JPS63159811A - Reflecting mirror consisting of multi-layered films and its production - Google Patents

Reflecting mirror consisting of multi-layered films and its production

Info

Publication number
JPS63159811A
JPS63159811A JP30631986A JP30631986A JPS63159811A JP S63159811 A JPS63159811 A JP S63159811A JP 30631986 A JP30631986 A JP 30631986A JP 30631986 A JP30631986 A JP 30631986A JP S63159811 A JPS63159811 A JP S63159811A
Authority
JP
Japan
Prior art keywords
refractive index
multilayer film
index material
layers
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30631986A
Other languages
Japanese (ja)
Inventor
Masahiro Oishi
大石 正浩
Hirotaka Nakano
博隆 中野
Tomoko Kitazawa
倫子 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Corp
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Glass Co Ltd filed Critical Toshiba Corp
Priority to JP30631986A priority Critical patent/JPS63159811A/en
Publication of JPS63159811A publication Critical patent/JPS63159811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reflect the entire visible region and to extend the life of a tilted mirror by specifying the materials of a high-refractive index material and low-refractive index material and the central wavelength of a reflection band at the time of providing multi-layered films consisting of alternate layers of the above-mentioned materials on the inside surface of a concave face-shaped glass substrate. CONSTITUTION:The multi-layered films 13 are deposited on the inside surface 12 of the concave face-shaped glass substrate 11 and a light source 14 such as halogen lamp is disposed to the center of the substrate 11. TiO2-SiO2 or the like is used for the multi-layered films 13 in the above-mentioned constitution and the alternate layers having 1/4lambda optical film thickness are formed. Here are specified lambda1=534nm, lambda2=460nm, lambda3=385nm. More specifically, the optical film thickness is specified to 1/4lambda1 when the high-refractive index material consisting of TiO2 is designated as (H) and the low-refractive index material consisting of SiO2 as (L). Such (H) and (L) are alternately deposited 6 times to form 12 layers in total. Further, one layer of (H) is added to deposit the films 13 times so that a 550-800nm wavelength range is reflected. Furthermore, (H) and (L) are alternately provided 6 times to form 12 layer in total to reflect respectively 500-700nm and 400-600nm wavelength ranges.

Description

【発明の詳細な説明】 「発明のl」的コ (産業上の利用分野) この発明は、投光照明等に使用して好適な多層膜反射鏡
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention (Industrial Application Field) The present invention relates to a multilayer reflective mirror suitable for use in floodlights, etc., and a method for manufacturing the same.

(従来の技術) 冷光鏡を基体とする多層膜反射鏡は、店舗用112びに
医療用照明等の光源に多く使用されている。
(Prior Art) Multilayer film reflecting mirrors based on cold light mirrors are often used as light sources for store lighting, medical lighting, and the like.

そして、可視光を反射して長波長の赤外領域を通過させ
、照射物体を熱線によって加熱されないようにし、且つ
光源からの熱線が多層膜を通過する際、80%以上が透
過するため、基板が加熱され難い特徴を持っている。
The visible light is reflected and the long-wavelength infrared region is passed through, so that the irradiated object is not heated by the heat rays, and when the heat rays from the light source pass through the multilayer film, more than 80% of the heat rays are transmitted through the substrate. has the characteristic of not being easily heated.

ところで、従来の冷光鏡は、鏡面に高屈折率物質(H)
と低屈折率物質(L)との薄膜を交互に積層し、2つの
異なる光学的膜厚を用いて夫々550 n m ’−8
00n mの近赤外波長域及び400nm〜600nm
の近紫外波長域を反射し、両者で400nm〜800n
mの可視域全体を反射するように構成されている。
By the way, conventional cold light mirrors have a high refractive index material (H) on the mirror surface.
and a low refractive index material (L), and using two different optical film thicknesses, each of 550 nm'-8
Near infrared wavelength range of 00 nm and 400 nm to 600 nm
reflects the near-ultraviolet wavelength range of 400nm to 800nm for both.
It is configured to reflect the entire visible range of m.

一般に、積層される物質の屈折率の比が大きければ、そ
れだけ高い反射率と広い反射帯を持つものである。下記
表1に使用される物質の組合わせと屈折率の比を示す。
Generally, the larger the ratio of refractive indexes of the laminated materials, the higher the reflectance and the wider the reflection band. Table 1 below shows the combinations of materials used and their refractive index ratios.

表  1 Na:物質aの屈折率 Nb:物質すの屈折率 (発明が解決しようとする問題点) 上記表1から高反射、高反射帯域を得るには、Z n 
S  M g F 2の組合せを選ぶのが有利であるが
、ハロゲンランプ等のように高熱を発生する光源に適用
すると、加熱によって多層膜が剥離し、且つ多層膜表面
のZnS層が風化されて白濁する。
Table 1 Na: refractive index of substance a Nb: refractive index of substance a (problem to be solved by the invention) From Table 1 above, in order to obtain high reflection and high reflection band, Z n
It is advantageous to choose a combination of S M g F 2, but if it is applied to a light source that generates high heat, such as a halogen lamp, the multilayer film will peel off due to heating, and the ZnS layer on the surface of the multilayer film will be weathered. It becomes cloudy.

通當、ランプ点灯の際の熱負荷が温度350℃で30時
間、温度300℃で100時間で使用不能となる。また
、ZnS層は吸湿性があるため、温度50 ’C、湿度
90%の雰囲気に50時間放置すると、多層膜が剥離し
、耐久性に弱いという欠点かある。
Generally, the heat load when lighting the lamp becomes unusable after 30 hours at a temperature of 350°C and 100 hours at a temperature of 300°C. Furthermore, since the ZnS layer is hygroscopic, the multilayer film will peel off if it is left in an atmosphere at a temperature of 50'C and a humidity of 90% for 50 hours, resulting in poor durability.

一方、TiO2−3iOz交互層は、下記表2に示すよ
うに、ランプ点灯の際の熱負荷が温度350℃で150
時間、温度300℃で250時間の耐久性を有し、Z 
n S  M g F 2交互層に比べ著しい長寿命を
持つが、屈折率比が低いため、可視光全域を反射するこ
とが出来ず、55Onm付近に1.096内外の透過帯
を有し、又、全体の反射率も同層数では、屈折率比の大
きな物質の組合せであるZ n S −M g F 2
交互層に比べて劣る。
On the other hand, as shown in Table 2 below, the TiO2-3iOz alternating layer has a heat load of 150°C at a temperature of 350°C when the lamp is lit.
It has durability of 250 hours at 300℃ and Z
n S M g F It has a significantly longer life than 2 alternating layers, but because of its low refractive index ratio, it cannot reflect the entire visible light range, has a transmission band around 1.096 around 55 Onm, and , with the same number of layers for the overall reflectance, Z n S − M g F 2 is a combination of materials with a large refractive index ratio.
Inferior to alternating layers.

表  2 −1−記事情から、耐久性に優れる TiO25iOzの交互層からなる多層膜反射鏡の光学
特性を改善し、高反射率化、広反射帯域化にすることが
要望されている。
Based on the information in Table 2-1, it is desired to improve the optical properties of a multilayer mirror made of alternating layers of TiO25iOz, which has excellent durability, and to achieve a high reflectance and a wide reflection band.

この発明は、耐久性の優れた TiO2−3iOzの交互層からなり、而も可視域全体
を反射することを可能にした多層膜反射鏡及びその製造
方法を提供することを目的とする。
The object of the present invention is to provide a multilayer reflector that is made of alternating layers of TiO2-3iOz with excellent durability and is capable of reflecting the entire visible range, and a method for manufacturing the same.

[発明の構成〕 (問題点を解決するための手段) この発明は、凹面状ガラス基板の内面に、主に高屈折率
物質(H)と低屈折率物質(L>の交互層から成る多層
膜か形成されて成る多層膜反射鏡において、上記高屈折
率物質(H)が二酸化チタンであり、上記低屈折率物質
(L)が二酸化シリコンであり、且つ上記多層膜が、反
射帯の中心波長が430nm乃至510nmの範囲にあ
る第1の交互層と、反射帯の中心波長が520nm乃至
620nmの範囲にある第2の交互層と、反射帯の中心
波長が650nm乃至750nmの範囲にある第3の交
互層とから成ることを特徴とする多層膜反射鏡である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a multilayer structure mainly consisting of alternating layers of a high refractive index material (H) and a low refractive index material (L>) on the inner surface of a concave glass substrate. In a multilayer reflective mirror formed of a film, the high refractive index substance (H) is titanium dioxide, the low refractive index substance (L) is silicon dioxide, and the multilayer film a first alternating layer with a wavelength in the range of 430 nm to 510 nm, a second alternating layer with a reflective band center wavelength in the range of 520 nm to 620 nm, and a second alternating layer with a reflective band center wavelength in the range of 650 nm to 750 nm. This is a multilayer film reflecting mirror characterized by comprising three alternating layers.

また、この発明は、凹面状ガラス基板の内面に、主に高
屈折率物質(H)と低屈折率物質(L)の交互層から成
る多層膜を形成する多層膜反射鏡の製造方法において、
上記多層膜の形成時の雰囲気の全圧が、10−4Tor
r乃至10−2Torrの範囲にあり、上記高屈折率物
質(H)が二酸化チタンの場合は酸素と不活性ガスの混
合ガスの雰囲気で形成し、上記低屈折率物質(L)が二
酸化シリコンの場合は酸素と不活性ガスの混合ガス中、
又は不活性ガスのみの雰囲気で形成することを特徴とす
る多層膜反射鏡の製造方法である。
The present invention also provides a method for manufacturing a multilayer reflector in which a multilayer film mainly consisting of alternating layers of a high refractive index material (H) and a low refractive index material (L) is formed on the inner surface of a concave glass substrate.
The total pressure of the atmosphere during the formation of the multilayer film was 10-4 Torr.
When the high refractive index material (H) is titanium dioxide, it is formed in an atmosphere of a mixed gas of oxygen and an inert gas, and when the low refractive index material (L) is silicon dioxide. In case of mixed gas of oxygen and inert gas,
Alternatively, there is a method for manufacturing a multilayer mirror, characterized in that the mirror is formed in an atmosphere containing only an inert gas.

(作用) この発明によれば、可視域全体を反射する二とが可能に
なり、又、T i O2S i O2の交互層にするこ
とで、対剥離特性が向上し、長寿命化が図れる。
(Function) According to the present invention, it is possible to reflect the entire visible range, and by using alternating layers of T i O2S i O2, anti-peeling properties are improved and the service life can be extended.

(実施例) 以ド、図面を参照して、この発明の一実施例につき詳細
に説明する。
(Embodiment) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

この発明の多層膜反射鏡は、第1図に示すように構成さ
れ、凹面状ガラス基板11の内面12には、多層膜13
が形成されている。更に、凹面状ガラス基板11の中心
には、ハロゲンランプのような光源14が配設されてい
る。
The multilayer film reflecting mirror of the present invention is constructed as shown in FIG.
is formed. Further, a light source 14 such as a halogen lamp is disposed at the center of the concave glass substrate 11.

上記多層膜13の膜構成は、下記表3に示すように、T
 i O2S i 02の31層から成る光学的膜厚1
/4λの交互層(λ11−534n。
The film structure of the multilayer film 13 is as shown in Table 3 below.
Optical thickness 1 consisting of 31 layers of i O2S i 02
/4λ alternating layers (λ11-534n.

λ22−460n、λ3−3−385nである。They are λ22-460n and λ3-3-385n.

即ち、TiO2からなる高屈折率物質を(H)とし、5
i02からなる低屈折率物質を(L)とした場合、光学
的膜厚を1/4λ1てこの(H)と(L)とを交互に6
回=[12層被着し、更に(H)を1層付加して13層
被着させ、550nm〜800nmの波長範囲を反射さ
せる。更に、(H)と(L)とを交互に6回計12層、
光学的膜厚を夫々1/4λ2.1/4λ3に変えて積層
被着させ、各々500nm 〜700nm、400nm
 〜60(Jnmの波長範囲を反射するように構成され
ている。
That is, let the high refractive index material made of TiO2 be (H), and 5
When (L) is a low refractive index material made of i02, the optical film thickness is 1/4λ1 levers (H) and (L) alternately 6
times = [12 layers are deposited, and 1 layer of (H) is added to deposit 13 layers to reflect the wavelength range of 550 nm to 800 nm. Furthermore, (H) and (L) were alternately applied 6 times for a total of 12 layers,
The optical film thickness was changed to 1/4λ2, 1/4λ3, respectively, and the layers were deposited to 500nm to 700nm and 400nm, respectively.
It is configured to reflect a wavelength range of ~60 (Jnm).

表  3 λ1:534nm λ2 :460nm λ3 :385nm さて次に、この発明による多層膜反射鏡の製造方法につ
いて、説明する。
Table 3 λ1: 534nm λ2: 460nm λ3: 385nm Next, a method for manufacturing a multilayer film reflecting mirror according to the present invention will be explained.

この発明では、第2図に示す電子ビーム蒸着装置を使用
し、光源1からの光を回転機構からなる複数個収容nf
能なモニタ基板3で反射させ、制御波長λnmなるモ渉
フィルタ2を通してモニタ基板1枚につき数層ずつ光学
的膜厚を制御し、反射鏡用基板6に多層膜を形成する。
In this invention, the electron beam evaporation apparatus shown in FIG.
The optical film thickness is controlled by several layers per monitor substrate through a wavelength filter 2 having a control wavelength of λnm, and a multilayer film is formed on the reflecting mirror substrate 6.

尚、図中の5はドーム回転機構である。Note that 5 in the figure is a dome rotation mechanism.

蒸着法は電子ビームであり、同転機溝により複数個から
なる蒸着剤収容用のルツボ7に、二酸化チタンと二酸化
シリコンを複数個ずつ収容する。
The evaporation method is an electron beam, and a plurality of titanium dioxide and silicon dioxide are accommodated in a plurality of crucibles 7 for accommodating evaporation agents using rotary machine grooves.

そして、電子銃8から加速電圧例えば6KVで電子ビー
ムを励起させ、マグネットでルツボ7に当たるように例
えば270’程度偏向させて、所定の蒸着を行なう。こ
の時のエミッション電流値は、例えば二酸化チタンの場
合は180mAであり、二酸化シリコンの場合100m
Aである。そして、二酸化チタンの蒸着は、二酸化チタ
ンが還元して黒色にした膜となるのを防ぐため、蒸着中
、酸素も導入した反応性蒸着を用いる。
Then, an electron beam is excited from the electron gun 8 at an accelerating voltage of, for example, 6 KV, and is deflected by a magnet, for example, by about 270' so as to hit the crucible 7, thereby performing predetermined vapor deposition. The emission current value at this time is, for example, 180 mA in the case of titanium dioxide, and 100 mA in the case of silicon dioxide.
It is A. For vapor deposition of titanium dioxide, reactive vapor deposition is used in which oxygen is also introduced during vapor deposition in order to prevent titanium dioxide from being reduced and becoming a black film.

尚、基板温度は、蒸着中、膜密度を極力引上げるため、
ヒータ4により300℃に保たれる。そして、得られる
二酸化チタンの蒸着膜の屈折率は、2.2〜2.3であ
り、二酸化シリコンの蒸着膜の屈折率は、1.46〜1
.47である。
In addition, the substrate temperature should be adjusted to maximize the film density during vapor deposition.
The temperature is maintained at 300°C by the heater 4. The refractive index of the vapor-deposited film of titanium dioxide obtained is 2.2 to 2.3, and the refractive index of the vapor-deposited film of silicon dioxide is 1.46 to 1.
.. It is 47.

また、基板6は、ドーム9上に複数個例えば100個取
付けられており、ドーム9はドーム回転機構5により1
時間当り900〜1500回転の速度で自転しながら3
00〜500回転の速度で公転を行ない、蒸着剤の飛散
時の指向性による被着のバラツキを補正すると共に蒸着
分子の指向性を極力抑えるため、ガス例えば酸素と不活
性ガスのアルゴンの混合ガスを導入し、全圧を例えば1
xlO−3Torr程度に保ち、蒸着分子をガス分子に
より散乱させることにより、ドーム9の基板位置によら
ず、又、湾曲基板面に均一に蒸着出来る。
Further, a plurality of substrates 6, for example 100 pieces, are attached to the dome 9, and the dome 9 is rotated one by one by the dome rotation mechanism 5.
3 while rotating at a speed of 900 to 1500 revolutions per hour.
It revolves at a speed of 00 to 500 revolutions, and in order to correct the variation in deposition due to the directivity of the vapor deposition agent when it is scattered, and to suppress the directivity of the vapor deposition molecules as much as possible, a gas such as a mixed gas of oxygen and inert gas argon is used. is introduced, and the total pressure is set to 1, for example.
By maintaining the temperature at about xlO-3 Torr and scattering the vapor deposition molecules by gas molecules, the vapor deposition can be performed uniformly on the curved substrate surface regardless of the substrate position of the dome 9.

しかし、全圧が1xlO−2Torr以1−ニなると、
真空槽内の絶縁性が高くなり、そのため電子ビームが不
安定になり、蒸着出来ない。一方、全圧が1xlC14
Torr以下になると、蒸着分子の散乱が弱くなり、基
板面に均一に被着することが出来ない。従って、全圧は
1xlO−4Torr〜1 x 10−2 T o r
 rに限定される。
However, when the total pressure exceeds 1xlO-2Torr,
The insulation inside the vacuum chamber becomes high, which makes the electron beam unstable and evaporation cannot be performed. On the other hand, the total pressure is 1xlC14
When the temperature is less than Torr, the scattering of the vapor-deposited molecules becomes weaker, and the molecules cannot be uniformly deposited on the substrate surface. Therefore, the total pressure is 1xlO-4 Torr ~ 1x10-2 Torr
limited to r.

このようにして製造された多層膜反射鏡の光学的特性を
、第3図に示す。尚、光学的特性を測定する際、蒸着さ
れていない反射基板をレファレンスとして用いた。
FIG. 3 shows the optical characteristics of the multilayer mirror manufactured in this way. Incidentally, when measuring the optical characteristics, a reflective substrate on which no vapor deposition was performed was used as a reference.

また、第3図から従来の方法により550nm付近に生
じていた透過帯が消え、可視域全体を反射することが可
能となり、又、反射率も向」ニした。
Furthermore, as shown in FIG. 3, the transmission band that appeared around 550 nm in the conventional method disappeared, making it possible to reflect the entire visible range, and also improving the reflectance.

また、ランプ点灯による耐久性試験の結果を、既述の表
2に示す。ランプ点灯による熱付加は、300℃と35
0℃の場合である。これよりZ n S −M g F
 2膜に比べ、耐久性が3倍程度優れていることか分っ
た。
Further, the results of the durability test by lamp lighting are shown in Table 2 mentioned above. The heat added by lighting the lamp is 300℃ and 35℃.
This is the case at 0°C. From this Z n S −M g F
It was found that the durability was about three times better than that of the two-layer film.

(変形例) 」3記実施例では、多層膜は制御波長λ1−λ2−λ3
の順で積層被着させたが、積層の順序をλ3−λ2−λ
1に変えても同様な光学特性が得られる。
(Modification) In the third embodiment, the multilayer film has a control wavelength λ1-λ2-λ3.
The lamination order was λ3-λ2-λ.
Similar optical characteristics can be obtained even if the value is changed to 1.

また、上記実施例は、電子ビームによる蒸着であるが、
イオンブレーティングよる蒸着においても同様な効果を
挙げることが可能である。
Furthermore, although the above embodiments involve vapor deposition using an electron beam,
Similar effects can also be achieved in vapor deposition by ion blating.

さらにまた、上記実施例では、表3に示すように、基板
側第1層目が光学的膜厚1/4λ1の5iOzである場
合を例に取り説明したが、5iOzの屈折率は基板の屈
折率に殆ど等しいので、第1層目の5iOzは省略して
も、あるいは任意の膜厚を形成しても、分光特性」二は
殆ど影響しない。従って、表3の構成は、実質的に層数
30層と表現する。
Furthermore, in the above embodiment, as shown in Table 3, the first layer on the substrate side is 5iOz with an optical thickness of 1/4λ1, but the refractive index of 5iOz is the refractive index of the substrate. Therefore, even if the first layer of 5 iOz is omitted or formed with an arbitrary thickness, the spectral characteristics "2" will hardly be affected. Therefore, the configuration in Table 3 is expressed as having substantially 30 layers.

また、上記実施例では、n+ 、、nz 、n3の値が
夫々6.3.6の場合を例に取り詳述しfコが、n1≧
6、n2≧3、n3≧6の任意の整数であれば、多層膜
反射鏡としての分光特性は、充分のものが得られる。
In addition, in the above embodiment, the case where the values of n+, nz, and n3 are respectively 6.3.6 will be explained in detail.
6, n2≧3, and n3≧6, sufficient spectral characteristics as a multilayer film reflecting mirror can be obtained.

ところで、上記実施例において、反射領域を3つにした
理由について説明する。
By the way, the reason why there are three reflective areas in the above embodiment will be explained.

即ち、TiO2−8i02系においては屈折率が低いた
め、2つの制御波長では透過帯を生じ、Z n S −
M g F z系と同程度の光学的特性を保持すること
が出来ない。従って、3つ以上の制御波長を使用するこ
とが必要となる。しかし、4つ以上の制御波長を使用し
た場合、積層数が多くなり、コストが高くなるために、
経済的な面から実用性に問題があるため、3つに限定さ
れる。
That is, since the refractive index of the TiO2-8i02 system is low, a transmission band is generated at the two control wavelengths, and Z n S -
It is not possible to maintain optical properties comparable to those of the M g F z system. Therefore, it becomes necessary to use three or more control wavelengths. However, when four or more control wavelengths are used, the number of laminated layers increases and the cost increases.
Since there are problems with practicality from an economical point of view, the number is limited to three.

又、領域を制限する理由について説明すると、冷光鏡は
口■視光を反射して赤外領域を通過させ、照射物体を熱
線によって加熱されないようにするものであり、赤外の
反射波長域は8’OOn mまでに制限される。また、
この発明の多層膜反射鏡に用いられる基板は、紫外カッ
トのガラス基板であり、短波長域へ多層膜だけで反射帯
域を広げることは無意味であり、400nmまでモ充分
と考えられる。従って、多層膜による反射帯域は400
nmから800nmに加減なく限定される。
Also, to explain the reason for limiting the area, a cold light mirror reflects the oral light and allows it to pass through the infrared region, so that the irradiated object is not heated by the heat rays, and the infrared reflection wavelength range is Limited to 8'OOn m. Also,
The substrate used in the multilayer film reflecting mirror of the present invention is an ultraviolet-cut glass substrate, and it is meaningless to widen the reflection band to a short wavelength region using only a multilayer film, and it is considered that it is sufficient to extend the reflection band up to 400 nm. Therefore, the reflection band due to the multilayer film is 400
It is limited without limitation from nm to 800 nm.

尚、ここでいう反射帯域の端部を決める基準は、短波長
の端が透過率が50%にダウンする波長、長波長の端は
透過率が50%にアップする波長である。
The criteria for determining the ends of the reflection band here are that the short wavelength end is a wavelength at which the transmittance drops to 50%, and the long wavelength end is a wavelength at which the transmittance increases to 50%.

さて、第4図に示す制御波長λ1により[H−L12の
みを被着させた場合の光学的特性を示す。この場合の、
反射帯域は534nm〜805nm、帯域幅251nm
、ピーク波長657nmである。同様に、制御波長λ3
により[H−L12のみを被着させた場合の光学的特性
を、第5図に示す。この場合の、反射帯域は400nm
〜591nm、帯域幅191nm、ピーク波長474n
mである。更に、両者を積層させた場合の光学的特性を
第6図に示す。530nm〜640nmにリップルを生
ずるが、これを取り除くため、第7図に示す光学的特性
を有する制御波長λ2による反射帯域471nm〜70
9nm、帯域幅238nm、ピーク波長566nmの[
H−L]3層をスペーサにすることにより、既述の第1
図に示す光学的特性を得ることが出来る。そして、40
0nm〜800nmを反射させるため、適当な帯域幅で
行なうことは、制御波長の関係から不可能である。また
、反射帯域の端を合せるため、制御波長λ1及びλ3に
よる反射帯域をずらせることは出来ない。また、スペー
サにする制御波長λ2による反射帯域をずらせることは
、多少は可能であるが、製作上得策とは言えない。従っ
て、3つの領域は限定される。それに応じて、3つの制
御波長λ1、λ2、λ3も、特許請求の範囲第1項に記
載の値の範囲に限定される。
Now, optical characteristics when only [H-L12] is deposited are shown using the control wavelength λ1 shown in FIG. In this case,
Reflection band is 534nm to 805nm, bandwidth 251nm
, the peak wavelength is 657 nm. Similarly, the control wavelength λ3
FIG. 5 shows the optical characteristics when only H-L12 was deposited. In this case, the reflection band is 400nm
~591nm, bandwidth 191nm, peak wavelength 474n
It is m. Further, FIG. 6 shows the optical characteristics when both are laminated. A ripple occurs between 530 nm and 640 nm, but in order to remove this ripple, a reflection band of 471 nm to 70 nm is created using a control wavelength λ2 having the optical characteristics shown in FIG.
9 nm, bandwidth 238 nm, peak wavelength 566 nm [
H-L] By using the three layers as spacers, the first
The optical characteristics shown in the figure can be obtained. And 40
In order to reflect wavelengths from 0 nm to 800 nm, it is impossible to do so with an appropriate bandwidth due to the control wavelength. Furthermore, in order to align the ends of the reflection bands, it is not possible to shift the reflection bands due to the control wavelengths λ1 and λ3. Further, although it is possible to shift the reflection band using the control wavelength λ2 of the spacer to some extent, it is not a good idea in terms of manufacturing. Therefore, three areas are limited. Accordingly, the three control wavelengths λ1, λ2, λ3 are also limited to the range of values set forth in claim 1.

次に、3つの制御波長λ電、λ2、λ3を用いる必要性
は、この発明では制御波長を3つにすることにより、Z
 n S −M g F Z系と同程度の光学的特性を
得ることが出来るためである。
Next, the need to use the three control wavelengths λ, λ2, and λ3 can be eliminated by using three control wavelengths in this invention.
This is because optical characteristics comparable to those of the nS-MgFZ system can be obtained.

また、積層順序を限定する理由は、積層順序をその他の
組合せに変えた場合、不適当な干渉を起し、所定の光学
的特性を得ることが出来ないため、l3記実施例に記載
した場合だけに限定される。
In addition, the reason for limiting the lamination order is that if the lamination order is changed to another combination, inappropriate interference will occur and predetermined optical characteristics cannot be obtained. limited to only.

[発明の効果] この発明によれば、凹面状ガラス基板の内面に、TiO
2−3iO2系からなる交互層を3つの異なる制御波長
λlnm、λ2nm、λ3nmで構成してなる多層膜が
形成されているので、ハロゲンランプ点灯時の熱負荷が
350℃で150時間、300℃で250時間剥離が生
じることなく、ZnS−MgF2で構成されるものより
も3倍程度長寿命化が図れた。また、光学的特性も可視
域全域を反射することが可能となった。
[Effect of the invention] According to the invention, TiO is formed on the inner surface of the concave glass substrate.
Since the multilayer film is formed by configuring alternating layers of 2-3iO2 system with three different control wavelengths λlnm, λ2nm, and λ3nm, the heat load when the halogen lamp is turned on is 350℃ for 150 hours, and 300℃ for 150 hours. No peeling occurred for 250 hours, and the lifespan was approximately three times longer than that of ZnS-MgF2. In addition, it has become possible to reflect the entire visible range in terms of optical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る多層膜反射鏡を示す
断面図、第2図はこの発明の一実施例に係る多層膜反射
鏡の製造方法に用いる電子ビーム蒸着装置を示す構成図
、第3図はこの発明の多層膜反射鏡における光学的特性
を示す特性曲線図、第4図乃至第7図は各種条件におけ
る光学的特性を示す特性曲線図である。 11・・・凹面状ガラス基板、13・・・多層膜、14
・・・光源。 出願人代理人 弁理士 鈴江武彦 第 1 図 第2図 rL  長(nm) 第3図 第4図 !L 畏 (nm) 第5図 A 灸(nm) 第6図
FIG. 1 is a sectional view showing a multilayer reflector according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an electron beam evaporation apparatus used in a method for manufacturing a multilayer reflector according to an embodiment of the present invention. , FIG. 3 is a characteristic curve diagram showing the optical characteristics of the multilayer film reflecting mirror of the present invention, and FIGS. 4 to 7 are characteristic curve diagrams showing the optical characteristics under various conditions. 11... Concave glass substrate, 13... Multilayer film, 14
···light source. Applicant's agent Patent attorney Takehiko Suzue No. 1 Figure 2 rL Length (nm) Figure 3 Figure 4! L A (nm) Fig. 5 A Moxibustion (nm) Fig. 6

Claims (5)

【特許請求の範囲】[Claims] (1)凹面状ガラス基板の内面に、主に高屈折率物質(
H)と低屈折率物質(L)の交互層から成る多層膜が形
成されて成る多層膜反射鏡において、 上記高屈折率物質(H)が二酸化チタンであり、上記低
屈折率物質(L)が二酸化シリコンであり、且つ上記多
層膜が、反射帯の中心波長が430nm乃至510nm
の範囲にある第1の交互層と、反射帯の中心波長が52
0nm乃至620nmの範囲にある第2の交互層と、反
射帯の中心波長が650nm乃至750nmの範囲にあ
る第3の交互層とから成ることを特徴とする多層膜反射
鏡。
(1) Mainly high refractive index material (
In a multilayer reflector formed of a multilayer film consisting of alternating layers of H) and a low refractive index material (L), the high refractive index material (H) is titanium dioxide, and the low refractive index material (L) is titanium dioxide. is silicon dioxide, and the multilayer film has a reflection band center wavelength of 430 nm to 510 nm.
and the center wavelength of the reflection band is in the range of 52
A multilayer reflector comprising second alternating layers having a wavelength in the range of 0 nm to 620 nm and third alternating layers having a center wavelength of the reflection band in the range of 650 nm to 750 nm.
(2)上記第1の交互層を[H_1・L_1]^n_1
、上記第2の交互層を[H_2・L_2]^n_2、上
記第3の交互層を[H_3・L_3]^n_3とした場
合、n_1>n_2、n_3>n_2(但しn_1、n
_2、n_3は自然数)であることを特徴とする特許請
求の範囲第1項記載の多層膜反射鏡。
(2) The first alternating layer is [H_1・L_1]^n_1
, if the second alternating layer is [H_2・L_2]^n_2 and the third alternating layer is [H_3・L_3]^n_3, then n_1>n_2, n_3>n_2 (however, n_1, n
The multilayer film reflecting mirror according to claim 1, wherein _2 and n_3 are natural numbers.
(3)上記多層膜が、上記ガラス基板側より上記第1の
交互層、第2の交互層、第3の交互層の順で形成されて
いるか、又は上記第3の交互層、第2の交互層、第1の
交互層の順で形成されていることを特徴とする特許請求
の範囲第1項又は第2項記載の多層膜反射鏡。
(3) The multilayer film is formed in the order of the first alternating layer, the second alternating layer, and the third alternating layer from the glass substrate side, or the third alternating layer, the second alternating layer, and the like. 3. The multilayer film reflecting mirror according to claim 1, wherein the multilayer film reflecting mirror is formed in the order of alternating layers and first alternating layers.
(4)上記n_1の値が6、上記n_2の値が3、上記
n_3の値が6にして、層数30である場合の特許請求
の範囲第1項乃至第3項記載の多層膜反射鏡。
(4) The multilayer film reflecting mirror according to claims 1 to 3, in which the value of n_1 is 6, the value of n_2 is 3, the value of n_3 is 6, and the number of layers is 30. .
(5)凹面状ガラス基板の内面に、主に高屈折率物質(
H)と低屈折率物質(L)の交互層より成る多層膜を形
成する多層膜反射鏡の製造方法において、 上記多層膜の形成時の雰囲気の全圧が、 10^−^4Torr乃至10^−^2Torrの範囲
にあり、上記高屈折率物質(H)が二酸化チタンの場合
は酸素と不活性ガスの混合ガスの雰囲気で形成し、上記
低屈折率物質(L)が二酸化シリコンの場合は酸素と不
活性ガスの混合ガス中、又は不活性ガスのみの雰囲気で
形成することを特徴とする多層膜反射鏡の製造方法。
(5) Mainly high refractive index material (
In the method for manufacturing a multilayer film reflecting mirror in which a multilayer film is formed of alternating layers of H) and a low refractive index material (L), the total pressure of the atmosphere during formation of the multilayer film is 10^-^4 Torr to 10^ -^2 Torr, when the high refractive index substance (H) is titanium dioxide, it is formed in a mixed gas atmosphere of oxygen and inert gas, and when the low refractive index substance (L) is silicon dioxide, it is formed in a mixed gas atmosphere of oxygen and inert gas. A method for manufacturing a multilayer reflective mirror, characterized in that the mirror is formed in a mixed gas of oxygen and an inert gas, or in an atmosphere of only an inert gas.
JP30631986A 1986-12-24 1986-12-24 Reflecting mirror consisting of multi-layered films and its production Pending JPS63159811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30631986A JPS63159811A (en) 1986-12-24 1986-12-24 Reflecting mirror consisting of multi-layered films and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30631986A JPS63159811A (en) 1986-12-24 1986-12-24 Reflecting mirror consisting of multi-layered films and its production

Publications (1)

Publication Number Publication Date
JPS63159811A true JPS63159811A (en) 1988-07-02

Family

ID=17955678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30631986A Pending JPS63159811A (en) 1986-12-24 1986-12-24 Reflecting mirror consisting of multi-layered films and its production

Country Status (1)

Country Link
JP (1) JPS63159811A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312605A (en) * 1989-06-09 1991-01-21 Topcon Corp Multi-layered film mirror reflecting two-wavelength of ultraviolet-light and visible-light
JPH03209406A (en) * 1989-10-10 1991-09-12 General Electric Co <Ge> Glass reflector covered with optical interfering film by low pressure chemical vapor deposition method
JPH0434502A (en) * 1990-05-31 1992-02-05 Toshiba Glass Co Ltd Production of multilayered reflecting mirror
JPH0434503A (en) * 1990-05-31 1992-02-05 Toshiba Glass Co Ltd Multilayered reflecting mirror
JPH0735910A (en) * 1993-07-20 1995-02-07 Orc Mfg Co Ltd Multilayered reflection interference film
JPH0749496A (en) * 1992-10-09 1995-02-21 Asahi Glass Co Ltd Lighting system and liquid crystal display device
JP2016186531A (en) * 2015-03-27 2016-10-27 株式会社大真空 Visible light cut filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312605A (en) * 1989-06-09 1991-01-21 Topcon Corp Multi-layered film mirror reflecting two-wavelength of ultraviolet-light and visible-light
JPH03209406A (en) * 1989-10-10 1991-09-12 General Electric Co <Ge> Glass reflector covered with optical interfering film by low pressure chemical vapor deposition method
JPH0434502A (en) * 1990-05-31 1992-02-05 Toshiba Glass Co Ltd Production of multilayered reflecting mirror
JPH0434503A (en) * 1990-05-31 1992-02-05 Toshiba Glass Co Ltd Multilayered reflecting mirror
JPH0749496A (en) * 1992-10-09 1995-02-21 Asahi Glass Co Ltd Lighting system and liquid crystal display device
JPH0735910A (en) * 1993-07-20 1995-02-07 Orc Mfg Co Ltd Multilayered reflection interference film
JP2016186531A (en) * 2015-03-27 2016-10-27 株式会社大真空 Visible light cut filter

Similar Documents

Publication Publication Date Title
US4784467A (en) Multi-layered anti-reflection coating
US5715103A (en) Neutral density (ND) filter
US6115180A (en) Optical multilayered-film filter
JP2003515196A (en) Thermal filter and method of manufacturing the filter
JPS63159811A (en) Reflecting mirror consisting of multi-layered films and its production
US6441541B1 (en) Optical interference coatings and lamps using same
JPH08254612A (en) Multilayer film optical component and manufacture thereof
JP2002520774A (en) Electric lamp
JPS6273202A (en) Production of thin optical film
KR20010110712A (en) Electric lamp and interference film
JPS6222121B2 (en)
JPS5926704A (en) Multilayered film reflecting mirror
JPS6177018A (en) Filter
JPS62143002A (en) Dielectric multi-layer film nonreflective coating
JP2928784B2 (en) Multilayer reflector
JP3404765B2 (en) Metal halide lamp with functionally gradient film and lighting equipment therefor
JP2000171607A (en) Highly dense multilayered thin film and its film forming method
JPH11326634A (en) Optical multilayer thin film and production of the optical multilayer thin film
JPH04107505A (en) Wedgelike interference filter
JPH0784105A (en) Reflecting film
JPH0629882B2 (en) Multilayer film mirror
CN102187254A (en) High refractive index materials for energy efficient lamps
JP2815949B2 (en) Anti-reflective coating
JP3679500B2 (en) Light splitting film, ND filter, and light splitting element
JPS6296901A (en) Synthetic resin lens