JPS61160764A - Developing method - Google Patents

Developing method

Info

Publication number
JPS61160764A
JPS61160764A JP188785A JP188785A JPS61160764A JP S61160764 A JPS61160764 A JP S61160764A JP 188785 A JP188785 A JP 188785A JP 188785 A JP188785 A JP 188785A JP S61160764 A JPS61160764 A JP S61160764A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic particles
developer
sleeve
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP188785A
Other languages
Japanese (ja)
Inventor
Akihito Hosaka
保坂 昭仁
Koichi Kinoshita
木下 康一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP188785A priority Critical patent/JPS61160764A/en
Priority to US06/731,039 priority patent/US4653427A/en
Priority to GB08512156A priority patent/GB2160126B/en
Priority to FR858507394A priority patent/FR2564609B1/en
Priority to DE19853517625 priority patent/DE3517625A1/en
Publication of JPS61160764A publication Critical patent/JPS61160764A/en
Priority to US07/530,437 priority patent/US5001517A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To obtain high image quality applicable to pictorial colors as well with the less edge effect and with substantial flat black density by specifying the contents of magnetic powder and the intensity of the magnetic field of a developer in the tangential direction on the surface of a developer carrying body. CONSTITUTION:The image having good quality is obtd. if the intensity of the horizontal magnetic field component is set preferably at >=300 gauss. The reason is: If the intensity is >=200 gauss, the sticking of the magnetic particles to the drum arises hardly. The good quality image is obtainable if the content of the magnetic powder is made >=40wt% up to 80-100mum number average grain size of the magnetic particles but if said size exceeds 100mum, the preferable content of the magnetic particles in the developer approaches 10wt% and there is not much difference from the mixing ratio at which the conventional two- component developer is used, then the strict control of the mixing ratio is necessary and there are no advantages. The number average grain size of the magnetic particles is therefore preferably >=40mum, more preferably <=80mum and the content of the magnetic powder in the magnetic particles is preferably >=40wt%.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は静電潜像を現像するビクトリアル−カラーにも
適要可能な非接触現像方法に関する亀のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a non-contact developing method which can also be applied to Victorian color for developing electrostatic latent images.

〔従来技術〕[Prior art]

従来、非接触現像方法の一つとして絶縁性磁性トナー又
は非磁性トナーを現像剤担持体表面上に薄く塗布し、現
像部においてこの薄層化された現像剤の表面と潜像保持
体表面との間に空隙を形成し、との現像部に交互電界を
印加して現像剤担持体上よシトナーを飛翔させて潜像保
持体上の静電潜像を現像する方法が特開昭55−186
56号公報に開示されている。
Conventionally, as one of the non-contact development methods, an insulating magnetic toner or a non-magnetic toner is thinly applied on the surface of a developer carrier, and in a developing section, the surface of this thin layer of developer and the surface of the latent image carrier are separated. A method of developing an electrostatic latent image on a latent image carrier by forming a gap between the two and applying an alternating electric field to the developing section to cause the toner to fly onto the developer carrier is disclosed in Japanese Patent Application Laid-Open No. 1983-1999. 186
It is disclosed in Publication No. 56.

しかしながら、この様な現像方法には次のような問題が
あった。すまわち、現像剤担持体表面上のトナー粒子を
それぞれ確実に目的の極性に帯電しようとすると、どう
しても現像剤担持体表面上のトナ一層の厚みは薄くなっ
てしまい、ベタ黒部分の現像濃度は充分高い値が得られ
ない。さらに詳細に述べれば、文字状の潜像を現像した
時には、この潜像に対向する現像剤担持体表面上の部分
のトナーだけで々く、周辺のトナーも交互電界によって
この文字潜倫部に寄り集まるので、充分高い濃度の現g
I偉が得られる。
However, such a developing method has the following problems. In short, if you try to reliably charge each toner particle on the developer carrier surface to the desired polarity, the thickness of the toner layer on the developer carrier surface will inevitably become thinner, and the developed density of the solid black area will decrease. cannot obtain a sufficiently high value. More specifically, when a character-shaped latent image is developed, not only the toner on the surface of the developer carrier facing the latent image is concentrated, but also the toner in the surrounding area is also affected by the alternating electric field. Because they gather together, a sufficiently high concentration of current
I-wei is obtained.

、これに対して、ベタ黒部分又は太い線を有する静電潜
像を現像した時には、現像剤担持体表面上の薄層トナー
は高い濃度を得るには不充分になりやすく、潜像のエツ
ジ部にトナーが集まり、ペタ黒部のトナーが不足した画
質しか得られなかった。
On the other hand, when an electrostatic latent image with solid black areas or thick lines is developed, the thin layer of toner on the surface of the developer carrier tends to be insufficient to obtain a high density, and the edges of the latent image tend to be insufficient. Toner gathered in the black areas, resulting in image quality that lacked toner in the black areas.

このベタ黒部のトナー濃度不足は、トナーとして樹脂と
磁性体より形成された磁性トナーを使って現像した時よ
りも、主に樹脂から形成された非磁性トナーを使って現
像した時の方がよ)顕著である。したがって、白黒現像
よりもカラー現像を行なう時により深刻な問題となった
This lack of toner concentration in solid black areas is more pronounced when developing with non-magnetic toner made mainly of resin than when developing with magnetic toner made of resin and magnetic material. ) is remarkable. Therefore, the problem became more serious when performing color development than black and white development.

特にビクトリアルカラーをねらった高画質現像のために
はエツジ効果や、ベタ黒部の濃度不足は重大な問題とな
る。
In particular, for high-quality image development aiming at Victorian colors, edge effects and lack of density in solid black areas become serious problems.

そこで、現像剤担持体表面上のトナ一層の厚みを厚くす
ると、それぞれのトナーは目的の極性かつ帯電量に帯電
されにくくなる。このため、非画像部にも余分なトナー
が付着するばかりでなく、得られるトナー倫も貧弱な悪
質な画質となった。
Therefore, if the thickness of each layer of toner on the surface of the developer carrier is increased, each toner becomes difficult to be charged to the desired polarity and charge amount. For this reason, not only excess toner adhered to non-image areas, but also the resulting image quality was poor and the toner density was poor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の欠点をことごとく除去し、エツ
ジ効果の少ないかつペタ黒濃度も充分なビクトリアルカ
ラーにも適用可能な高画質が得られる現像方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a developing method that eliminates all of the above-mentioned drawbacks and provides high image quality that can be applied to Victorian colors with little edge effect and sufficient peta black density.

〔発明の概要〕[Summary of the invention]

本発明は潜像保持体と、背面に磁界発生手段を有する現
像剤担持体表面に、磁性粉を4Qwt%以上含有する磁
性粒子と、主に樹脂からなる非磁性粒子とが混合された
現像剤層を担持し、現像部において該現像剤担持体背面
の磁界発生手段の磁極間を潜像保持体に対向せしめ、現
像剤担持体表面上の接線方向の磁界の強さを200ガウ
ス以上に設定し、かつ上記現像剤層の厚みよシも大きな
現像開胸を保持し、上記現像間隙に交互電界を形成して
、磁性粒子を現像剤担持体表面に拘束しつつ、該現像剤
担持体上の現像剤層から潜像保持体へ画像領域、非画偉
領域共に非磁性粒子を飛翔させる工程と、余分な非磁性
粒子を現像剤担持体に戻す工程とを交互に繰り返えして
現像を行う現像方法である。
The present invention provides a developer in which magnetic particles containing 4Qwt% or more of magnetic powder and non-magnetic particles mainly made of resin are mixed on the surface of a latent image carrier and a developer carrier having a magnetic field generating means on the back surface. In the developing section, the magnetic poles of the magnetic field generating means on the back surface of the developer carrier are made to face the latent image carrier, and the strength of the magnetic field in the tangential direction on the surface of the developer carrier is set to 200 Gauss or more. In addition, the thickness of the developer layer maintains a large development gap, and an alternating electric field is formed in the development gap to restrain the magnetic particles on the surface of the developer carrier. Development is carried out by alternately repeating the process of making non-magnetic particles fly from the developer layer to the latent image carrier in both image areas and non-image areas, and the process of returning excess non-magnetic particles to the developer carrier. This is a developing method that performs

したがって1本発明によれば、エツジ効果が少なく、か
つペタ黒濃度も充分で、均一なビクトリアル・カラー用
の現像にも適用可能な高画質な現像部が得られる。また
、交互電界を現像部に印加してもキャリアである磁性粒
子社潜倫保持体に転移せず、常に安定した鮮明な色の画
質が得られる利点がある。
Therefore, according to the present invention, it is possible to obtain a high-quality developing section that has little edge effect, sufficient peta black density, and is applicable to uniform Victorian color development. Further, even if an alternating electric field is applied to the developing section, the electric field does not transfer to the carrier, which is the magnetic particle holder, and there is an advantage that stable and clear color image quality can always be obtained.

〔実施例〕〔Example〕

以下1本発明を実施例を用いて詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明の現像法を示す適用した現像装置の概略
図である。図中、lは静電潜像保持体で、11は背面電
極、12はこの上の静電潜像保持層であシ絶縁体層であ
っても電子写真感光体層であってもよい。ここでは感光
ドラム1として示す。2は現像剤担持体であり、ここで
は非磁性体からなり矢印A方向に回転する導電性スリー
ブである。3はこのスリーブの内側に固定されて設けら
れた磁界発生手段で、この例では4極の磁極を有するマ
グネットローラである。4は樹脂中に磁性粉を含有する
磁性粒子と、これよプ平均粒径が小さくて主に樹脂から
なる非磁性粒子(トナー)とが混合された現情剤である
。矢印B方向に回転する感光ドラムlの背面電極11と
スリーブ2との間には、直流電源5及び交流電源6によ
り現俊パ、イアスが印加されている。7は弾性部材、8
はトナー補給ローラで、9は現像剤層厚規制部材であり
、ここではドクターブレードを示している。
FIG. 1 is a schematic diagram of a developing device to which the developing method of the present invention is applied. In the figure, 1 is an electrostatic latent image holding member, 11 is a back electrode, and 12 is an electrostatic latent image holding layer thereon, which may be an insulating layer or an electrophotographic photoreceptor layer. Here, it is shown as a photosensitive drum 1. A developer carrier 2 is a conductive sleeve made of a non-magnetic material and rotates in the direction of arrow A. Reference numeral 3 denotes a magnetic field generating means fixedly provided inside the sleeve, which in this example is a magnet roller having four magnetic poles. 4 is a developing agent in which magnetic particles containing magnetic powder in a resin are mixed with non-magnetic particles (toner) having a smaller average particle diameter and mainly made of resin. Between the back electrode 11 of the photosensitive drum l rotating in the direction of arrow B and the sleeve 2, a current voltage is applied by a DC power source 5 and an AC power source 6. 7 is an elastic member, 8
9 is a toner supply roller, and 9 is a developer layer thickness regulating member, which is a doctor blade here.

表面に静電潜像を保有し、矢印B方向に回転する感光ド
ラム1に対向して、スリーブ2を200〜800μm、
好ましくは300〜600μmの間隙で設置する。
Opposing the photosensitive drum 1 which has an electrostatic latent image on its surface and rotates in the direction of arrow B, the sleeve 2 is 200 to 800 μm thick.
Preferably, they are installed with a gap of 300 to 600 μm.

表面に複数の凹部を有するトナー補給ローラ8は、感光
ドラム1の駆動ギアにかみ合ったスリーブ2の駆動ギア
の回動に伴ってゆっくり回転し。
The toner supply roller 8, which has a plurality of recesses on its surface, rotates slowly as the drive gear of the sleeve 2 meshes with the drive gear of the photosensitive drum 1.

ホッパ一部9内にある非磁性粒子(トナー)Tを弾性部
材7により少しずつ下の現像室内に落とし、トナーTを
供給する。
The non-magnetic particles (toner) T in the hopper part 9 are dropped little by little into the developing chamber below by the elastic member 7, and the toner T is supplied.

現像室に供給されたトナーTは、内部にマグネットロー
ラ3を有するスリーブ20表面近くに存在する磁性粒子
M(樹脂中に磁性粉が含有された粒子)と混合される。
The toner T supplied to the developing chamber is mixed with magnetic particles M (particles containing magnetic powder in resin) present near the surface of a sleeve 20 having a magnet roller 3 inside.

スリーブ2が矢印A方向に回動するととによって、スリ
ーブ表面の現便剤4は矢印Cのように動き、この動きに
よって供給されたトナーは徐々にこの現像剤4の内部に
入ることによって混合される。
When the sleeve 2 rotates in the direction of arrow A, the developer 4 on the sleeve surface moves in the direction of arrow C, and the toner supplied by this movement gradually enters the developer 4 and is mixed. Ru.

混合された現像剤4は、磁極Nlと83との磁極間に対
向してスリーブ2表面から約100〜55Q、4m、好
ましくは150〜450μm離して固定された非磁性体
により形成されたドクターブレード10によって適宜な
厚さ、例えば100〜600μm、好ましくは150〜
500μmk規制され、スリーブ2の表面に塗布される
。この現像剤層厚は現像領域におけるドラム・スリーブ
間隙より小さく、従って現像剤層とドラム表面とけ静止
状態で非接触である。
The mixed developer 4 is transferred to a doctor blade formed of a non-magnetic material and fixed at a distance of about 100 to 55Q, 4m, preferably 150 to 450μm from the surface of the sleeve 2, facing between the magnetic poles Nl and 83. 10 to an appropriate thickness, for example 100 to 600 μm, preferably 150 to 600 μm.
It is regulated to 500 μmk and applied to the surface of the sleeve 2. The thickness of this developer layer is smaller than the drum-sleeve gap in the development area, and therefore the developer layer and the drum surface are in a stationary state and are not in contact with each other.

塗布された現便剤4中の非磁性粒子(トナー)Tは磁性
粒子Mとの摩擦やスリーブ2との摩擦で摩擦帯電され、
この状態で、矢印入方向に回転するスリーブ2との間の
静電気力による付着及び、磁性粒子との間の静電気力に
よる付着により、磁性粒子と共にスリーブ20回転に伴
なってスリーブ2に付着したまま現像領域まで運ばれる
The non-magnetic particles (toner) T in the applied toilet preparation 4 are triboelectrically charged by friction with the magnetic particles M and friction with the sleeve 2,
In this state, due to the electrostatic force between the sleeve 2 rotating in the direction of the arrow and the electrostatic force between the magnetic particles and the magnetic particles, they remain attached to the sleeve 2 as the sleeve rotates 20 times. It is carried to the development area.

現像領域では、感光ドラムIK対してスリーブ2内部の
マグネットローラ3の磁極N1と磁極S1との磁極間が
対向して配置されている。このため、スリーブ2表面の
現像剤は、現像領域で穂立ちすることなく、均一な層厚
となっている。
In the developing area, the magnetic poles N1 and S1 of the magnet roller 3 inside the sleeve 2 are arranged to face each other with respect to the photosensitive drum IK. Therefore, the developer on the surface of the sleeve 2 does not form spikes in the development area and has a uniform layer thickness.

従って、感光ドラム表面2とスリーブ2との間は、現像
剤層とドラム表面とを非接触に保ったt″&で、例えば
約1mm以上も離す必要はない。
Therefore, the distance between the photosensitive drum surface 2 and the sleeve 2 is t''&, which keeps the developer layer and the drum surface non-contact, and there is no need for a distance of about 1 mm or more, for example.

よって、スリーブとドラムは現像領域において近接させ
ることができるから、現像電極効果の効いた鮮明な画質
が得られる。この現像間隙距離を1mm程度以上離すと
、ぼけた不鮮明な画像になってしまうことが確められた
Therefore, since the sleeve and the drum can be placed close to each other in the developing area, clear image quality with the effective development electrode effect can be obtained. It has been confirmed that if the development gap distance is set at a distance of about 1 mm or more, the image becomes blurred and unclear.

現像時には現像領域に交互電界を形成するため、スリー
ブ2と感光ドラム1の背面電極11との間に交互電圧を
印加して現像を行なう。このとき直流電源5による直流
電圧と、交流電源6による交流電圧を重畳して現像を行
なう。またバイアス電圧を用いるのが最適である。また
交流電圧のみをバイアスとして用いてもよい。
During development, alternating voltages are applied between the sleeve 2 and the back electrode 11 of the photosensitive drum 1 to form an alternating electric field in the developing area. At this time, the DC voltage from the DC power supply 5 and the AC voltage from the AC power supply 6 are superimposed to perform development. Also, it is optimal to use a bias voltage. Alternatively, only an alternating current voltage may be used as a bias.

交R電圧は必ずしも正弦波である必要はなく。The AC R voltage does not necessarily have to be a sine wave.

矩形波であってもよい。用いる交流のピーク対ヒー/値
ハVp−p=200〜4KV、 Itl tl数1d 
f =Zoo〜4KHzがよい。
It may be a rectangular wave. Peak vs. heat/value of AC used Vp-p=200~4KV, Itl tl number 1d
f=Zoo~4KHz is good.

実施例1 溜部[位VDカ+ 600 V、 背景11位VLカ0
■の時、現像バイアス電圧としてピーク対ピーク値18
00Vpp1周、波数1.6KHzの交流電圧に+15
0Vの直流電圧を重畳して現像を行なった。
Example 1 Reservoir part [position VD power + 600 V, background 11th place VL power 0
When (3), the peak-to-peak value is 18 as the developing bias voltage.
00Vpp 1 cycle, +15 to AC voltage with wave number 1.6KHz
Development was carried out by superimposing a DC voltage of 0V.

用いた非磁性粒子は熱可塑性樹脂(ポリスチレン)を主
成分とした個数平均粒径約8μmのトナーであり、磁性
粒子に対して負極性に帯電する粒子である。正極性のト
ナーを用い、直流電圧を適宜選べば、反転現像も行なえ
る。磁性粒子はスチレン・アクリル・アミノアクリル共
重合体樹脂を主成分とした樹脂中にマグネタイト(Fe
ast)の磁性粉を75重量に混線し、粉砕して作った
個数平均粒径50μmの粒子を用いた。
The non-magnetic particles used are toner particles having a number average particle diameter of about 8 μm and mainly composed of thermoplastic resin (polystyrene), and are particles that are negatively charged with respect to magnetic particles. Reversal development can also be performed by using positive polarity toner and selecting an appropriate DC voltage. The magnetic particles contain magnetite (Fe
Particles having a number average particle diameter of 50 μm were used by mixing the magnetic powder of A.ast) to 75 weight and pulverizing the mixture.

なおこの二成分の混合現像剤の中に帯電系列から見て2
つの粒子の帯電系列の間に位置するシリカ粒子を1重量
X以下混入して用いると、よ〕良い画質が得られる。
In addition, there are 2 components in this two-component mixed developer from the viewpoint of charging series.
Better image quality can be obtained by mixing silica particles located between the two particles in the charge series of 1 weight X or less.

上記現像バイアス電圧を印加すると、ス+7−プの電位
が負極性の電圧位相で閾値を越えると、負極性に帯電し
ている非磁性粒子は、少なくともドラム1とスリーブ2
との最近接部では画像領域でも非画債領域(画便背景部
)でもスリーブ2上の現像剤層から感光ドラム1へ飛翔
する。
When the above-mentioned developing bias voltage is applied, when the potential of sp+7- exceeds the threshold value in the negative voltage phase, the negatively charged non-magnetic particles are removed from at least drum 1 and sleeve 2.
The developer flies from the developer layer on the sleeve 2 to the photosensitive drum 1, both in the image area and in the non-image area (background area).

しかし、上記とは逆極性の位相では、少なくとも余分な
非磁性粒子は逆転移してスリーブへ戻る。この工程を複
数回繰り返した後、ドラムとスリーブの間隙が広がって
交互電界が弱まって飛翔がなくなり、現像が終了する。
However, in a phase of opposite polarity to the above, at least the excess non-magnetic particles undergo a reverse transition and return to the sleeve. After repeating this process several times, the gap between the drum and the sleeve widens, the alternating electric field weakens, the flying particles disappear, and development ends.

交互電界を弱めるためには印加する電圧を弱めるように
してもよい。
In order to weaken the alternating electric field, the applied voltage may be weakened.

ここで大切なことは、磁性粒子をスリーブ2の上の現像
剤層から感光ドラム1へ飛翔し転移させないことである
。磁性粒子が転移すると、現像装置内の磁性粒子が徐々
に無くなってしまい、現像剤中の磁性粒子の数と非磁性
粒子の数の比が著しくくずれてしまうからである。この
比(トナー/磁性数子)が著しくくずれると、背景カプ
リの原因となる。そこで、磁性粒子を磁力によってスリ
ーブ表面上に拘束することが重要である。
What is important here is to prevent the magnetic particles from flying and transferring from the developer layer on the sleeve 2 to the photosensitive drum 1. This is because when the magnetic particles are transferred, the magnetic particles in the developing device gradually disappear, and the ratio between the number of magnetic particles and the number of non-magnetic particles in the developer becomes significantly different. If this ratio (toner/magnetic number) is significantly disrupted, it will cause background capri. Therefore, it is important to restrain the magnetic particles on the sleeve surface by magnetic force.

さらに大切なことは、感光ドラムlとスリーブ2との距
離を離しすぎてぼけた画質にしないことである。境部領
域でドラムに磁極が対向していると、ブラシが穂立つの
でドラム・スリーブ間の距離を小さくすることが難しい
What is more important is that the distance between the photosensitive drum 1 and the sleeve 2 is not too large, resulting in blurred image quality. If the magnetic poles are opposed to the drum in the boundary region, the brushes will stand up, making it difficult to reduce the distance between the drum and the sleeve.

このため、ドラム・スリーブ間の距離を200〜800
μm1好ましくは300〜600μmに設定できるよう
、境部領域ではドラムに対してマグネットロー23の磁
極間(Nlと81との間)を対向させることが重要であ
る。
For this reason, the distance between the drum and sleeve should be set between 200 and 800.
It is important to make the magnetic poles of the magnet row 23 (between Nl and 81) face the drum in the boundary area so that μm1 can be set to preferably 300 to 600 μm.

第2図はマグネットロール3の磁界分布図であり、一般
にスリーブ表面上の磁界の強さを表わすのに使われてい
る垂直磁界成分(磁極の強さ)を表わしたものである。
FIG. 2 is a magnetic field distribution diagram of the magnet roll 3, which represents the perpendicular magnetic field component (magnetic pole strength), which is generally used to represent the strength of the magnetic field on the sleeve surface.

図ではドラムとスリーブの中心を結んだ水平線を横軸と
してドラム対向部を00としている。この垂直成分とは
スリーブ20表面に垂直な方向の磁界成分を示し、第2
図はこの分布をスリーブ周囲にわたって示した。この図
から磁極N1と81との磁極間ではθガウスになってい
ることがわかる。実験によれば、磁極間でも磁性粒子は
スリーブ上に磁気的に拘束され、ドラム1には実質的に
転移されなかった。この結果は第2図からでは容易には
理解し難い。
In the figure, the horizontal axis connecting the centers of the drum and the sleeve is taken as the horizontal axis, and the drum facing portion is designated as 00. This vertical component refers to a magnetic field component in a direction perpendicular to the surface of the sleeve 20, and the second
The figure shows this distribution around the circumference of the sleeve. From this figure, it can be seen that there is a θ Gauss angle between the magnetic poles N1 and 81. According to experiments, the magnetic particles were magnetically restrained on the sleeve even between the magnetic poles, and were not substantially transferred to the drum 1. This result is difficult to understand from FIG.

このことは、次の第3図によって容易に理解できる。第
3図は第2図の角度座標軸は固定し、現像剤担持体2で
あるスリーブ表面上の水平方向の磁界成分を表わした磁
界分布図である。第3図の実施例では磁極N1.S、の
磁極間での水平磁界成分は600ガウスであった。多く
の実験によれば、この水平磁界成分の強さを少なくとも
200ガウス以上、好ましくは300ガウス以上に設定
すると良質の画像の得られることが確められた。これは
200ガウス以上であると磁性粒子のドラムへの付着が
殆んど生じないからである。逆にこれ以下であると磁性
粒子の付着が生じ易くなり、従って磁性粒子の粒径を大
きくしなければならず、トナー・磁性粒子の濃度が下が
り、濃度コントロールが難しい。また、現像剤層が厚く
なりドラム・スリーブ間の距離が広くなり、画像にボケ
が生じる。
This can be easily understood from the following Figure 3. FIG. 3 is a magnetic field distribution diagram showing horizontal magnetic field components on the surface of the sleeve, which is the developer carrier 2, with the angular coordinate axes in FIG. 2 being fixed. In the embodiment of FIG. 3, magnetic pole N1. The horizontal magnetic field component between the magnetic poles of S was 600 Gauss. According to many experiments, it has been confirmed that high quality images can be obtained by setting the strength of this horizontal magnetic field component to at least 200 Gauss or more, preferably 300 Gauss or more. This is because when the pressure is 200 Gauss or more, almost no magnetic particles adhere to the drum. On the other hand, if it is less than this, adhesion of magnetic particles tends to occur, so the particle size of the magnetic particles must be increased, and the concentration of toner/magnetic particles decreases, making it difficult to control the concentration. Additionally, the developer layer becomes thicker and the distance between the drum and sleeve becomes wider, causing blur in the image.

このように磁極間をドラムに対向させると、磁性粒子を
ドラムIK実質的に転移させないようにすることができ
、かつ現像剤の穂立を避けるために感光ドラムとスリー
ブを離さねばならず、その結果ぼけた画像になるような
ことを防ぐことができる。従って1本発明においては上
記の条件が重要となる。
By arranging the magnetic poles to face the drum in this manner, it is possible to prevent the magnetic particles from being substantially transferred to the drum IK, and the photosensitive drum and the sleeve must be separated to avoid spikes of developer. As a result, blurred images can be prevented. Therefore, in the present invention, the above conditions are important.

さらに1カブリのない画質を安定的に得る条件として、
磁性粒子の必要な条件について第1表にまとめて示した
Furthermore, as a condition for stably obtaining image quality without fog,
The necessary conditions for magnetic particles are summarized in Table 1.

表  l 第1表の縦覧には磁性粒子の個数平均粒径を、横覧には
磁性粒子中に含まれる磁性粉含有率を重量にで示してい
る。表中X印は不可を、○印は実用上使用可能な結果が
得られた組合せを、◎印は更に好ましい結果の得られた
ことを示している。個数平均粒径が30μm未満では感
光ドラム1に磁性粒子が転移してしまい、実用上不可で
あった。また個数平均粒径が80〜100μmまでは磁
性粉含有率を40重量に以上にすれば可能であるが、1
00μmを越えると非磁性粒子の現像剤中の好ましい含
有率が10重量XK近づき、従来の二成分境部剤を用い
た混合比と余り差がなくなシ、混合比の厳しい制御が必
要となって利点がなくなる。
Table 1 The number average particle size of the magnetic particles is shown in Table 1, and the content of magnetic powder contained in the magnetic particles is shown in weight in the table. In the table, the X mark indicates a combination that is unacceptable, the ○ mark indicates a combination that resulted in a practically usable result, and the ◎ mark indicates a combination that yielded a more favorable result. If the number average particle diameter is less than 30 μm, the magnetic particles will be transferred to the photosensitive drum 1, which is not practical. In addition, it is possible to achieve a number average particle size of 80 to 100 μm by increasing the magnetic powder content to 40% by weight or more, but
When the particle size exceeds 00 μm, the preferred content of non-magnetic particles in the developer approaches 10 weight XK, which is not much different from the mixing ratio using a conventional two-component boundary agent, and strict control of the mixing ratio is required. The advantage is lost.

したがって、磁性粒子の個数平均粒径は30μm以上、
好ましくは40μm以上で100μm以下、さらに好ま
しくは40μm以上で80μm以下が良い。また、磁性
粒子の磁性粉含有率は4OititX以上が好ましい。
Therefore, the number average particle diameter of the magnetic particles is 30 μm or more,
The thickness is preferably 40 μm or more and 100 μm or less, more preferably 40 μm or more and 80 μm or less. Further, the magnetic powder content of the magnetic particles is preferably 4 OititX or more.

磁性粒子全体が磁性体で形成されているものも使用でき
る。また磁性体を核として、その周囲に樹脂を被覆した
ものは、球形の粒子とし易く、かつトリボ帯電電荷が均
一に付与できる。また磁性粒子を構成している樹脂に顔
料や染料等の荷電制御剤を混入して、非磁性粒子(トナ
ー)を目的の極性かつ帯電量に帯電できるようkすると
、よシ良い高画質の現像が可能となる。
It is also possible to use magnetic particles whose entirety is made of a magnetic material. Further, particles having a magnetic material as a core and a resin coating around the core can easily be formed into spherical particles, and triboelectric charges can be applied uniformly. In addition, by mixing a charge control agent such as a pigment or dye into the resin that makes up the magnetic particles so that the non-magnetic particles (toner) can be charged to the desired polarity and charge amount, better high-quality image development can be achieved. becomes possible.

更に、トナーと磁性粒子の混合比が15wt%〜45w
t%の非常に広い範囲で地力ブリのない、現像濃度の高
い画像を得ることができた。したがって、トナー濃度の
制御が容品になる利点がある。混合比が15wtX以下
になると現像濃度が薄くなり、また4 5 w t %
以上になると地力プリが生じて好ましい結果が得られな
かった。
Furthermore, the mixing ratio of toner and magnetic particles is 15 wt% to 45 w.
It was possible to obtain images with high developed density and no blur over a very wide range of t%. Therefore, there is an advantage that the toner concentration can be easily controlled. When the mixing ratio is less than 15 wt
If the temperature exceeds that level, soil pre-loading occurs and favorable results cannot be obtained.

なお、第1図の説明ではスリーブ2を矢印入方向に回転
させたが、矢印人とは逆方向に回転させても良好な画質
が得られた。むしろ、スリーブをAとは逆方向に回転し
た方が、高速境部の際の現像濃度を高める効果があった
In the explanation of FIG. 1, the sleeve 2 was rotated in the direction indicated by the arrow, but good image quality was obtained even when the sleeve 2 was rotated in the opposite direction to the direction indicated by the arrow. Rather, rotating the sleeve in the direction opposite to A had the effect of increasing the development density at the high speed boundary.

磁性粒子の磁気拘束に関係する、現像部における磁極間
のスリース2表面上の水平方向の磁界成分の大きさと、
これを挾む二つの磁極(N1゜81)位置のスリーブ表
面上の垂直磁界成分の大きさとの関係は、二つの磁極の
スリーブ表面上の垂直磁界成分の大きさが大きければ、
これに挾まれる磁極間の水平方向の磁界成分の大きさが
必ずしも大きくなるとは限らない。現像部を挾む2つの
磁極が離れすぎると、磁極間におけるスリーブ表面上の
水平方向の磁界成分の大きさも小さくなってしまう。ま
た逆に1この2つの磁極が近づきすぎても磁極間は狭く
なり、適正境部領域も狭くなるばかりでなく、スリーブ
表面上の水平方向の磁界成分の大きさもそれ程高められ
なくなる。
The magnitude of the horizontal magnetic field component on the surface of the sleeve 2 between the magnetic poles in the developing section, which is related to the magnetic restraint of the magnetic particles;
The relationship between the magnitude of the vertical magnetic field component on the sleeve surface at the position of the two magnetic poles (N1°81) sandwiching this is as follows: If the magnitude of the vertical magnetic field component on the sleeve surface of the two magnetic poles is large,
The magnitude of the horizontal magnetic field component between the sandwiched magnetic poles is not necessarily large. If the two magnetic poles that sandwich the developing section are too far apart, the magnitude of the horizontal magnetic field component on the sleeve surface between the magnetic poles will also become small. On the other hand, if the two magnetic poles are brought too close together, not only will the distance between the magnetic poles become narrower and the appropriate boundary area will also become narrower, but the magnitude of the horizontal magnetic field component on the sleeve surface will not be increased as much.

このため、マグネットローラ3の中心0(スリーブ2の
中心)から見た磁極N1,81間の中心角度eu、45
°≦6≦135°に設定することが好ましい。
Therefore, the central angle eu between the magnetic poles N1 and 81 as seen from the center 0 of the magnet roller 3 (the center of the sleeve 2) is 45
It is preferable to set the angle to °≦6≦135°.

なお、安定して高画質の画像を得るために1非磁性粒子
(トナー)の個数平均粒径の大きさDTは、磁性粒子の
個数平均粒径の大きさDcに対して、 DT≦DC≦15DT の範囲から選ぶと良い。磁性粒子の粒径の割合に比して
非磁性粒子の粒径が大きいと、非磁性粒子のトリボ帯電
が不充分になり、逆に小さすぎて本貧弱な画質になる。
In addition, in order to stably obtain high-quality images, the number-average particle size DT of one non-magnetic particle (toner) is set as DT≦DC≦ with respect to the number-average particle size Dc of magnetic particles. It is best to choose from the range of 15DT. If the particle size of the non-magnetic particles is larger than the ratio of the particle size of the magnetic particles, tribocharging of the non-magnetic particles will be insufficient, and conversely, if the ratio is too small, the image quality will be poor.

本発明の更なる実施例について、比較例と共に以下に示
す。
Further examples of the present invention are shown below along with comparative examples.

】1且ユ 感光ドラムlとスリーブ2との距離を500μm1lc
設定し、現像剤層の厚さを感光ドラムに最も接近する位
置に$−いて400μmとなるようにドクターブレード
で規制した。現像剤には平均粒径8μmの非磁性粒子と
磁性粒子を混合したものを用い、非磁性粒子の濃度比は
30wtXKした。なお、磁性粒子中の磁性粉の含有率
Fi70wtににし、平均粒径5oμmの粒子を用いた
。更に1磁極の配置は第1図のように磁極間がドラムに
対向した位置とし、磁極N1と8゜の磁界の強さを垂直
方向の磁界成分が700ガウスとなるように設定した。
] 1. The distance between the photosensitive drum l and the sleeve 2 is 500μm1lc.
The thickness of the developer layer was regulated with a doctor blade to be 400 μm at the position closest to the photosensitive drum. The developer used was a mixture of non-magnetic particles and magnetic particles with an average particle size of 8 μm, and the concentration ratio of the non-magnetic particles was 30 wtXK. Incidentally, the content of magnetic powder in the magnetic particles was set to Fi70wt, and particles with an average particle size of 50 μm were used. Furthermore, the arrangement of one magnetic pole was such that the magnetic poles faced the drum as shown in FIG. 1, and the strength of the magnetic field at 8° with respect to the magnetic pole N1 was set so that the vertical magnetic field component was 700 Gauss.

この時の磁極間の水平方向の磁界の強さは610ガウス
であった。
The strength of the horizontal magnetic field between the magnetic poles at this time was 610 Gauss.

かかる条件下で、画像部の潜偉電位VDが負極性の一6
00V、背景電位VLがOvO時、非磁性粒子(トナー
)には正極性に帯電する粒子を用い、現像バイアス電圧
はVp−1) = 1soov、f=1、6 KHzの
交流電圧に直流電圧−150Vを重畳して現像を行なっ
たところ、画像部(VD)には非磁性粒子のみが飛翔転
移し、非画像部には非磁性粒子も磁性粒子も付着しない
、地力ブリのない良好な両部が得られた。
Under such conditions, the latent potential VD of the image area has negative polarity.
00V, when the background potential VL is OvO, positively charged non-magnetic particles (toner) are used, the developing bias voltage is Vp-1) = 1soov, f = 1, 6 KHz AC voltage and DC voltage - When developing with a superimposed voltage of 150V, only non-magnetic particles flew and transferred to the image area (VD), and neither non-magnetic particles nor magnetic particles adhered to the non-image area, resulting in good both sides with no ground force blur. was gotten.

比較例 磁性粉の含有率を30 wtXとした平均粒径40μm
の磁性粒子を琳いて、実施例2と同様の方法で現像を行
なったところ、非画像部に磁性粒子が付着し、好ましい
結果が得られなかった。
Comparative Example: Average particle size is 40 μm when the magnetic powder content is 30 wtX.
When development was carried out in the same manner as in Example 2 using the magnetic particles, the magnetic particles adhered to the non-image area, and favorable results were not obtained.

実施例3 実施例2と同一の条件下で、溜部の明部■Lを現像する
反転現像を行なった。この実施例の場合、溜部電位の暗
部vDが一600V、明部vLが一50Vの時に、非磁
性粒子として負極性に帯電する粒子を用い、現像バイア
ス電圧として1800Vp−p、1.6KHzO交流電
圧に直fi!圧−450Vを重畳して現像を行なうと、
ドラムの画像部としての明部には非磁性粒子のみが飛翔
転移し、非画像部としての暗部には磁性粒子も非磁性粒
子も付着していない。良好な現像が行なえた。
Example 3 Under the same conditions as in Example 2, reversal development was carried out to develop the bright area (L) of the reservoir. In this example, when the dark part vD of the reservoir potential is 1600 V and the bright part vL is 150 V, negatively charged particles are used as non-magnetic particles, and the developing bias voltage is 1800 Vp-p and 1.6 KHzO AC. Direct fi to voltage! When developing is carried out by superimposing a pressure of -450V,
Only non-magnetic particles are transferred by flight to the bright area of the drum, which is the image area, and neither magnetic particles nor non-magnetic particles are attached to the dark area, which is the non-image area. Good development was achieved.

なお、溜部電位が正極性の場合にも、非磁性粒子の帯電
極性を正極性とし、直流電圧を+450Vにすることで
上記と同様の結果が得られた。
Note that even when the reservoir potential was positive, the same results as above were obtained by setting the charged polarity of the nonmagnetic particles to positive polarity and setting the DC voltage to +450V.

〔発明の効果〕〔Effect of the invention〕

以上説明し友ように、本発明では背面に磁界発生手段を
有する現像剤担持体表面に、磁性粉を40重量%以上含
有する磁性粒子と、主に樹脂からなる非磁性粒子とが混
合された現像剤層を担持し、現像部において該現像剤担
持体背面の磁界発生手段の磁極間を溜部保持体に対向せ
しめ、現像剤担持体表面上の接線方向の磁界の強さを2
00ガウス以上、好ましくは300ガウス以上に設定し
、かつ上記現像剤層の厚みよりも大きな現像間隙を保持
し、上記現像間隙に交互電界を形成して、磁性粒子を現
像剤担持体表面に拘束しつつ、該現像剤担持体上の現像
剤層から溜部保持体へ両部領斌、非両部領域共に非磁性
粒子を飛翔させる工程と、余分な非磁性粒子を現像剤担
持体に戻す工程とを交互に繰り返えして現像することに
より、以下のような多くの効果が得られた。
As explained above, in the present invention, magnetic particles containing 40% by weight or more of magnetic powder and non-magnetic particles mainly made of resin are mixed on the surface of a developer carrier having a magnetic field generating means on the back surface. A developer layer is supported, and in the developing section, the magnetic poles of the magnetic field generating means on the back surface of the developer carrier are opposed to the reservoir holder, and the strength of the magnetic field in the tangential direction on the surface of the developer carrier is 2.
00 Gauss or more, preferably 300 Gauss or more, and maintain a development gap larger than the thickness of the developer layer, and form an alternating electric field in the development gap to restrain the magnetic particles on the surface of the developer carrier. a step of causing non-magnetic particles to fly from the developer layer on the developer carrier to the reservoir holder in both the region and the non-region, and returning excess non-magnetic particles to the developer carrier. By repeating the steps alternately and developing, many effects such as those described below were obtained.

(1)従来の非接触現像法では得られなかったエツジ効
果のない、充分なペタ黒濃度の現像部が得られた。
(1) A developed area with sufficient peta black density was obtained without edge effects, which could not be obtained with conventional non-contact development methods.

C2)  ぼけることのない、鮮明な(シャープな)画
質が得られた。
C2) Clear (sharp) image quality without blurring was obtained.

(3)磁性粒子が潜偉保持体に実質的に飛翔転移しない
ので、磁性粒子が画像部に非磁性粒子と共に混入して現
像されることはなく、鮮やかなカラー現像が可能となっ
た。
(3) Since the magnetic particles do not substantially fly and transfer to the latent holder, the magnetic particles are not mixed into the image area with the non-magnetic particles during development, making it possible to develop vivid colors.

(4)  また磁性粒子の消耗を防ぐことができた。(4) It was also possible to prevent the magnetic particles from being consumed.

(5)現像部で、ブラシの穂立ち部を用いず。(5) Do not use the standing part of the brush in the developing section.

磁極間を現像部に対向させ九ので、現像剤層の厚みの均
一な領域を使えるので、均一な対極(現像電極)効果が
得られ、画質の均一な現像が可能となった。
By arranging the magnetic poles to face the developing section, a region with a uniform thickness of the developer layer can be used, so a uniform counter electrode (developing electrode) effect can be obtained, and development with uniform image quality is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した現像装置の概略図、第2図は
マグネットローラの垂直方向の磁界分布図。 第3図はマグネットローラの水平方向の磁界分布図であ
る。 図において、1は感光ドラム、2はスリーブ。 3けマグネットローラ、4は現像剤、5.6は現像バイ
アス電源、10はドクターブレード、を表わす。
FIG. 1 is a schematic diagram of a developing device to which the present invention is applied, and FIG. 2 is a vertical magnetic field distribution diagram of a magnet roller. FIG. 3 is a horizontal magnetic field distribution diagram of the magnet roller. In the figure, 1 is a photosensitive drum and 2 is a sleeve. 3 magnet rollers, 4 a developer, 5.6 a developing bias power supply, and 10 a doctor blade.

Claims (1)

【特許請求の範囲】[Claims] 潜像保持体と、背面に磁界発生手段を有する現像剤担持
体表面に、磁性粉を40wt%以上含有する磁性粒子と
、主に樹脂からなる非磁性粒子とが混合された現像剤層
を担持し、現像部において該現像剤担持体背面の磁界発
生手段の磁極間を潜像保持体に対向せしめ、現像剤担持
体表面上の接線方向の磁界の強さを200ガウス以上に
設定し、かつ上記現像剤層の厚みよりも大きな現像間隙
を保持し、上記現像間隙に交互電界を形成して、磁性粒
子を現像剤担持体表面に拘束しつつ、該現像剤担持体上
の現像剤層から潜像保持体へ、画像領域、非画像領域共
に非磁性粒子を飛翔させる工程と、余分な非磁性粒子を
現像剤担持体に戻す工程とを交互に繰り返えして現像を
行うことを特徴とする現像方法。
A developer layer containing a mixture of magnetic particles containing 40 wt% or more of magnetic powder and non-magnetic particles mainly made of resin is carried on the surface of a latent image carrier and a developer carrier having a magnetic field generating means on the back side. In the developing section, the magnetic poles of the magnetic field generating means on the back surface of the developer carrier are opposed to the latent image carrier, and the strength of the magnetic field in the tangential direction on the developer carrier surface is set to 200 Gauss or more, and A development gap larger than the thickness of the developer layer is maintained, and an alternating electric field is formed in the development gap to restrain the magnetic particles on the surface of the developer carrier while allowing the magnetic particles to be removed from the developer layer on the developer carrier. Development is performed by alternately repeating the process of flying non-magnetic particles onto the latent image carrier in both the image and non-image areas, and the process of returning excess non-magnetic particles to the developer carrier. A developing method.
JP188785A 1984-05-16 1985-01-09 Developing method Pending JPS61160764A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP188785A JPS61160764A (en) 1985-01-09 1985-01-09 Developing method
US06/731,039 US4653427A (en) 1984-05-16 1985-05-06 Non-contact development method and apparatus under tangential magnetic field and AC field
GB08512156A GB2160126B (en) 1984-05-16 1985-05-14 Developing method and apparatus
FR858507394A FR2564609B1 (en) 1984-05-16 1985-05-15 DEVELOPMENT METHOD AND APPARATUS
DE19853517625 DE3517625A1 (en) 1984-05-16 1985-05-15 DEVELOPMENT METHOD AND DEVICE
US07/530,437 US5001517A (en) 1984-05-16 1990-06-01 Developing apparatus for reverse-developing an electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP188785A JPS61160764A (en) 1985-01-09 1985-01-09 Developing method

Publications (1)

Publication Number Publication Date
JPS61160764A true JPS61160764A (en) 1986-07-21

Family

ID=11514080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP188785A Pending JPS61160764A (en) 1984-05-16 1985-01-09 Developing method

Country Status (1)

Country Link
JP (1) JPS61160764A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128380A (en) * 1986-11-18 1988-05-31 Kanegafuchi Chem Ind Co Ltd Magnet roll
JPS63159868A (en) * 1986-12-24 1988-07-02 Canon Inc Developing method
JPS63187262A (en) * 1987-01-29 1988-08-02 Canon Inc Developing method
JPS63225248A (en) * 1987-03-16 1988-09-20 Canon Inc Developing method
JPS63228176A (en) * 1987-03-17 1988-09-22 Canon Inc Method for developing electrostatic image and device for executing said method
JPH01177056A (en) * 1987-12-28 1989-07-13 Canon Inc Developing device for image forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128380A (en) * 1986-11-18 1988-05-31 Kanegafuchi Chem Ind Co Ltd Magnet roll
JPS63159868A (en) * 1986-12-24 1988-07-02 Canon Inc Developing method
JPS63187262A (en) * 1987-01-29 1988-08-02 Canon Inc Developing method
JPS63225248A (en) * 1987-03-16 1988-09-20 Canon Inc Developing method
JPS63228176A (en) * 1987-03-17 1988-09-22 Canon Inc Method for developing electrostatic image and device for executing said method
JPH01177056A (en) * 1987-12-28 1989-07-13 Canon Inc Developing device for image forming device

Similar Documents

Publication Publication Date Title
US4624559A (en) Developing method for electrostatic latent image
JP2853104B2 (en) Image forming device
JPS6095458A (en) Color image recording method
JPS6333148B2 (en)
JPH06100848B2 (en) Development method
JPS61160764A (en) Developing method
JPS5837657A (en) Developing method and its apparatus
US5187535A (en) Image forming apparatus
JPS6332191B2 (en)
JPS60217370A (en) Developing method
JP2519422B2 (en) Development device
JP2531651B2 (en) Development method
JPS613152A (en) Developing method of electrostatic image
JPS6332561A (en) Developing method
JPH01243083A (en) Developing device
JPS60130771A (en) Developing device
JPH0435074B2 (en)
JPH0464064B2 (en)
JPH038542B2 (en)
JP2528650B2 (en) Development device
JPH0414791B2 (en)
JPH0359576A (en) Developing device
JP2713882B2 (en) Development method
JPS60189775A (en) Developing device
JPS60159771A (en) Image forming method