JPH0735910A - Multilayered reflection interference film - Google Patents

Multilayered reflection interference film

Info

Publication number
JPH0735910A
JPH0735910A JP17907893A JP17907893A JPH0735910A JP H0735910 A JPH0735910 A JP H0735910A JP 17907893 A JP17907893 A JP 17907893A JP 17907893 A JP17907893 A JP 17907893A JP H0735910 A JPH0735910 A JP H0735910A
Authority
JP
Japan
Prior art keywords
film
reflection
reflection interference
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17907893A
Other languages
Japanese (ja)
Inventor
Tadamasa Kasai
忠正 河西
Izumi Serizawa
和泉 芹澤
Minoru Watanuki
稔 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP17907893A priority Critical patent/JPH0735910A/en
Publication of JPH0735910A publication Critical patent/JPH0735910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To provide the multilayered reflection interference films which reflect light having specific wavelengths nearly uniformly over a wide range of a curved reflection surface. CONSTITUTION:The multilayered reflection interference films are provided with plural reflection interference films 24, 25, 26, 27 formed by alternately depositing dielectric materials varying refractive indices by evaporation on curved surfaces. The thicknesses of the respective reflection interference films are so set that the film thicknesses at any of the plural points E, F, G, H varying in vapor deposition speeds on the curved surfaces at any of these points are equaled to nearly 1/4 the wavelengths of the specified light. The spacings between the design wavelengths corresponding to the respective film thicknesses are so set as to be nearly equaled to the reflection wavelength band width having prescribed reflectivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湾曲した反射面の広い範
囲に渡って特定の波長をもった光をほぼ一様に反射させ
る、特に成膜が容易な多層反射干渉膜に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer reflection interference film which is capable of almost uniformly reflecting light having a specific wavelength over a wide range of a curved reflecting surface and which can be easily formed.

【0002】[0002]

【従来の技術】放電灯の外表面に反射干渉膜(以下、反
射膜と呼ぶ)を形成し、プラズマが発生した光をこの反
射膜に反射させて照射光の強度を強めるようにした放電
灯が提案されている(詳細は特開昭53−25084号
公報を参照)。
2. Description of the Related Art A discharge lamp in which a reflection interference film (hereinafter referred to as a reflection film) is formed on the outer surface of a discharge lamp, and light generated by plasma is reflected by the reflection film to enhance the intensity of irradiation light. Has been proposed (for details, refer to JP-A-53-25084).

【0003】この放電灯は図9に示すように、円筒状を
した灯体1の反照射側に、二酸化ジルコニウムの薄膜及
びシリカの薄膜(いずれも図示せず)からなる反射膜2
を被着したもので、各薄膜の厚さは反射させようとする
光の波長、すなわち設計波長の約4分の1に設定されて
いる。
As shown in FIG. 9, in this discharge lamp, a reflection film 2 made of a thin film of zirconium dioxide and a thin film of silica (neither is shown) is provided on the side opposite to the irradiation side of a cylindrical lamp body 1.
The thickness of each thin film is set to the wavelength of the light to be reflected, that is, about ¼ of the design wavelength.

【0004】[0004]

【発明が解決しようとする課題】しかし、この放電灯に
は次に述べるような問題点があった。 (1)灯体1に反射膜2を形成するには、図9に仮想線
で示すように真空容器3の内部に灯体1を取り付け、こ
の灯体1の下方の充分、離れたところに位置する蒸発源
4から蒸発物質5を上方に飛来させて灯体1の下面に蒸
着させるようにしており、この真空蒸着法によると、灯
体下面の各部分における半径方向の蒸着速度が異なるた
め、反射膜の厚さは灯体の最下部6で最も厚く、この最
下部6から離隔するのに従って漸次、薄くなっている。
However, this discharge lamp has the following problems. (1) In order to form the reflection film 2 on the lamp body 1, the lamp body 1 is attached inside the vacuum container 3 as shown by a virtual line in FIG. The evaporation material 5 is made to fly upward from the located evaporation source 4 and vapor-deposited on the lower surface of the lamp body 1. According to this vacuum vapor deposition method, the vapor deposition rate in the radial direction at each portion of the lower surface of the lamp body is different. The thickness of the reflection film is thickest at the lowermost portion 6 of the lamp body, and gradually becomes thinner as the distance from the lowermost portion 6 increases.

【0005】(2)従って、最下部6における膜厚を設
計波長に対応させて成膜すると、最下部6では図10に
示すように設計波長を中心とする或る波長帯域幅aをも
った光が反射するが、それ以外の部分では反射波の波長
が漸次、短くなり、反射させようとする波長の光を充分
に強めることができない。
(2) Therefore, when the film is formed with the film thickness in the lowermost portion 6 corresponding to the design wavelength, the lowermost portion 6 has a certain wavelength bandwidth a centered on the design wavelength as shown in FIG. Although the light is reflected, the wavelength of the reflected wave is gradually shortened in other portions, and the light of the wavelength to be reflected cannot be sufficiently strengthened.

【0006】前記の問題点を解決するため、図11に示
すように一定の厚さを持った反射膜2aを灯体1の反照
射側に形成した放電灯が提案されており、この放電灯に
よると反射膜2aの全面に渡って所望の波長の光を反射
させることができる。
In order to solve the above problems, there has been proposed a discharge lamp in which a reflecting film 2a having a constant thickness is formed on the side opposite to the irradiation side of the lamp body 1 as shown in FIG. According to the above, it is possible to reflect light having a desired wavelength over the entire surface of the reflective film 2a.

【0007】しかし、円筒状に形成した灯体1の外表面
に一定厚さの反射膜を形成するには、図12に示すよう
に、灯体1をその軸線7,7の周りに自転させながら
(矢印b参照)真空蒸着を行う必要があり、蒸着のため
の作業及び設備が複雑になるので、製品の製造コストが
高価になるという問題点があった。尚、図中の8は駆動
用モータ、9は自転用の歯車、10はラック、11は蒸
着防止用のマスクである。
However, in order to form a reflection film having a constant thickness on the outer surface of the cylindrical lamp body 1, as shown in FIG. 12, the lamp body 1 is rotated about its axes 7, 7. However (see arrow b), it is necessary to perform vacuum vapor deposition, which complicates the work and equipment for vapor deposition, resulting in an increase in the manufacturing cost of the product. In the figure, 8 is a drive motor, 9 is a gear for rotation, 10 is a rack, and 11 is a mask for preventing vapor deposition.

【0008】また球面状をした反射面の広い範囲に渡っ
て特定の波長をもった光を反射させるため、図13に示
すように球体12の下方にうちわ(団扇)状に形成した
遮光盤13を配置し、球体12を矢印m方向に自転させ
ながら球体の下面14に蒸着物質5を蒸着する方法があ
る。しかし、この方法は遮光盤13の輪郭線15を設定
するのに高度の技術を必要とし、試行錯誤を何回も繰り
返すので、成膜作業の準備に多大の時間を費やすという
問題点があった。
Further, in order to reflect light having a specific wavelength over a wide range of the spherical reflecting surface, as shown in FIG. 13, a light shielding plate 13 formed in a fan (fan) shape below the sphere 12 is formed. Is arranged, and the vapor deposition material 5 is vapor-deposited on the lower surface 14 of the sphere while rotating the sphere 12 in the direction of arrow m. However, this method requires a high level of technology to set the contour line 15 of the shading board 13, and since trial and error is repeated many times, there is a problem that a large amount of time is spent preparing for the film forming work. .

【0009】本発明は前記の問題点に鑑み、複雑な蒸着
設備又は遮光盤等を用いることなく、湾曲した反射面の
広い範囲に渡って特定の波長をもった光をほぼ一様に反
射させる多層反射干渉膜を提供することを課題とする。
In view of the above-mentioned problems, the present invention reflects light having a specific wavelength almost uniformly over a wide range of a curved reflecting surface without using a complicated vapor deposition equipment or a light shielding plate. An object is to provide a multilayer reflection interference film.

【0010】[0010]

【課題を解決するための手段】前記の課題を解決するた
め、本発明では次の手段を構成した。 (請求項1) 屈折率が異なる誘電性材料を曲面上に交
互に蒸着してなる複数の反射干渉膜を備え、各反射干渉
膜の膜厚は、曲面上の蒸着速度が異なる複数個所のいず
れかにおいてその個所の膜厚が特定した光の波長のほぼ
4分の1に等しくなるように設定されており、各膜厚に
対応する設計波長相互間の間隔が、所定の反射率を有す
る反射波長帯域幅にほぼ等しくなるように設定されてい
ることを特徴とする多層反射干渉膜。 (請求項2) 特定した光の波長が365ナノメートル
である請求項1に記載の多層反射干渉膜。
In order to solve the above problems, the present invention has the following means. (Claim 1) A plurality of reflection interference films formed by alternately depositing dielectric materials having different refractive indexes on a curved surface are provided, and the thickness of each reflection interference film is one of a plurality of positions on the curved surface having different deposition rates. Is set so that the film thickness at that location is approximately equal to one-quarter of the specified wavelength of light, and the intervals between the design wavelengths corresponding to the respective film thicknesses are reflections having a predetermined reflectance. A multilayer reflection interference film, which is set to be substantially equal to the wavelength bandwidth. (Claim 2) The multilayer reflection interference film according to claim 1, wherein the specified wavelength of light is 365 nanometers.

【0011】[0011]

【作用】[Action]

(1)複数の反射干渉膜が反射面の異なった部分で特定
の波長をもった光を反射するので、反射面の広い範囲に
渡って特定波長の光を一様に反射させることができる。 (2)各反射干渉膜による反射光の反射率を所定の大き
さに設定するので、前(1)項の効果と合わせて反射光
の強度を強めることができる。
(1) Since the plurality of reflection interference films reflect the light having the specific wavelength at different portions of the reflection surface, it is possible to uniformly reflect the light of the specific wavelength over a wide range of the reflection surface. (2) Since the reflectance of the reflected light by each reflection interference film is set to a predetermined value, the intensity of the reflected light can be strengthened together with the effect of the above (1).

【0012】(3)薄膜を蒸着する際、従来のように蒸
着すべき物体を自転させたり、遮光盤を使用しないの
で、成膜作業が容易である。 (4)特定波長を365ナノメートルに特定すると、高
輝度の紫外線ランプを提供することが可能になり、画像
形成及び紫外線乾燥技術の進歩に大いに貢献することが
できる。
(3) When depositing a thin film, since the object to be vapor-deposited does not rotate and a light-shielding board is not used as in the prior art, the film-forming work is easy. (4) When the specific wavelength is specified to be 365 nm, it becomes possible to provide a high-intensity ultraviolet lamp, which can greatly contribute to the progress of image forming and ultraviolet drying technology.

【0013】[0013]

【実施例】以下、本発明の多層反射干渉膜を円筒状曲面
の外側に適用した場合について、その基本原理を最初に
述べ、引き続き実施例について詳細に説明する。すでに
段落番号0004で述べた要領で、円筒状物体の下面に
真空蒸着を行うと、図3に示すように蒸着物質(図示せ
ず)が物体21の最下部E点を通る接線22に対して垂
直に入射(矢印c)し、物体21の下面に薄膜23が形
成される。
EXAMPLES The basic principle of the case where the multilayer reflection interference film of the present invention is applied to the outside of a cylindrical curved surface will be first described, and then the examples will be described in detail. When vacuum deposition is performed on the lower surface of the cylindrical object in the same manner as described in paragraph No. 0004, a deposition material (not shown) is applied to the tangent line 22 passing through the lowermost point E of the object 21, as shown in FIG. The light enters vertically (arrow c) and a thin film 23 is formed on the lower surface of the object 21.

【0014】いま、E点の膜厚をTE とし、このE点か
ら中心角θだけ離隔した円弧上のF点の膜厚(半径方向
の厚み)をTF とすると、このTF は半径方向の蒸着速
度の減少を考慮し、式(1)で求められる。 TF =TE ×cosθ 式(1)
Assuming that the film thickness at point E is T E, and the film thickness (radial thickness) at point F on an arc separated by a central angle θ from this point E is T F , this T F is the radius. It is calculated by the formula (1) in consideration of the decrease of the vapor deposition rate in the direction. T F = T E × cos θ Equation (1)

【0015】ここで、反射させようとする光の波長を3
65ナノメートルに設定すると、E点における膜厚は3
65ナノメートルの4分の1、すなわち91.25ナノ
メートルとなる。いま、θ=60度とすると、F点の膜
厚TF は式(1)を用いて TF =91.25×cos60度=45.5ナノメート
ル となり、この膜厚TF に対応する設計波長は182ナノ
メートルとなる。すなわちF点では365ナノメートル
の光を反射させることができない。
Here, the wavelength of the light to be reflected is set to 3
When set to 65 nm, the film thickness at point E is 3
This is a quarter of 65 nanometers, or 91.25 nanometers. Now, assuming that θ = 60 degrees, the film thickness T F at the point F becomes T F = 91.25 × cos 60 degrees = 45.5 nanometers using the formula (1), and the design corresponding to this film thickness T F The wavelength will be 182 nanometers. That is, the point F cannot reflect light of 365 nanometers.

【0016】逆に、F点における設計波長を365ナノ
メートルに設定すると、E点では設計波長が730ナノ
メートルとなり、365ナノメートルの光を反射させる
ことができない。
Conversely, if the design wavelength at point F is set to 365 nanometers, the design wavelength at point E will be 730 nanometers and light of 365 nanometers cannot be reflected.

【0017】しかし、E点及びF点の2個所で同時に3
65ナノメートルの光を反射させる方法がある。すなわ
ち設計波長がE点において365ナノメートルになる薄
膜と設計波長がE点において730ナノメートルになる
薄膜を2層に積層するという方法である。
However, at three points E and F at the same time, 3
There is a method of reflecting light of 65 nanometers. That is, it is a method in which a thin film having a design wavelength of 365 nm at point E and a thin film having a design wavelength of 730 nm at point E are laminated in two layers.

【0018】この考え方を拡張すると、E点からF点ま
での円弧上の複数個所で365ナノメートルの光を一様
に反射させることができる。すなわち、365ナノメー
トルから730ナノメートルに至る設計波長の範囲を次
に述べる要領で複数段に分割し、分割した各段の設計波
長ごとに、この波長に対応する膜厚をもった反射干渉膜
を複数層に積層するのである。
Extending this idea, it is possible to uniformly reflect light of 365 nm at a plurality of points on the arc from point E to point F. That is, the range of the design wavelength from 365 nanometers to 730 nanometers is divided into a plurality of stages in the manner described below, and the reflection interference film having a film thickness corresponding to each wavelength of the divided design wavelengths. Is laminated in a plurality of layers.

【0019】次に設計波長範囲の分割方法について説明
する。すでに段落番号0005で述べたように反射面の
各点では、或る波長帯域幅をもった光を反射する。従っ
て、この反射波の波長帯域幅が相互に離間しないよう
に、また過度に重ならないように設計波長範囲を分割す
ると、反射干渉膜の種類を最小限に限定することが可能
になり、経済的である。尚、この際、反射率が90%以
上になる反射波長帯域幅(以下、有効な反射波長帯域幅
と呼ぶ)を用いて設計波長範囲を分割すると、反射光の
強度を一様に強めることができる。
Next, a method of dividing the design wavelength range will be described. As already described in paragraph number 0005, each point on the reflecting surface reflects light having a certain wavelength bandwidth. Therefore, by dividing the design wavelength range so that the wavelength bandwidths of the reflected waves are not separated from each other and do not overlap excessively, it is possible to minimize the types of reflective interference films, which is economical. Is. At this time, if the design wavelength range is divided by using a reflection wavelength bandwidth (hereinafter referred to as an effective reflection wavelength bandwidth) having a reflectance of 90% or more, the intensity of reflected light can be uniformly increased. it can.

【0020】一般に反射波の波長帯域幅は反射干渉膜を
構成する薄膜の層数の増大に伴って増大し、或る値に到
達すると層数が変化してもほとんど変化しないという傾
向をもっているが、この実施例で採用した各反射干渉膜
の層数に対応する有効な反射波長帯域幅は50〜100
ナノメートルであるので、設計波長範囲(365〜73
0ナノメートル)を390,475,565,680ナ
ノメートルの4段階に分割する。
Generally, the wavelength band width of the reflected wave increases with an increase in the number of layers of the thin film forming the reflection interference film, and when it reaches a certain value, it tends to hardly change even if the number of layers changes. The effective reflection wavelength bandwidth corresponding to the number of layers of each reflection interference film adopted in this embodiment is 50 to 100.
Since it is nanometer, it is designed wavelength range (365-73
(0 nanometer) is divided into four stages of 390, 475, 565, 680 nanometers.

【0021】以下、本発明の実施例を図面を参照して説
明する。図1、図2及び図4〜図8は本発明の一実施例
を示すもので、この実施例の多層反射干渉膜20の主要
部は設計波長がそれぞれ680,565,475,39
0ナノメートルの4種類の反射干渉膜24,25,2
6,27によって構成されており、これ等は図1に示す
ように石英ガラスでつくった円筒状の管体28の外表面
に相互に近接して積層されている。尚、図1では図を明
瞭にするため、各反射干渉膜について断面を示すハッチ
ングを省略して描いてある。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1, 2 and 4 to 8 show an embodiment of the present invention. The design wavelengths of the main parts of the multilayer reflection interference film 20 of this embodiment are 680, 565, 475, 39, respectively.
4 types of 0 nm reflection interference films 24, 25, 2
6, 27, which are laminated close to each other on the outer surface of a cylindrical tube body 28 made of quartz glass as shown in FIG. In FIG. 1, hatching showing the cross section of each reflection interference film is omitted for clarity.

【0022】更に詳述すると、各反射干渉膜(以下、反
射膜と呼ぶ)24,25,26,27はいずれも図2に
示すように二酸化硅素(SiO2 、屈折率=2.10)
の薄膜29と、二酸化ジルコニウム(ZrO2 、屈折率
=1.47)の薄膜30を交互に積層してつくられてお
り、各反射膜24,25,26,27の層数はそれぞれ
16層、17層、12層、13層である。また各反射膜
24,25,26,27の管体最下部Eにおける薄膜の
厚さは、すでに述べた各設計波長の4分の1、すなわち
170.913、141.25、118.65、97.
462ナノメートルである。
More specifically, each reflection interference film (hereinafter referred to as a reflection film) 24, 25, 26, 27 is made of silicon dioxide (SiO 2 , refractive index = 2.10) as shown in FIG.
Thin film 29 of zirconium dioxide and thin film 30 of zirconium dioxide (ZrO 2 , refractive index = 1.47) are alternately laminated, and the number of layers of each reflective film 24, 25, 26, 27 is 16 layers, There are 17 layers, 12 layers, and 13 layers. Further, the thickness of the thin film at the lowermost portion E of the tubular body of each reflective film 24, 25, 26, 27 is one-fourth of each design wavelength described above, that is, 170.913, 141.25, 118.65, 97. .
It is 462 nanometers.

【0023】尚、管体28に最も近い反射膜24と管体
外表面33の間には、両者の結合を強固にするため、図
2に示すように管体28と同材質の二酸化硅素の薄膜3
0aが挿着されている。各薄膜29,30,30aを成
膜するには、図9に示す真空蒸着法によるほかスパッタ
リング法、CVD法等を用いてもよい。成膜中、管体2
8は静止状態にあるので、成膜作業が容易である。
In order to strengthen the bond between the reflective film 24 closest to the tube body 28 and the outer surface 33 of the tube body, as shown in FIG. 2, a thin film of silicon dioxide of the same material as the tube body 28. Three
0a is inserted. To form each thin film 29, 30, 30a, a sputtering method, a CVD method or the like may be used in addition to the vacuum deposition method shown in FIG. Tube 2 during film formation
Since No. 8 is in a stationary state, the film forming work is easy.

【0024】次に、この多層反射干渉膜の作用について
説明する。いま、図1に示すように管体28の中心部O
に線光源35を配置し、この線光源35が照射した光が
多層反射干渉膜に入射した場合のE点,G点(中心角E
OG=30度)、H点(中心角EOH=45度)、F点
(中心角EOF=60度)における反射光36,37,
38,39の特性を図4ないし図7に示す(但し管体2
8の透過率を100%とする)。
Next, the operation of this multilayer reflection interference film will be described. Now, as shown in FIG. 1, the central portion O of the pipe 28 is
A line light source 35 is arranged at the point E, and points E and G (center angle E when the light emitted by the line light source 35 is incident on the multilayer reflection interference film).
OG = 30 degrees), H point (center angle EOH = 45 degrees), and reflected light 36, 37 at point F (center angle EOF = 60 degrees).
The characteristics of Nos. 38 and 39 are shown in FIGS.
8 has a transmittance of 100%).

【0025】これ等の図を観察すると次のことが分か
る。 (1)膜厚の厚いE点では各反射膜24,25,26,
27から反射した反射波が相互に強め合い、あるいは弱
め合って反射率が大きく且つ波長帯域幅が広い反射光を
つくり出している。そして、この反射光は膜厚が減少す
るのに従って図の左方に移動すると共に、反射波長帯域
幅が漸次、狭くなる。
Observation of these figures reveals the following. (1) At the thick point E, the reflection films 24, 25, 26,
The reflected waves reflected from 27 are mutually strengthened or weakened to create reflected light having a large reflectance and a wide wavelength band. Then, this reflected light moves to the left in the drawing as the film thickness decreases, and the reflected wavelength bandwidth gradually narrows.

【0026】(2)はじめに特定した365ナノメート
ルの波長の光(段落番号0015参照)が図4ないし図
7に示す各反射光36,37,38,39の中に含まれ
ており、この多層反射干渉膜によると、中心角がゼロか
ら60度の広い範囲に渡って365ナノメートルの光を
100%に近い反射率で反射している。
(2) The light having the wavelength of 365 nm specified above (see paragraph number 0015) is included in each of the reflected lights 36, 37, 38, 39 shown in FIGS. According to the reflection interference film, light of 365 nm is reflected with a reflectance close to 100% over a wide range of center angles from 0 to 60 degrees.

【0027】中心角の変化と各反射膜の膜厚の変化の関
係及び中心角の変化と各反射膜の設計波長の変化の関係
を図8に示す。この図は理解を容易にするため、各設計
波長に対応する有効な反射波長帯域幅J,K,L,Mが
いずれも一本の境界線42,43,44を介して相互に
接続するように描いてあるが、この図を観察すると次の
事項が理解できる。
FIG. 8 shows the relationship between the change of the central angle and the film thickness of each reflective film, and the relationship between the change of the central angle and the change of the design wavelength of each reflective film. In order to facilitate understanding of this figure, the effective reflection wavelength bandwidths J, K, L and M corresponding to the respective design wavelengths are all connected to each other through one boundary line 42, 43 and 44. The following matters can be understood by observing this figure.

【0028】(1)各反射膜24,25,26,27は
反射面の異なった部分A,B,C,Dでそれぞれ365
ナノメートルの光を反射しており、全体として約60度
の中心角の範囲で反射面を有効に利用している。 (2)一方、従来の一種類の反射干渉膜(例えば特開昭
53−25084号)では、反射面の部分D、すなわち
中心角が約30度の範囲で365ナノメートルの光を反
射しており、本発明に比べると、反射面の利用度が約半
分である。
(1) Each of the reflection films 24, 25, 26 and 27 has 365 different reflection surface portions A, B, C and D, respectively.
It reflects light of nanometers and effectively uses the reflecting surface in the range of the central angle of about 60 degrees as a whole. (2) On the other hand, one type of conventional reflection interference film (for example, Japanese Patent Laid-Open No. 53-25084) reflects light of 365 nm in a portion D of the reflecting surface, that is, in the range of a central angle of about 30 degrees. Therefore, the utilization of the reflective surface is about half that of the present invention.

【0029】(3)反射面の各部分A,B,C,Dは中
心角の増大に伴って漸次、狭くなっているが、これは各
反射膜の膜厚変化曲線45,46,47,48が示すよ
うに中心角の増大に伴って膜厚が急速に薄くなるためで
あり、更に別の反射膜を積層しても、365ナノメート
ルの波長の光を反射する反射面の増加は僅少である。
(3) The respective portions A, B, C, D of the reflecting surface gradually become narrower as the central angle increases. This is due to the film thickness change curves 45, 46, 47 of the respective reflecting films. This is because the film thickness rapidly decreases as the central angle increases, as indicated by 48, and even if another reflective film is laminated, the increase in the reflective surface that reflects light with a wavelength of 365 nm is slight. Is.

【0030】尚、本発明は前述の実施例にのみ限定され
るものではなく、例えば、薄膜を構成する材料は二酸化
硅素又は二酸化ジルコニウム以外の別の材料を使用して
もよいこと、また反射面を4分割する代わりに、更に細
かく分割してもよいこと、更に本発明の多層反射干渉膜
を球面、あるいは球面以外の回転体等の表面に適用して
もよいこと等、その他本発明の要旨を逸脱しない範囲内
で、種々の変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and for example, the material forming the thin film may be another material other than silicon dioxide or zirconium dioxide, and the reflecting surface. Instead of dividing into four, it may be finely divided, and further, the multilayer reflection interference film of the present invention may be applied to the surface of a spherical surface or a rotating body other than a spherical surface, and the like. It goes without saying that various changes can be made without departing from the above.

【0031】[0031]

【発明の効果】以上に述べたように本発明は次の優れた
効果を発揮する。 (1)複数の反射干渉膜が反射面の異なった部分で特定
の波長をもった光を反射するので、反射面の広い範囲に
渡って特定波長の光を一様に反射させることができる。 (2)各反射干渉膜による反射光の反射率を所定の大き
さに設定するので、前(1)項の効果と合わせて反射光
の強度を強めることができる。
As described above, the present invention exhibits the following excellent effects. (1) Since the plurality of reflection interference films reflect the light having the specific wavelength at different portions of the reflection surface, it is possible to uniformly reflect the light of the specific wavelength over a wide range of the reflection surface. (2) Since the reflectance of the reflected light by each reflection interference film is set to a predetermined value, the intensity of the reflected light can be strengthened together with the effect of the above (1).

【0032】(3)薄膜を蒸着する際、従来のように蒸
着すべき物体を自転させたり、遮光盤を使用しないの
で、成膜作業が容易である。 (4)特定波長を365ナノメートルに特定すると、高
輝度の紫外線ランプを提供することが可能になり、画像
形成及び紫外線乾燥技術の進歩に大いに貢献することが
できる。
(3) When depositing a thin film, the object to be vapor-deposited is not rotated or a light-shielding board is not used as in the conventional case, so that the film-forming work is easy. (4) When the specific wavelength is specified to be 365 nm, it becomes possible to provide a high-intensity ultraviolet lamp, which can greatly contribute to the progress of image forming and ultraviolet drying technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1におけるII部の拡大図である。FIG. 2 is an enlarged view of a II portion in FIG.

【図3】本発明の基本原理を説明する切断面である。FIG. 3 is a cross section for explaining the basic principle of the present invention.

【図4】図1に示す多層反射干渉膜の反射特性を示す線
図である。
FIG. 4 is a diagram showing the reflection characteristics of the multilayer reflection interference film shown in FIG.

【図5】同じく、反射特定を示す線図である。FIG. 5 is also a diagram showing reflection identification.

【図6】同じく、反射特性を示す線図である。FIG. 6 is likewise a diagram showing a reflection characteristic.

【図7】同じく、反射特性を示す線図である。FIG. 7 is likewise a diagram showing a reflection characteristic.

【図8】複数の反射干渉膜の作用を説明する図である。FIG. 8 is a diagram illustrating the operation of a plurality of reflection interference films.

【図9】従来の反射干渉膜と真空蒸着法を説明する断面
図である。
FIG. 9 is a cross-sectional view illustrating a conventional reflection interference film and a vacuum deposition method.

【図10】図9における反射干渉膜の反射特性を示す線
図である。
10 is a diagram showing the reflection characteristics of the reflection interference film in FIG.

【図11】従来の別の反射干渉膜を説明する断面図であ
る。
FIG. 11 is a cross-sectional view illustrating another conventional reflection interference film.

【図12】円筒状物体を自転させながら真空蒸着を行う
装置の断面図である。
FIG. 12 is a cross-sectional view of an apparatus for performing vacuum evaporation while rotating a cylindrical object.

【図13】球体を自転させながら真空蒸着を行う装置の
断面図である。
FIG. 13 is a cross-sectional view of an apparatus for performing vacuum vapor deposition while rotating a sphere.

【図14】図13における遮光盤の平面図である。FIG. 14 is a plan view of the light blocking plate in FIG.

【符号の説明】[Explanation of symbols]

24,25,26,27 反射干渉膜 24, 25, 26, 27 Reflective interference film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 屈折率が異なる誘電性材料を曲面上に交
互に蒸着してなる複数の反射干渉膜を備え、 各反射干渉膜の膜厚は、曲面上の蒸着速度が異なる複数
個所のいずれかにおいてその個所の膜厚が特定した光の
波長のほぼ4分の1に等しくなるように設定されてお
り、 各膜厚に対応する設計波長相互間の間隔が、所定の反射
率を有する反射波長帯域幅にほぼ等しくなるように設定
されていることを特徴とする多層反射干渉膜。
1. A plurality of reflection interference films formed by alternately depositing dielectric materials having different refractive indexes on a curved surface, each reflection interference film having a film thickness at any of a plurality of positions on the curved surface having different deposition rates. Is set so that the film thickness at that location is approximately equal to one-quarter of the specified wavelength of light, and the intervals between the design wavelengths corresponding to the respective film thicknesses are reflections having a predetermined reflectance. A multilayer reflection interference film, which is set to be substantially equal to the wavelength bandwidth.
【請求項2】 特定した光の波長が365ナノメートル
である請求項1に記載の多層反射干渉膜。
2. The multilayer reflective interference film according to claim 1, wherein the specified wavelength of light is 365 nanometers.
JP17907893A 1993-07-20 1993-07-20 Multilayered reflection interference film Pending JPH0735910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17907893A JPH0735910A (en) 1993-07-20 1993-07-20 Multilayered reflection interference film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17907893A JPH0735910A (en) 1993-07-20 1993-07-20 Multilayered reflection interference film

Publications (1)

Publication Number Publication Date
JPH0735910A true JPH0735910A (en) 1995-02-07

Family

ID=16059704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17907893A Pending JPH0735910A (en) 1993-07-20 1993-07-20 Multilayered reflection interference film

Country Status (1)

Country Link
JP (1) JPH0735910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006862A1 (en) * 2000-07-13 2002-01-24 Nippon Sheet Glass Co., Ltd. Optical device having wavelength selectivity and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159811A (en) * 1986-12-24 1988-07-02 Toshiba Corp Reflecting mirror consisting of multi-layered films and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159811A (en) * 1986-12-24 1988-07-02 Toshiba Corp Reflecting mirror consisting of multi-layered films and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006862A1 (en) * 2000-07-13 2002-01-24 Nippon Sheet Glass Co., Ltd. Optical device having wavelength selectivity and its manufacturing method

Similar Documents

Publication Publication Date Title
JP7237057B2 (en) Polarizing element
CA2220291C (en) Multilayer thin film dielectric bandpass filter
US4756602A (en) Narrowband optical filter with partitioned cavity
US7679820B2 (en) IR absorbing reflector
US5872655A (en) Monolithic linear variable filter and method of manufacture
US4313647A (en) Nonreflective coating
JPH11153711A (en) Multilayered thin-film band-region filter
JP2005242361A (en) Selective reflection
JP7099786B2 (en) Methods of Changing the First Reflection Band of Optical Laminates, Optical Systems, and Oriented Polymer Multilayer Optical Films
KR20020047023A (en) Antireflection coating for ultraviolet light at large angles of incidence
JPH0735910A (en) Multilayered reflection interference film
JP3373182B2 (en) Multilayer optical filter
JP4475955B2 (en) Manufacturing structured optical elements and the same
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JPS58223101A (en) Production of polygonal mirror
US20080062523A1 (en) Optical diffraction grating and method of manufacture
JP2638806B2 (en) Anti-reflective coating
JP4281146B2 (en) Resin bonded optical element
JP2590924B2 (en) Anti-reflective coating
JPH1068801A (en) Antireflection film
JP2005173029A (en) Optical device having antireflection film and method for designing antireflection film
JP6999719B2 (en) Polarizing elements and LCD projectors
JP2586509B2 (en) Anti-reflective coating
JPH05180993A (en) X-ray reflecting mirror
JPH07244204A (en) Dual wavelength anti-reflection film