内部にマグネットロー
ラ3を有するスリーブ2の表面近くに存在する磁性粒子
M(樹脂中に磁性粉が含有された粒子)と混合される。
The toner T supplied to the developing chamber is mixed with magnetic particles M (particles containing magnetic powder in resin) present near the surface of a sleeve 2 having a magnet roller 3 inside.

スリーブ2が矢印入方向に回動することによって、スリ
ーブ表面の現像剤4は矢印Cのように動き、この動きに
よって供給されたトナーは徐々にこの現像剤4の内部に
入ることによって混合される。
As the sleeve 2 rotates in the direction of the arrow, the developer 4 on the sleeve surface moves in the direction of arrow C, and the toner supplied by this movement gradually enters the inside of the developer 4 and is mixed. .

混合された現像剤4は、磁極N1とS、との磁極間に対
向してスリーブ2表面から約100〜550μm1好ま
しくは150〜450μm離して固定された非磁性体に
より形成されたドクターブレードlOによって適宜な厚
さ、例えば100〜600μm1好ましくは150〜5
00μmに規制され、スリーブ2の表面に塗布される。
The mixed developer 4 is transferred by a doctor blade 10 formed of a non-magnetic material and fixed at a distance of about 100 to 550 μm, preferably 150 to 450 μm, from the surface of the sleeve 2, facing between the magnetic poles N1 and S. Appropriate thickness, for example 100 to 600 μm, preferably 150 to 5
00 μm and is applied to the surface of the sleeve 2.

この現像剤層厚は現像領域におけるドラム・スリーブ間
隙より小さく、従って現像剤層とドラム表面とは静止状
態で非接触である。塗布された現像剤4中の非磁性粒子
(トナー)Tは磁性粒子Mとの摩擦やスリーブ2との摩
擦で摩擦帯電され、この状態で、矢印入方向に回転する
スリーブ2との間の静電気力による付着及び、磁性粒子
との間の静電気力による付着により、磁性粒子と共にス
リーブ2の回転に伴ってスリーブ2に付着したまま現像
領域まで運ばれる。
This developer layer thickness is smaller than the drum-sleeve gap in the development area, so the developer layer and the drum surface are stationary and non-contact. The non-magnetic particles (toner) T in the applied developer 4 are triboelectrically charged due to friction with the magnetic particles M and friction with the sleeve 2, and in this state, static electricity is generated between the sleeve 2 rotating in the direction of the arrow. Due to the adhesion caused by force and the adhesion caused by electrostatic force between the magnetic particles and the magnetic particles, the magnetic particles are transported to the development area while remaining attached to the sleeve 2 as the sleeve 2 rotates.

現像領域はスリーブとドラムの最近接部を中心に現像剤
搬送上流側と下流側に分布すると考えられる。
It is thought that the development area is distributed on the upstream and downstream sides of the developer conveyance centering on the closest portion between the sleeve and the drum.

現像領域、では、感光ドラムlに対してスリーブ2内部
のマグネットローラ3の磁極N、と磁極S、との磁極間
が対向して配置されている。このため、スリーブ2表面
の現像剤は、現像領域で穂立ちすることなく、均一な層
厚となっている。従って、感光ドラム表面12とスリー
ブ2との間は、現像剤層とドラム表面とを非接触に保っ
たままで、例えば約1 m m以上も離す必要はない。
In the developing area, magnetic poles N and S of the magnet roller 3 inside the sleeve 2 are arranged to face each other with respect to the photosensitive drum l. Therefore, the developer on the surface of the sleeve 2 does not form spikes in the development area and has a uniform layer thickness. Therefore, it is not necessary to separate the photosensitive drum surface 12 and the sleeve 2 by, for example, about 1 mm or more while keeping the developer layer and the drum surface out of contact.

ここで重要なことは、ドクターブレード10によって規
制された現像剤が現像位置に到達するまでに磁極位置を
通過しない様にドクターブレードと現像位置を同一の異
なる極性の磁極対がなす極間に設けることである。これ
は、磁界が水平成分を多く有している領域を意味する。
What is important here is that the doctor blade and the development position are set between the magnetic pole pairs of the same and different polarities so that the developer regulated by the doctor blade 10 does not pass through the magnetic pole position before reaching the development position. That's true. This means a region where the magnetic field has many horizontal components.

ドクターブレードを通過した現像剤がもし磁極位置を通
過すると、この磁極位置において一度現像剤が穂立ちし
てしまい、現像剤層としてほぐされたものになり層厚を
現像位置で薄くすることが難しい。これを解決するため
に、感光ドラムとスリーブとの間を広げて現像部で非接
触条件を保とうとすると、かえって現像部での現像剤の
拘束力が小さくなり キャリア付着と現像不良を招(。
If the developer that has passed through the doctor blade passes through the magnetic pole position, the developer will stand up once at this magnetic pole position and become a loosened developer layer, making it difficult to reduce the layer thickness at the development position. . In order to solve this problem, trying to maintain a non-contact condition in the developing section by widening the space between the photosensitive drum and the sleeve will actually reduce the binding force of the developer in the developing section, resulting in carrier adhesion and poor development.

また、一度穂立つことにより現像剤層に穂立ちムラが生
じそれが画像の特にベタ黒部にムラとして生じ、著しく
画像の印象を悪(してしまうからである。
In addition, once the toner stands up, it causes uneven blistering in the developer layer, which occurs as unevenness in the image, especially in the solid black areas, which significantly deteriorates the impression of the image.

さらに好ましいことは、層を均一化させる為にドクター
ブレードIOの規制位置がその上流側の磁極位置の中心
からの角度θ(第3図)で5°以上現像位置寄りに設け
ることが望ましい。
More preferably, in order to make the layer uniform, the regulation position of the doctor blade IO is preferably provided at an angle θ (FIG. 3) of 5° or more closer to the development position from the center of the upstream magnetic pole position.

以上の条件を満たす様にするには、N極性の磁極N、と
S極性の磁極S1との磁極間が少なくとも45°以上、
好ましくは60°以上開いていることが好ましい条件で
ある。
In order to satisfy the above conditions, the magnetic pole distance between the N-polarity magnetic pole N and the S-polarity magnetic pole S1 must be at least 45° or more.
The preferred condition is that the opening is preferably 60° or more.

さらに本発明の方式を用いる特徴として、高画質の現像
を行なう為に通常使用しているトナーよりも、粒径の小
さい平均粒子径7μm以下のトナーを使用する事が効果
的である。尚、その場合は濃度を充分に上げるために現
像時の交流電源のバイアスを通常よりも1.5〜2倍に
する必要があった。
Further, as a feature of the method of the present invention, it is effective to use a toner having an average particle diameter of 7 μm or less, which is smaller in particle size than the toner normally used for high-quality image development. In this case, in order to sufficiently increase the density, it was necessary to increase the bias of the AC power source during development by 1.5 to 2 times the normal bias.

この場合に、高速現像の遠心力も考慮して良好な現像を
行なうためには現像位置でのスリーブ表面上の水平方向
の磁界成分は700ガウス以上必要であった。これを実
現させる為にはN、、S、でのスリーブ表面上の垂直方
向の磁界の強さは実験により、およそ800ガウス以上
必要であった。もしこの水平方向磁力がこれより弱い場
合は、キャリアがドラムに耐着してしまい、画像を乱し
たり、また現像機内部のキャリアとトナーのバランスが
乱れかぶりが生じる、さらにドラムかキャリアにより傷
つき耐久性がない等の問題が生じた。従って、上記条件
が本発明の目的を達成するためには重要であることが理
解されよう。
In this case, in order to perform good development, taking into account the centrifugal force of high-speed development, the horizontal magnetic field component on the sleeve surface at the development position was required to be 700 Gauss or more. In order to achieve this, the strength of the magnetic field in the vertical direction on the sleeve surface at N, S, was determined by experiment to be approximately 800 Gauss or more. If this horizontal magnetic force is weaker than this, the carrier will stick to the drum, disturbing the image, the balance between the carrier and toner inside the developing machine will be disturbed, causing fogging, and the drum or carrier may be damaged. Problems such as lack of durability arose. Therefore, it will be understood that the above conditions are important for achieving the purpose of the present invention.

ところで、これらの条件を満たす様に等方性の磁石を着
磁することは全(無理ではないが非常に高価である。そ
して、小型化を望まれる現像装置においては、所望の磁
界発生手段である磁極構成が得らないという場合もある
ことが判明した。このとき、等方性磁石に異方性磁石を
埋め込んで所望の磁力を出す事は可能であるが、この場
合垂直方向の磁界の強さが磁極の位置に集中する為に現
像剤の現像位置周辺部での搬送がうまくいかず、現像位
置で均一化したトナ一層が微妙に変化している場合があ
ることがあった。この点について発明者達はさらに詳し
く検討したところ、さらに好ましい条件を解明できた。
By the way, magnetizing an isotropic magnet to satisfy these conditions is extremely expensive (though not impossible).In addition, in a developing device that is desired to be miniaturized, it is difficult to magnetize an isotropic magnet to satisfy these conditions. It has been found that there are cases in which a certain magnetic pole configuration cannot be obtained.In this case, it is possible to embed an anisotropic magnet in an isotropic magnet to generate the desired magnetic force, but in this case, the perpendicular magnetic field Because the strength is concentrated at the position of the magnetic pole, the developer is not conveyed well around the development position, and the uniform toner layer at the development position may sometimes change slightly. When the inventors studied this point in more detail, they were able to elucidate even more preferable conditions.

第2図は本発明に使用したマグネットロール上の磁界の
分布図であり、一般にスリーブ表面上の磁界の強さを表
わすのに使われている垂直磁界成分(磁極の強さ)を表
わしたものである。図ではドラムとスリーブの中心を結
んだ水平線を横軸として、ドラム対向部を00  とし
ている。この垂直成分とはスリーブ2の表面に垂直な方
向に磁界成分を示し、第2図はこの分布をスリーブ周囲
に亘って示した。
Figure 2 is a distribution diagram of the magnetic field on the magnet roll used in the present invention, and shows the perpendicular magnetic field component (magnetic pole strength), which is generally used to represent the strength of the magnetic field on the sleeve surface. It is. In the figure, the horizontal axis connecting the centers of the drum and sleeve is taken as the horizontal axis, and the part facing the drum is designated as 00. This vertical component indicates a magnetic field component in a direction perpendicular to the surface of the sleeve 2, and FIG. 2 shows this distribution over the circumference of the sleeve.

この図から磁極N1とSlの磁極間の垂直磁界成分はO
ガウスになっていることが分かる。
From this figure, the perpendicular magnetic field component between the magnetic poles N1 and Sl is O
You can see that it is Gaussian.

この図からだけではスリーブ表面上の垂直方向の磁界の
分布しか分からない。そこで第1図に、第2図の角度座
標軸を固定し、現像剤担持体2であるスリーブ表面上の
水平方向の磁界成分を表わした磁界分布図を示す。
From this figure alone, only the distribution of the magnetic field in the vertical direction on the sleeve surface can be seen. Therefore, FIG. 1 shows a magnetic field distribution diagram showing horizontal magnetic field components on the surface of the sleeve, which is the developer carrier 2, with the angular coordinate axes in FIG. 2 fixed.

第1図で示す実施例の場合N、、S、の磁極間で接線方
向の磁力の極大値が、スリーブのドラム最近接部を挟ん
で2つ存在する。
In the embodiment shown in FIG. 1, there are two maximum values of the magnetic force in the tangential direction between the magnetic poles N, S, with the sleeve closest to the drum in between.

この場合極大値の間に極小値が存在する。通常はこの様
な場合にはスリーブ上の現像剤は接線方向の水平磁力の
極大値近傍の部分に強く吸着される傾向がある。例えば
第4図、第5図に示した様な磁界分布の場合にはその現
象が顕著である。第4図は垂直磁界成分の分布図で、第
5図はその磁石の水平方向の磁界成分の分布図である。
In this case, there are local minimum values between the local maximum values. Normally, in such a case, the developer on the sleeve tends to be strongly attracted to a portion near the maximum value of the horizontal magnetic force in the tangential direction. For example, this phenomenon is remarkable in the case of magnetic field distributions as shown in FIGS. 4 and 5. FIG. 4 is a distribution diagram of the vertical magnetic field component, and FIG. 5 is a distribution diagram of the horizontal magnetic field component of the magnet.

第4図、第5図の様な磁界分布を持つ磁石を使った場合
には、スリーブを回転させて現像剤を搬送すると、現像
剤は現像位置の現像剤搬送上流側の水平磁力の極大値か
ら、現像剤搬送下流側の極大値に飛び移り、その為に現
像位置で均一な現像剤層が得られない。数多くの実験の
結果、現像剤層が現像位置で均一な増を得るには、第4
図に示している様に、2つの極大値と現像位置近傍の極
小値との差が極大値の絶対値の大きさの10%以内に設
定することが必要であることが分かった。さらに、本実
施例の第4図の様に現像位置中心(ドラム、スリーブ最
近接部)を挟む形で水平磁界の極大値が存在すると、搬
送が安定した場合には、従来の水平磁界の極大値が一つ
の場合の磁石よりもさらに均一なベタ濃度が得られた。
When using a magnet with a magnetic field distribution like that shown in Figures 4 and 5, when the sleeve is rotated to convey the developer, the developer will reach the maximum horizontal magnetic force on the upstream side of the developer conveyance at the development position. Then, the developer jumps to the maximum value on the downstream side of the developer transport, and as a result, a uniform developer layer cannot be obtained at the development position. As a result of numerous experiments, in order to obtain a uniform increase in the developer layer at the development position, the fourth
As shown in the figure, it has been found that it is necessary to set the difference between the two maximum values and the minimum value near the development position to within 10% of the magnitude of the absolute value of the maximum value. Furthermore, as shown in FIG. 4 of this embodiment, if the maximum value of the horizontal magnetic field exists between the center of the development position (the part closest to the drum and sleeve), when the conveyance is stable, the maximum value of the horizontal magnetic field A more uniform solid density was obtained than with a magnet with a single value.

この事は次の様に説明出来る。第6図、第7図には従来
の磁石の磁界成分の分布図を示す。。第6図は垂直磁界
成分で、第7図は水平磁界成分の分布図である。第7図
、第8図に示す様な磁界分布の場合には、現像剤の搬送
性は安定していて、さらにキャリアに対する拘束力も強
い為にキャリア付着もない良質な画像が得られる。しか
しながら現像位置でのキャリアに対する拘束力が強い為
に、ベタ画像を得ようとすると、均一性について少し不
充分だった。しかしながら本発明の特徴である第1図に
示す磁界分布を持つ磁石を使用した場合には、現像位置
で搬送性は安定しているがキャリアの拘束力は弱まって
いる。
This can be explained as follows. FIGS. 6 and 7 show distribution diagrams of magnetic field components of conventional magnets. . FIG. 6 shows the distribution of the vertical magnetic field component, and FIG. 7 shows the distribution of the horizontal magnetic field component. In the case of the magnetic field distribution as shown in FIGS. 7 and 8, the conveyance of the developer is stable, and furthermore, since the binding force on the carrier is strong, a high-quality image without carrier adhesion can be obtained. However, since the restraining force on the carrier at the development position is strong, uniformity was somewhat insufficient when trying to obtain a solid image. However, when a magnet having the magnetic field distribution shown in FIG. 1, which is a feature of the present invention, is used, the conveying performance is stable at the development position, but the binding force of the carrier is weakened.

その為に、現像バイアスを印加すると、キャリアの表面
だけでなく、キャリアの内側のスリーブ表面近(にある
トナーも現像される。その為にベタ濃度は均一なものが
得られる。さらに現像終了後には、現像位置下流側の水
平磁界の極大値の拘束力によりキャリアは拘束される為
に、キャリアが付着することもない。
Therefore, when a developing bias is applied, not only the surface of the carrier but also the toner near the sleeve surface inside the carrier is developed. Therefore, a uniform solid density can be obtained. Since the carriers are restrained by the restraining force of the maximum value of the horizontal magnetic field downstream of the development position, the carriers do not adhere.

以上説明した様に、現像位置(スリーブのドラム最近接
位置)を挟んで水平磁界成分の極大値が2つ存在する様
にし、さらに現像位置近傍の極小値の大きさを極大値の
90%以上にすることにより現像剤の搬送性を安定させ
、さらにベタ濃度が充分な均一な画像が得られることが
分かった。
As explained above, there are two maximum values of the horizontal magnetic field component sandwiching the development position (the position closest to the drum of the sleeve), and the minimum value near the development position is set to be 90% or more of the maximum value. It has been found that by using this method, the conveyance of the developer can be stabilized, and a uniform image with sufficient solid density can be obtained.

次に現像時には現像領域に交互電界を形成するめ、スリ
ーブ2と感光ドラムlの背面電極11の間に交互電圧を
印加して現像を行なう。このとき直流電源5による直流
電圧と、交流電源6による交流電圧を重畳して現像を行
なう。またバイアス電圧を用いるのが最適である。また
交流電圧のみをバイアスとして用いてもよい。交流電圧
は必ずしも正弦波である必要はなく、矩形波であっても
よい。
Next, during development, alternating voltages are applied between the sleeve 2 and the back electrode 11 of the photosensitive drum 1 to form an alternating electric field in the developing area. At this time, the DC voltage from the DC power supply 5 and the AC voltage from the AC power supply 6 are superimposed to perform development. Also, it is optimal to use a bias voltage. Alternatively, only an alternating current voltage may be used as a bias. The alternating current voltage does not necessarily have to be a sine wave, but may be a rectangular wave.

用いる交流のピーク対ピーク値はVp−p=200〜−
I K V 、周波数はf = 100〜5 K Hz
がよい。
The peak-to-peak value of the AC used is Vp-p=200~-
I K V , the frequency is f = 100 ~ 5 K Hz
Good.

〔実施例I] lF#J像電位像電位子600v1背景電位V がOV
の時、現像バイアス電圧としてピーク対ピーク値too
ovpp、周波数1.6 K Hzの交流電圧に+15
0Vの直流電圧を重畳して現像を行なった。用いた非磁
性粒子は熱可塑性樹脂(ポリスチレン)を主成分とした
第8図(b)に示す粒径の分布を持つトナーであり、磁
性粒子に対して負極性に帯電する粒子である。正極性の
トナーを用い、直流電圧を適宜選べば、反転現像も行な
える。磁性粒子はスチレン・アクリル・アミノアクリル
共重合体樹脂を主成分とした樹脂中にマグネタイト(F
e304)の磁性粉を75重量%混練し、粉砕して作っ
た個数平均粒径50μmの粒子を用いた。なおこの二成
分の混合現像剤の中に帯電系列から見て2つの粒子の帯
電系列の間に位置するシリカ粒子を1重■%以下、混入
して用いると、より良い画質が得られる。
[Example I] 1F#J image potential image potential 600v1 background potential V is OV
When , the peak-to-peak value too is the developing bias voltage.
ovpp, +15 to AC voltage with frequency 1.6 KHz
Development was carried out by superimposing a DC voltage of 0V. The non-magnetic particles used are toner particles containing thermoplastic resin (polystyrene) as a main component and having a particle size distribution shown in FIG. 8(b), and are particles that are negatively charged with respect to magnetic particles. Reversal development can also be performed by using positive polarity toner and selecting an appropriate DC voltage. The magnetic particles contain magnetite (F
Particles having a number average particle diameter of 50 μm were used by kneading and pulverizing 75% by weight of magnetic powder of e304). Better image quality can be obtained by mixing in this two-component mixed developer silica particles located between the two particles in terms of charging series in an amount of 1 weight % or less.

上記現像バイアス電圧を印加すると、スリーブの電位が
負極性の電圧位相で閾値を越えると、負極性に帯電して
いる非磁性粒子は、少な(ともドラムlとスリーブ2と
の最近接部では画像領域でも非画像領域(画像背景部)
でもスリーブ2上の現像剤層から感光ドラムlへ飛翔す
る。
When the above development bias voltage is applied and the potential of the sleeve exceeds the threshold value in the negative voltage phase, the number of negatively charged non-magnetic particles (at the closest part between the drum L and the sleeve 2) Even in areas, non-image areas (image background)
However, it flies from the developer layer on the sleeve 2 to the photosensitive drum l.

しかし、上記とは逆極性の位相では、少なくとも余分な
非磁性粒子は逆転移してスリーブへ戻る。
However, in a phase of opposite polarity to the above, at least the excess non-magnetic particles undergo a reverse transition and return to the sleeve.

この工程を複数回繰り返した後、ドラムとスリーブの間
隙が広がって交互電界が弱まって飛翔がなくなり、現像
が終了する。交互電界を弱めるためには印加する電圧を
弱めるようにしてもよい。
After repeating this process several times, the gap between the drum and the sleeve widens, the alternating electric field weakens, the flying particles disappear, and development ends. In order to weaken the alternating electric field, the applied voltage may be weakened.

ここで大切なことは、磁性粒子を現像後スリーブ2の上
の現像剤層から感光ドラムlへ飛翔し転移させないこと
である。磁性粒子が転移すると、現像装置内の磁性粒子
が徐々に無(なってしまい、現像剤中の磁性粒子の数と
非磁性粒子の数の比が著しく(ずれてしまうからである
。この比(トナー/磁性数子)が著しくくずれると、背
景カブリの原因となる。そこで、磁性粒子を磁力によっ
てスリーブ表面上に拘束することが重要である。
What is important here is to prevent the magnetic particles from flying and transferring from the developer layer on the sleeve 2 to the photosensitive drum 1 after development. This is because when the magnetic particles transfer, the magnetic particles in the developing device gradually disappear, causing a significant shift in the ratio between the number of magnetic particles and the number of non-magnetic particles in the developer. If the toner/magnetic particles are significantly distorted, it will cause background fog.Therefore, it is important to restrain the magnetic particles on the sleeve surface by magnetic force.

さらに大切なことは、感光ドラムlとスリーブ2との距
離を離しすぎてぼけた画質にしないことである。現像領
域でドラムに磁極が対向していると、ブラシが穂立つの
でドラム・スリーブ間の距離を小さくすることが難しい
What is more important is that the distance between the photosensitive drum 1 and the sleeve 2 is not too large, resulting in blurred image quality. If the magnetic poles face the drum in the developing area, the brushes will stand up, making it difficult to reduce the distance between the drum and the sleeve.

このため、ドラム・スリーブ間の距離を100〜800
μm1好ましくは200〜500μmに設定できるよう
、現像領域ではドラムに対してマグネットローラ3の磁
極間(N、とS、との間)を対向させることが重要であ
る。
For this reason, the distance between the drum and sleeve should be set at 100 to 800.
It is important that the magnetic poles (between N and S) of the magnet roller 3 face the drum in the developing area so that μm1 can be preferably set to 200 to 500 μm.

本実施例ではスリーブ・ドラム間を300μm1現像領
域の現像剤層厚200μmとし、現像スリーブ表面上の
磁石の垂直、水平方向の磁力分布が第2図、第1図に示
す様な磁石を使用し、前記バイアスで現像を行なった所
、カブリのない良質な画像が安定して得られた。
In this example, the thickness of the developer layer in one developing area of 300 μm is set between the sleeve and the drum, and the magnetic force distribution in the vertical and horizontal directions on the surface of the developing sleeve is as shown in FIGS. 2 and 1. When development was carried out using the bias described above, a good quality image without fogging was stably obtained.

またトナーとして、平均粒径は上記実施例と同一で、樹
脂中に磁性粒子を含んだ磁性粉を使用したが、この場合
も良質な画像が得られた。
Further, as a toner, magnetic powder containing magnetic particles in a resin and having the same average particle diameter as in the above example was used, and good quality images were also obtained in this case.

上記の磁性キャリア粒子の粒径は平均30μm以上で平
均90μm以下が良い。また、磁性粒子の磁性粉含有率
は50重量%以」二が好ましい。磁性粒子全体が磁性体
で形成されているものも使用できるが絶縁性を奏するよ
うに樹脂のような絶縁材料を含むことが好ましい。
The particle size of the magnetic carrier particles described above is preferably 30 μm or more on average and 90 μm or less on average. Further, the magnetic powder content of the magnetic particles is preferably 50% by weight or more. Although it is possible to use magnetic particles in which the entire magnetic particles are made of a magnetic material, it is preferable that the magnetic particles contain an insulating material such as a resin so as to exhibit insulation properties.

また磁性体を核として、その周囲に樹脂を被覆したもの
は、球形の粒子とし易く、かつトリポ帯電電荷が均一に
付与できる。また磁性粒子を構成している樹脂に顔料や
染料等の荷電制御剤を混入して、非磁性粒子(トナー)
を目的の極性かつ帯電量に帯電できるようにすると、よ
り良い高画質の現像が可能となる。
Further, particles having a magnetic core as a core and a resin coating around the core can easily be formed into spherical particles, and can be uniformly charged with tripostatic charges. In addition, charge control agents such as pigments and dyes are mixed into the resin that makes up the magnetic particles to create non-magnetic particles (toner).
By making it possible to charge the toner to the desired polarity and charge amount, better high-quality image development becomes possible.

更に、トナーと磁性粒子の混合比が15wt%〜45w
t%の非常に広い範囲で地力ブリのない、現像濃度の高
い画像を得ることができた。したがって、トナー濃度の
制御が容易になる利点がある。混合比が15wt%以下
になると現像濃度が薄くなり、また45wt%以上にな
ると地力ブリが生じて好ましい結宋が得られない場合も
見られた。
Furthermore, the mixing ratio of toner and magnetic particles is 15 wt% to 45 w.
It was possible to obtain images with high developed density and no blur over a very wide range of t%. Therefore, there is an advantage that the toner concentration can be easily controlled. When the mixing ratio is less than 15 wt %, the developed density becomes thinner, and when it is more than 45 wt %, soil blurring occurs, and there have been cases in which a desirable density cannot be obtained.

なお、第3図の説明ではスリーブ2を矢印式方向に回転
させたが、矢印へとは逆方向に回転させても良好な画質
が得られた。
In the explanation of FIG. 3, the sleeve 2 was rotated in the direction indicated by the arrow, but good image quality was obtained even when the sleeve 2 was rotated in the opposite direction to the arrow.

〔実施例2〕 感光ドラムlとスリーブ2との距離を300μmに設定
し、現像剤層の厚さを感光ドラムに最も接近する位置に
おいて200μmとなるようにドクターブレードで規制
した。現像剤には第8図(a)に示す粒径分布の非磁性
粒子と磁性粒子を混合したものを用い、非磁性粒子の濃
度比は15wt%にした。
[Example 2] The distance between the photosensitive drum 1 and the sleeve 2 was set to 300 μm, and the thickness of the developer layer was regulated with a doctor blade to be 200 μm at the position closest to the photosensitive drum. The developer used was a mixture of non-magnetic particles and magnetic particles having the particle size distribution shown in FIG. 8(a), and the concentration ratio of the non-magnetic particles was 15 wt%.

なお、磁性粒子中の磁性粉の含有率は70wt%にし、
平均粒径50μmの粒子を用いた。更に、磁極の配置は
実施例1と同様のものを使用した。
In addition, the content of magnetic powder in the magnetic particles is 70 wt%,
Particles with an average particle size of 50 μm were used. Furthermore, the same arrangement of magnetic poles as in Example 1 was used.

かかる条件下で、画像部の潜像電位VDが負極性の一6
00V、背景電位vLがOvの時、非磁性粒子(トナー
)には正極性に帯電する粒子を用い、現像バイアス電圧
はV p −p = 1800 V 、 f = 4 
、0 K Hz (7)交流電圧に直流電圧−150V
を重畳して現像を行Vし なったところ、画像部(≠芋;)には比磁性粒子のみが
飛翔転移し、非画像部には非磁性粒子も磁性粒子も付着
しない、地力ブリのない良好な画像が得られた。
Under such conditions, the latent image potential VD of the image area has negative polarity.
00V, when the background potential vL is Ov, positively charged particles are used as the non-magnetic particles (toner), and the developing bias voltage is V p -p = 1800 V, f = 4.
, 0 KHz (7) DC voltage -150V to AC voltage
When I superimposed it and did not develop it, only the specific magnetic particles flew and transferred to the image area (≠ potato;), and neither non-magnetic particles nor magnetic particles adhered to the non-image area, and there was no soil blurring. A good image was obtained.

この場合トナーの粒径が小さくなった為にトナーと磁性
粒子の混合比の適正値も10wt%〜25wt%の範囲
に変化した。トナーと磁性粒子の混合比の適正値はトナ
ーと磁性粒子の粒径の比でそのつど決定される。
In this case, since the particle size of the toner became smaller, the appropriate value of the mixing ratio of toner and magnetic particles also changed to a range of 10 wt% to 25 wt%. The appropriate value of the mixing ratio of toner and magnetic particles is determined in each case by the ratio of the particle sizes of toner and magnetic particles.

現像剤として小粒径のものを使用した為に画像は、きめ
細かく解像度も高く印刷に近いものが得られる。またバ
イアス電圧も高いが、磁力が強い為にキャリアがドラム
に耐着することなく長期に亘って、安定して高精細の画
像が得られた。
Since a developer with a small particle size is used, images with fine detail and high resolution can be obtained that are close to printed images. Although the bias voltage was high, the magnetic force was strong, so the carrier did not stick to the drum and high-definition images could be stably obtained over a long period of time.

以上の説明は、非接触現像について述べたが接触させて
も、良好な画像が得られた。但しこの場合良質な画像を
得るトナーと磁性磁子のC昆合比の範囲が非接触より狭
くなるので、安定して画像を得ることは出来なくはない
が非常に難しかった。
Although the above explanation was about non-contact development, good images were obtained even with contact development. However, in this case, the range of the C ratio between the toner and the magnetic particles to obtain a good quality image is narrower than in the non-contact method, so it is very difficult to obtain a stable image, although it is not impossible.

向の磁界の強さの極大値が現像剤担持体と潜像担持体の
最近接部を挟ん、2つ存在し、かつ該最近接部の近傍の
接線方向の磁界の強さの極小値の大きさが、極大値の大
きさの909石以上になる様に接線方向の磁界強度分布
を形成することにより、均一な現像剤層を現像位置に形
成出来、はけ目がなくl\夕濃度も均一な良質な画像が
得られた。
There are two maximum values of the magnetic field strength in the tangential direction, sandwiching the closest part between the developer carrier and the latent image carrier, and a minimum value of the magnetic field strength in the tangential direction near the closest part. By forming the magnetic field strength distribution in the tangential direction so that the size is 909 stones or more, which is the maximum value, a uniform developer layer can be formed at the development position, and there is no edge and the density is even. A uniform, high-quality image was also obtained.

さらに好ましくは、水平磁界を形成する、該磁界発生手
段の磁極位置での現像剤担持体表面上の垂直方向の磁界
の強さの極大値をそれぞれ800ガウス以上にし前記最
近接部近傍の現像剤担持体表面上の接線方向の磁界の強
さを700ガウス以上にすることによりトナー粒子が小
粒径でも長期に亘って安定した良質の画像が高速で得ら
れる。
More preferably, the maximum value of the strength of the vertical magnetic field on the surface of the developer carrier at the magnetic pole position of the magnetic field generating means that forms the horizontal magnetic field is set at 800 Gauss or more, respectively, so that the developer near the nearest portion By setting the strength of the magnetic field in the tangential direction on the surface of the carrier to 700 Gauss or more, stable, high-quality images can be obtained at high speed over a long period of time even if the toner particles have a small particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の接線方向磁界分布を示す説明図
、第2図は第1図の垂直方向磁界分布を示す説明図、第
3図は第1図、第2図の磁界分布を形成し、本発明を適
用した現像装置の説明図、第4図乃至第7図は本発明に
至った経緯を説明するための説明図で、第4図、第6図
はマグネットローラの垂直方向の磁界分布図、第5図、
第7図はマグネットローラの水平方向の磁界分布図、第
8図(a)、第8図(b)  はそれぞれ使用したトナ
ー粒径の体積分布図(順に7μm以下、7μmより大)
である。 図において、lは感光ドラム、2はスリーブ、3はマグ
ネットローラ、4は現像剤、5,6は現像バイアス電源
、lOはドクターブレードを表わす。 ト弁3位雀 トサー(白、%
Fig. 1 is an explanatory diagram showing the tangential magnetic field distribution of the embodiment of the present invention, Fig. 2 is an explanatory diagram showing the perpendicular magnetic field distribution of Fig. 1, and Fig. 3 is an explanatory diagram showing the magnetic field distribution of Figs. 1 and 2. 4 to 7 are explanatory diagrams for explaining the circumstances leading to the present invention, and FIGS. 4 and 6 show the vertical direction of the magnetic roller. Magnetic field distribution diagram, Figure 5,
Figure 7 is a magnetic field distribution diagram in the horizontal direction of the magnet roller, and Figures 8 (a) and 8 (b) are volume distribution diagrams of the toner particle diameters used (7 μm or less and larger than 7 μm, respectively).
It is. In the figure, 1 is a photosensitive drum, 2 is a sleeve, 3 is a magnet roller, 4 is a developer, 5 and 6 are development bias power supplies, and 10 is a doctor blade. Toben 3rd place sparrow Tosa (white,%

Claims (3)

【特許請求の範囲】[Claims] (1)潜像保持体と、背面に磁界発生手段を有する現像
剤担持体表面に磁性粒子と顕画剤粒子とが混合された現
像剤層を担持し、潜像保持体との現像部において該現像
剤担持体背面の磁界発生手段の水平磁界を作用させ、上
記現像間隙に交互電界を形成して磁性粒子を現像剤担持
体表面に拘束しつつ潜像を現像する現像方法において、
現像剤担持体表面上の接線方向の磁界の強さの極大値が
現像剤担持体と潜像担持体の最近接部を挟んで2つ存在
し、かつ該最近接部近傍の接線方向の磁界の強さの極小
値の大きさが極大値の大きさの90%以上である接線方
向の磁界強度分布を形成することを特徴とする現像方法
(1) A developer layer containing a mixture of magnetic particles and developer particles is carried on the surface of a developer carrier having a latent image carrier and a magnetic field generating means on the back surface, and in a developing section with the latent image carrier. A developing method in which a horizontal magnetic field from a magnetic field generating means on the back side of the developer carrier is applied to form an alternating electric field in the development gap to develop a latent image while restraining magnetic particles on the surface of the developer carrier,
There are two maximum values of the strength of the magnetic field in the tangential direction on the surface of the developer carrier, sandwiching the closest part between the developer carrier and the latent image carrier, and the magnetic field in the tangential direction near the nearest part. A developing method characterized by forming a tangential magnetic field strength distribution in which the minimum value of the intensity is 90% or more of the maximum value.
(2)現像剤層の厚みより、現像間隙が大きい特許請求
の範囲第1項記載の現像方法。
(2) The developing method according to claim 1, wherein the development gap is larger than the thickness of the developer layer.
(3)上記顕画剤粒子として平均粒径が7μm以下の粒
子を、前記磁性粒子として平均粒径が30μm以上90
μm以下の粒子を用いて、 上記水平磁界を形成する該磁界発生手段の磁極位置での
現像剤担持体表面上の垂直方向の磁界の強さの極大値を
それぞれ800ガウス以上で、前記最近接部の現像剤担
持体表面上の接線方向の磁界の強さの極大値を700ガ
ウス以上である特許請求の範囲第1項記載の現像方法。
(3) Particles with an average particle size of 7 μm or less are used as the developer particles, and particles with an average particle size of 30 μm or more are used as the magnetic particles.
The maximum value of the strength of the vertical magnetic field on the surface of the developer carrier at the magnetic pole position of the magnetic field generating means for forming the horizontal magnetic field is set to 800 Gauss or more using particles of .mu.m or less, respectively, to the nearest neighbor. The developing method according to claim 1, wherein the maximum value of the strength of the magnetic field in the tangential direction on the surface of the developer carrier is 700 Gauss or more.
JP61309446A 1986-12-24 1986-12-24 Development method Expired - Fee Related JP2531651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309446A JP2531651B2 (en) 1986-12-24 1986-12-24 Development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309446A JP2531651B2 (en) 1986-12-24 1986-12-24 Development method

Publications (2)

Publication Number Publication Date
JPS63159868A true JPS63159868A (en) 1988-07-02
JP2531651B2 JP2531651B2 (en) 1996-09-04

Family

ID=17993097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309446A Expired - Fee Related JP2531651B2 (en) 1986-12-24 1986-12-24 Development method

Country Status (1)

Country Link
JP (1) JP2531651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258261U (en) * 1988-10-18 1990-04-26
US5101237A (en) * 1991-03-22 1992-03-31 International Business Machines Corporation Toner metering apparatus with pressure equalization
US5532804A (en) * 1993-07-16 1996-07-02 Fuji Xerox Co., Ltd. Device for developing an electrostatic image on an image member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495243A (en) * 1978-01-11 1979-07-27 Ricoh Co Ltd Magnetic brush developing device
JPS61160764A (en) * 1985-01-09 1986-07-21 Canon Inc Developing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495243A (en) * 1978-01-11 1979-07-27 Ricoh Co Ltd Magnetic brush developing device
JPS61160764A (en) * 1985-01-09 1986-07-21 Canon Inc Developing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258261U (en) * 1988-10-18 1990-04-26
US5101237A (en) * 1991-03-22 1992-03-31 International Business Machines Corporation Toner metering apparatus with pressure equalization
US5532804A (en) * 1993-07-16 1996-07-02 Fuji Xerox Co., Ltd. Device for developing an electrostatic image on an image member

Also Published As

Publication number Publication date
JP2531651B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
EP0625734B1 (en) Method and apparatus for developing an electrostatic image using a two component developer
JPH03206473A (en) Image forming device
JPH0126057B2 (en)
JPS5837657A (en) Developing method and its apparatus
JPH09325613A (en) Developing device and image forming device
JPS63159868A (en) Developing method
JPS61160764A (en) Developing method
JPH0583903B2 (en)
JP2877163B2 (en) Electrophotographic developing device
JP2519422B2 (en) Development device
JPS6332561A (en) Developing method
JP3328955B2 (en) Multicolor recording method and apparatus
JPH0132505B2 (en)
JPS63278082A (en) Developing device
JPH03138674A (en) Developing device
JPH0359576A (en) Developing device
JPS6014263A (en) Developing device
JPS6332189B2 (en)
JPH08137255A (en) Developing device
JPH03231761A (en) Developing method
JPS60159771A (en) Image forming method
JPH11184223A (en) Developing device and image forming device
JPH06337593A (en) Image forming device
JPS6296979A (en) Developer thin layer forming device
JPS60256160A (en) Image forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees