JPS6315933B2 - - Google Patents

Info

Publication number
JPS6315933B2
JPS6315933B2 JP55043189A JP4318980A JPS6315933B2 JP S6315933 B2 JPS6315933 B2 JP S6315933B2 JP 55043189 A JP55043189 A JP 55043189A JP 4318980 A JP4318980 A JP 4318980A JP S6315933 B2 JPS6315933 B2 JP S6315933B2
Authority
JP
Japan
Prior art keywords
liquid
chloroprene
polychloroprene
isocyanate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55043189A
Other languages
Japanese (ja)
Other versions
JPS56139522A (en
Inventor
Kyonobu Maruhashi
Shotaro Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4318980A priority Critical patent/JPS56139522A/en
Publication of JPS56139522A publication Critical patent/JPS56139522A/en
Publication of JPS6315933B2 publication Critical patent/JPS6315933B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は液状ポリクロロプレン系む゜シアネヌ
トプレポリマヌを䞻成分ずする組成物に関する。 埓来から硬化可胜な液状クロロプレン系重合䜓
組成物はいろいろ知られおいる。本発明者は加硫
硬化した際に埓来のクロロプレンゎムよりもすぐ
れた特性を瀺すポリクロロプレン䞻鎖構造を有す
る液状重合䜓組成物を埗るこずを目的ずしお研究
を行な぀た結果、分子内に平均個以䞊の氎酞基
を有し、数平均分子量が500〜10000の範囲にある
液状クロロプレン系重合䜓をむ゜シアネヌトプレ
ポリマヌにした液状ポリクロロプレン系む゜シア
ネヌトプレポリマヌに架橋剀及びポリクロロプレ
ンの加硫促進剀を組み合わせるこずにより前蚘目
的を達成しうる組成物ずなるこずを芋い出し、本
発明に到達したものである。 すなわち本発明の目的は硬化しお耐オゟン性に
すぐれたクロロプレン系匟性䜓を圢成しうる液状
クロロプレン系重合䜓組成物を提䟛するこずであ
り、この目的は以䞋に述べる本発明の構成により
達成される。 本発明は分子䞭に平均個以䞊の氎酞基を有
し、数平均分子量が500〜10000の範囲にある液状
クロロプレン系重合䜓を䜿甚し、この液状クロロ
プレン系重合䜓を官胜性む゜シアネヌト化合物
ず反応させるこずにより埗られる液状ポリクロロ
プレン系む゜シアネヌトプレポリマヌに、該プレ
ポリマヌ䞭のむ゜シアネヌト基に察し0.8〜1.1倍
圓量反応するに充分な量の架橋剀及びポリクロロ
プレンの加硫促進剀を加えるこずにより硬化しお
耐オゟン性にすぐれたクロロプレン系匟性䜓を圢
成しうる液状ポクロロプレン系む゜シアネヌトプ
レポリマヌ組成物にある。以䞋本発明を曎に詳现
に述べる。 本発明においお甚いられる液状クロロプレン系
重合䜓は分子䞭に平均個以䞊の氎酞基を有し、
数平均分子量が500〜10000の範囲にあるものであ
り、その補造法ずしおは、過酞化氎玠を甚いおク
ロロプレン又はクロロプレン及びそれず共重合可
胜な単量䜓をラゞカル共重合する方法、−クロ
ロブタゞ゚ン−をクロロプレン又はクロロ
プレン及びそれず共重合可胜な単量䜓ずラゞカル
共重合させお埗られる液状クロロプレン系重合䜓
を氎酞基を有する玚アミン化合物ず反応させお
埗る方法、クロロプレン又はクロロプレン及びそ
れず共重合可胜な単量䜓を氎酞基を有するアクリ
レヌトもしくはメタクリレヌトずラゞカル共重合
させる方法等があるが特に工業的に実斜が容易ず
いう意味からクロロプレン又はクロロプレン及び
それず共重合可胜な単量䜓を氎酞基を有するアク
リレヌトもしくはメタクリレヌトずラゞカル共重
合させる方法が奜たしい。 この液状共重合䜓を補造する際に甚いられる氎
酞基含有アクリレヌトもしくはメタクリレヌトず
しおは 匏
The present invention relates to a composition containing a liquid polychloroprene-based isocyanate prepolymer as a main component. Various curable liquid chloroprene polymer compositions have been known. The present inventor conducted research with the aim of obtaining a liquid polymer composition having a polychloroprene main chain structure that exhibits better properties than conventional chloroprene rubber when cured by vulcanization. A cross-linking agent and a polychloroprene vulcanization accelerator are added to a liquid polychloroprene-based isocyanate prepolymer made from a liquid chloroprene-based polymer having two or more hydroxyl groups and a number average molecular weight in the range of 500 to 10,000. The present invention was achieved by discovering that a composition that can achieve the above object can be obtained by combining the above objects. That is, an object of the present invention is to provide a liquid chloroprene-based polymer composition that can be cured to form a chloroprene-based elastomer with excellent ozone resistance, and this object is achieved by the configuration of the present invention described below. Ru. The present invention uses a liquid chloroprene polymer having an average of two or more hydroxyl groups in the molecule and a number average molecular weight in the range of 500 to 10,000, and reacts this liquid chloroprene polymer with a difunctional isocyanate compound. Curing is carried out by adding a crosslinking agent and a polychloroprene vulcanization accelerator in an amount sufficient to react with 0.8 to 1.1 equivalents of the isocyanate groups in the prepolymer to the liquid polychloroprene-based isocyanate prepolymer obtained by The present invention provides a liquid polychloroprene-based isocyanate prepolymer composition that can form a chloroprene-based elastomer with excellent ozone resistance. The present invention will be described in more detail below. The liquid chloroprene polymer used in the present invention has an average of two or more hydroxyl groups in the molecule,
It has a number average molecular weight in the range of 500 to 10,000, and its production methods include radical copolymerization of chloroprene or chloroprene and a monomer copolymerizable with it using hydrogen peroxide, and 1-chlorobutadiene. - A method of obtaining a liquid chloroprene polymer obtained by radical copolymerizing 1,3 with chloroprene or a monomer copolymerizable therewith with a tertiary amine compound having a hydroxyl group; There are methods such as radical copolymerization of copolymerizable monomers with acrylates or methacrylates having hydroxyl groups, but from the viewpoint of industrial ease of implementation, chloroprene or chloroprene and monomers copolymerizable therewith are copolymerized with hydroxyl groups. A method of radical copolymerization with acrylate or methacrylate is preferred. The hydroxyl group-containing acrylate or methacrylate used in producing this liquid copolymer has the following formula:

【匏】 䜆しはたたはの敎数で、は炭玠数た
たはの炭化氎玠基であるで瀺されるものが奜
たしく、−ヒドロキシ゚チルアクリレヌト、
−ヒドロキシ゚チルメタクリレヌト等があるがこ
れに限定されるものではない。䜿甚する液状クロ
ロプレン系重合䜓の数平均分子量が500未満であ
るず分子䞭に平均個以䞊の氎酞基を導入するこ
ずが困難ずなり液状ポリクロロプレン系む゜シア
ネヌトプレポリマヌずし、硬化しおも良奜な物性
を有する硬化物ずするこずができない。䞀方、数
平均分子量が10000をこえるず垞枩では粘床の䜎
い液状重合䜓でなくなり、む゜シアネヌトプレポ
リマヌずしおも䜿甚時における取り扱いが極端に
䞍良ずなる。たた数平均分子量は500〜10000の範
囲にあ぀おも分子䞭の氎酞基が平均個に達しな
い堎合には同様にむ゜シアネヌトプレポリマヌず
しおも良奜な硬化物は埗られない。 この液状クロロプレン系重合䜓のむ゜シアネヌ
トプレポリマヌ化は溶剀の存圚䞋たたは䞍存圚䞋
に行うこずができるが、溶剀存圚䞋の堎合は、氎
酞基やむ゜シアネヌト基ず反応する掻性氎玠を有
しない炭化氎玠、゚ステル、ケトン、゚ヌテル、
アミド、ハロゲン化炭化氎玠及びそれらの混合物
などの溶剀を甚い枩床25〜100℃で官胜性む゜
シアネヌト化合物ず液状クロロプレン系重合䜓を
反応させるこずにより行なわれる。このむ゜シア
ネヌトプレポリマヌ化反応は通垞液状クロロプレ
ン系重合䜓の氎酞基圓量に察しお1.5〜3.0、奜
たしくは1.9〜2.2む゜シアネヌト基圓量を加える
こずにより行なわれる。 む゜シアネヌトプレポリマヌ化反応に䜿甚する
官胜性む゜シアネヌト化合物ずしおは特に制限
はないが、䟋えば−及び−トリレン
ゞむ゜シアネヌト、4′−ゞプニルメタンゞ
む゜シアネヌト、4′−ゞプニルゞむ゜シア
ネヌト、5′−ナフタレンゞむ゜シアネヌト、
オルトトリゞンむ゜シアネヌト等の芳銙族ゞむ゜
シアネヌト、−ヘキサメチレンゞむ゜シア
ネヌト、−および−シクロヘキシル
ゞむ゜シアネヌト等の脂肪族ゞむ゜シアネヌト、
およびこれらの混合物が甚いられる。これらの䞭
では特に液状ポリクロロプレン系む゜シアネヌト
プレポリマヌずした埌硬化しお埗られるクロロプ
レン系匟性䜓の耐オゟン性、耐摩耗性の点から芋
お芳銙族系化合物が奜たしい。 次に液状ポリクロロプレン系む゜シアネヌトプ
レポリマヌを硬化しおすぐれた耐オゟン性を有す
るクロロプレン系匟性䜓を補造する際に甚いられ
る架橋剀ずしおはプレポリマヌ䞭の遊離む゜シア
ネヌト基ず反応しうる掻性氎玠化合物でゞアミン
及びゞオヌルが奜適であるがより倚官胜性のもの
でも䜿甚できる。ゞアミンの䟋ずしおは4′−
ゞアミノゞプニルメタン、3′−ゞクロロ−
4′−ゞアミノゞプニルメタン、−、−
たたは−プニレンゞアミン、及びこれらの誘
導䜓もしくは混合䜓等の芳銙族ゞアミン、ヒドラ
ゞン、゚チレンゞアミン、トリメチレンゞアミ
ン、ピペラゞン、ヘキサメチレン−−ゞア
ミン及びこれらの混合物などの脂肪族ゞアミンが
ある。 ゞオヌルの䟋ずしおぱチレングリコヌル、プ
ロピレングリコヌル、プロパン−ゞオヌ
ル、−ブタンゞオヌル、−ブテンゞ
オヌル、−゚チル−−ヘキサンゞオヌ
ル、ハむドロキノン−ビス−−ヒドロキシ゚
チル−゚ヌテル、及びその類䌌物及びその混合
物等が挙げられる。たた奜たしいゞアミンずゞオ
ヌルを混合しお架橋剀ずするこずもできる。さら
にトリメチロヌルプロパン、ペンタ゚リスリトヌ
ル等ポリオヌルも有効である。 架橋剀の有効官胜基ず液状クロロプレン系む゜
シアネヌトプレポリマヌ䞭のNCO基の圓量比は
0.8〜1.1皋床の範囲であるが、奜たしくは0.90〜
1.05である。 さらに液状ポリクロロプレン系む゜シアネヌト
プレポリマヌを硬化しおすぐれた耐オゟン性を有
するクロロプレン系匟性䜓を補造する際に架橋剀
に加えお甚いられるポリクロロプレンの加硫促進
剀ずしおは亜鉛華、マグネシア等の倚䟡金属酞化
物及びブチルキサンテヌト亜鉛の劂きキサンテヌ
ト系のような液状ポリクロロプレン系む゜シアネ
ヌトプレポリマヌ䞭のむ゜シアネヌト基ず反応し
うる掻性氎玠を持たないものが奜たしい。これら
ポリクロロプレンの加硫促進剀は液状ポリクロロ
プレン系む゜シアネヌトプレポリマヌ䞭のポリク
ロロプレンナニツトの亀叉結合を圢成する働きを
有しおいる。さらに亜鉛華、マグネシア等の倚䟡
金属酞化物はクロロプレンナニツトより加熱時発
生する塩化氎玠を捕捉し劣化の進行を枛少させる
働きもあり有効である。これら倚䟡金属酞化物の
添加量は該液状ポリクロロプレン系む゜シアネヌ
トプレポリマヌ100重量郚に察し〜30重量郚で
ある。これ未満の量では良奜な硬化物が埗られ
ず、たた30重量郚をこえるず硬化物の実甚的性胜
が䜎䞋する傟向がある。ブチルキサンテヌト亜鉛
の劂き加硫促進剀を䜿甚する堎合の添加量は該液
状ポリクロロプレン系む゜シアネヌトプレポリマ
ヌ100重量郚圓り0.1〜重量郚の範囲である。
0.1郚未満では実質的に加硫促進剀ずしおの働き
がなく、郚をこえるず䜜甚的に差がなく経枈的
に䞍利ずなり実甚的には意味がない。 䞊蚘液状ポリクロロプレン系む゜シアネヌトプ
レポリマヌ組成物は垞枩から高枩たでの枩床で硬
化反応を進めるこずができるが、通垞は枩床150
℃皋床である。さらに硬化反応を進めるために反
応の觊媒ずしおゞブチルスズゞラりレヌト、オク
チル酞スズのような有機スズ化合物、トリ゚チル
アミン、トリ゚チレンゞアミンの劂き第玚アミ
ン類、−ゞアザビシクロヌ
−りンデセン及びその有機酞塩の劂き環匏アミゞ
ン化合物等が適宜䜿甚可胜である。 本発明は前蚘の構成をずるこずによりはじめお
埓来のクロロプレン系匟性䜓に比しおすぐれた耐
オゟン性を瀺す硬化物を䞎えうる組成物ずなる。
これは液状ポリクロロプレン系む゜シアネヌトプ
レポリマヌが架橋剀によりりレタン結合、尿玠結
合、さらにアロフアネヌト及びビナヌレツト結合
の圢成により架橋するず同時に、ポリクロロプレ
ンナニツトも加硫促進剀により亀叉結合し架橋さ
れるこずにより達成されるものであり、そのどれ
か䞀぀の芁玠でも欠ければ良奜な硬化物は埗られ
ない。 この組成物により圢成される匟性䜓は耐オゟン
性にすぐれるだけでなく、非垞にすぐれた耐摩耗
性、耐熱氎性、耐溶剀性、耐候性、難燃性を有し
おおり、さらに耐薬品性、耐熱性、接着性等にも
すぐれた性胜を有しおいるため皮々の甚途に甚い
るこずができる。たずえばラむニング材、ポツテ
むング材、シヌリング材、塗膜防氎材、接着剀、
泚型による成型品、スポンゞ材料等の甚途に奜適
である。 たた圢成する硬化物のクロロプレン系匟性䜓ず
しおの性胜を䜎䞋させない範囲で各皮ポリ゚ヌテ
ルポリオヌルやポリ゚ステルポリオヌルのむ゜シ
アネヌトプレポリマヌを組成物に添加するこずも
可胜である。さらに実甚䞊必芁があれば通垞のコ
ンパりンド成分である二酞化チタン、炭酞カルシ
りム、シリカ、クレヌ、カヌボンブラツクのよう
な充填剀、石油系油剀、フタノヌル酞゚ステル、
タヌルのような軟化剀、暹脂、瀝青物質、および
コンパりンドの粘床調節剀ずしおの溶剀類を配合
するこずができる。 次に本発明をさらに具䜓的に実斜䟋により説明
するが、本発明はこれらによりなんら限定される
ものではない。 実斜䟋においお甚いられる量は党お重量基準に
より瀺し、たた比范䟋を含めお䞋蚘の液状クロロ
プレン系重合䜓を䜿甚した。 重合䜓クロロプレン88郚、−ゞクロロ
ブタゞ゚ン− 郚、−ヒドロキシ゚
チルアクリレヌト郚を−メルカプト゚タノ
ヌル1.6郚存圚䞋トル゚ン溶剀䞭50℃でラゞカ
ル重合しお埗られた液状重合䜓。25℃で枬定し
たブルツクフむヌルド粘床210000センチポむ
ズ。数平均分子量5640。氎酞基含量0.657。
分子䞭の平均氎酞基官胜性2.18。 重合䜓クロロプレン88郚、−ヒドロキシ゚
チルメタクリレヌト12郚を−ドデシルメルカ
プタン5.7郚圚圚䞋にトル゚ン溶剀䞭50℃でラ
ゞカル重合しお埗られた液状重合䜓。25℃で枬
定したブルツクフむヌルド粘床115000センチポ
むズ。数平均分子量4970。氎酞基含量0.797。
分子䞭の平均氎酞基官胜性2.33。 重合䜓クロロプレン95郚、−ヒドロキシ゚
チルメタクリレヌト郚を−メルカプト゚タ
ノヌル2.5郚存圚䞋にベンれン溶剀䞭50℃でラ
ゞカル重合しお埗られた液状重合䜓。25℃で枬
定したブルツクフむヌルド粘床59000センチポ
むズ。数平均分子量3900。氎酞基含量0.73。
分子䞭の平均氎酞基官胜性1.67。 なお、前蚘重合䜓の数平均分子量の枬定ぱブ
リオメヌタヌにより、氎酞基含量枬定はアセチル
クロラむド法によりそれぞれ行な぀た。分子䞭の
平均氎酞基官胜性は数平均分子量を氎酞基含量よ
り䞋蚘の匏により求められる氎酞基圓量分子量で
割るこずによ぀お埗た。 氎酞基圓量分子量17.0×100氎酞基含量パヌセント たた以䞋の実斜䟋におけるむ゜シアネヌト含量
の分析はJISK1556トリレンゞむ゜シアネヌト詊
隓法蚘茉の玔床分析法ゞブチルアミン法に準
じお行な぀た。 実斜䟋  詊隓No. 重合䜓 100重量郚を撹拌棒぀きの、充分也
燥し、窒玠眮換したセパラブルフラスコに粟秀
し、これにゞプニルメタンゞむ゜シアネヌトを
NCOOH2.2ずなるように秀量添加し、100℃
で時間かきたぜながら反応させた。埗られた液
状ポリクロロプレン系む゜シアネヌトプレポリマ
ヌ䞭のむ゜シアネヌト基含量は1.78パヌセントで
あ぀た。この液状ポリクロロプレン系む゜シアネ
ヌトプレポリマヌをずする。 このプレポリマヌA100重量郚に察しお亜鉛華
郚及びNH2NCO0.95に盞圓する量の
3′−ゞクロロ−4′−ゞアミノゞプニルメタ
ンをペむントミルにより混合し、100℃で時間
さらに加えお120℃で時間硬化埌、20℃、50
湿床䞋で日間熟成しお埗られたクロロプレン系
匟性䜓の物性は100モゞナラス73Kgcm2、匕
匵り匷床122Kgcm2、䌞び280、硬床87
JIS、耐オゟン性200pphm、40℃、20、延䌞
168時間き裂発生なしであ぀た。 実斜䟋  詊隓No.〜 実斜䟋ず同様の方法で重合䜓をプレポリマ
ヌ化した。埗られた液状ポリクロロプレン系む゜
シアネヌトプレポリマヌ䞭のむ゜シアネヌト基含
量は2.10パヌセントであ぀た。この液状ポリクロ
ロプレン系む゜シアネヌトプレポリマヌをずす
る。 このプレポリマヌB100重量郚に察し、亜鉛華、
ブチルキサンテヌト亜鉛、−ブタンゞオヌ
ルの量を倉化させおペむントミルにお混合し、枩
床100℃で時間硬化埌、枩床20℃、湿床50の
䞋に日間熟成しお埗られたクロロプレン系匟性
䜓の物性を第衚に瀺す。 なお、詊隓No.は比范䟋である。 実斜䟋  詊隓No. 液状ポリクロロプレン系む゜シアネヌトを甚
いお䞋蚘の配合凊方によりペむントミルにお配合
し䜜補したコンパりンドを厚さmmの金型に泚型
し、枩床100℃で時間プレス硬化し、その埌金
型より離型し、ギダオヌブン䞭で枩床120℃で
時間加熱硬化埌、枩床20℃、湿床50の䞋に日
間熟成しお埗られたクロロプレン系匟性䜓の物性
を第衚に瀺す。ここに瀺された結果からも本発
明における組成物より埗られたクロロプレン系匟
性䜓はすぐれた耐オゟン性を有しおいるこずがわ
かる。
[Formula] (where n is an integer of 1 or 2, and R is a hydrocarbon group having 2 or 3 carbon atoms) is preferred, and 2-hydroxyethyl acrylate, 2
-Hydroxyethyl methacrylate, etc., but are not limited thereto. If the number average molecular weight of the liquid chloroprene-based polymer used is less than 500, it will be difficult to introduce an average of two or more hydroxyl groups into the molecule, and the liquid polychloroprene-based isocyanate prepolymer will have good physical properties even after curing. It cannot be made into a cured product. On the other hand, if the number average molecular weight exceeds 10,000, it will no longer be a liquid polymer with low viscosity at room temperature, and will be extremely difficult to handle during use even as an isocyanate prepolymer. Further, even if the number average molecular weight is in the range of 500 to 10,000, if the average number of hydroxyl groups in the molecule is less than 2, a good cured product cannot be obtained even as an isocyanate prepolymer. This isocyanate prepolymerization of liquid chloroprene-based polymers can be carried out in the presence or absence of a solvent, but in the presence of a solvent, hydrocarbons or esters that do not have active hydrogen that react with hydroxyl groups or isocyanate groups can be used. , ketone, ether,
It is carried out by reacting a difunctional isocyanate compound and a liquid chloroprene polymer at a temperature of 25 to 100°C using a solvent such as an amide, a halogenated hydrocarbon, or a mixture thereof. This isocyanate prepolymerization reaction is usually carried out by adding 1.5 to 3.0, preferably 1.9 to 2.2 equivalents of isocyanate groups per equivalent of hydroxyl groups in the liquid chloroprene polymer. There are no particular limitations on the bifunctional isocyanate compound used in the isocyanate prepolymerization reaction, but examples include 2,4- and 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and 4,4'- Diphenyl diisocyanate, 1,5'-naphthalene diisocyanate,
Aromatic diisocyanates such as orthotolidine isocyanate, aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate, 1,3- and 1,4-cyclohexyl diisocyanate,
and mixtures thereof are used. Among these, aromatic compounds are particularly preferred from the viewpoint of ozone resistance and abrasion resistance of the chloroprene elastomer obtained by post-curing a liquid polychloroprene isocyanate prepolymer. Next, the crosslinking agent used when curing the liquid polychloroprene isocyanate prepolymer to produce a chloroprene elastomer with excellent ozone resistance is an active hydrogen compound that can react with the free isocyanate groups in the prepolymer. Diamines and diols are preferred, but more highly functional ones can also be used. Examples of diamines include 4,4'-
Diaminodiphenylmethane, 3,3'-dichloro-
4,4'-diaminodiphenylmethane, 0-, m-
or aromatic diamines such as p-phenylenediamine and derivatives or mixtures thereof; aliphatic diamines such as hydrazine, ethylenediamine, trimethylenediamine, piperazine, hexamethylene-1,6-diamine and mixtures thereof. Examples of diols include ethylene glycol, propylene glycol, propane 1,3-diol, 1,4-butanediol, 1,4-butenediol, 2-ethyl-1,3-hexanediol, hydroquinone-bis-(2- (hydroxyethyl)-ether, analogs thereof, mixtures thereof, and the like. Alternatively, a preferred diamine and diol can be mixed to form a crosslinking agent. Furthermore, polyols such as trimethylolpropane and pentaerythritol are also effective. The equivalent ratio of the effective functional group of the crosslinking agent to the NCO group in the liquid chloroprene-based isocyanate prepolymer is
It ranges from about 0.8 to 1.1, preferably from 0.90 to
It is 1.05. Furthermore, when curing a liquid polychloroprene isocyanate prepolymer to produce a chloroprene elastomer with excellent ozone resistance, zinc white, magnesia, etc. are used as polychloroprene vulcanization accelerators in addition to the crosslinking agent. Polyvalent metal oxides and those having no active hydrogen that can react with isocyanate groups in liquid polychloroprene-based isocyanate prepolymers, such as xanthate-based ones such as zinc butyl xanthate, are preferred. These polychloroprene vulcanization accelerators have the function of forming cross-linkages of polychloroprene units in the liquid polychloroprene-based isocyanate prepolymer. Furthermore, polyvalent metal oxides such as zinc white and magnesia are effective because they capture hydrogen chloride generated during heating from the chloroprene unit and reduce the progress of deterioration. The amount of these polyvalent metal oxides added is 1 to 30 parts by weight per 100 parts by weight of the liquid polychloroprene-based isocyanate prepolymer. If the amount is less than this, a good cured product cannot be obtained, and if it exceeds 30 parts by weight, the practical performance of the cured product tends to deteriorate. When a vulcanization accelerator such as zinc butyl xanthate is used, the amount added is in the range of 0.1 to 5 parts by weight per 100 parts by weight of the liquid polychloroprene isocyanate prepolymer.
If it is less than 0.1 part, it will not substantially function as a vulcanization accelerator, and if it exceeds 5 parts, there will be no functional difference and it will be economically disadvantageous, meaning that it is practically meaningless. The above-mentioned liquid polychloroprene-based isocyanate prepolymer composition can proceed with the curing reaction at temperatures ranging from room temperature to high temperatures, but usually at temperatures of 150°C.
It is about ℃. In order to further advance the curing reaction, organic tin compounds such as dibutyltin dilaurate and tin octylate, tertiary amines such as triethylamine and triethylenediamine, and 1,8-diazabicyclo(5,4,0) are used as catalysts for the curing reaction.
- Cyclic amidine compounds such as undecene and its organic acid salts can be used as appropriate. The present invention provides a composition capable of providing a cured product exhibiting superior ozone resistance compared to conventional chloroprene-based elastomers only by adopting the above configuration.
This is achieved by cross-linking the liquid polychloroprene-based isocyanate prepolymer with a cross-linking agent by forming urethane bonds, urea bonds, and allophanate and biuret bonds, and at the same time, the polychloroprene units are also cross-linked and cross-linked with a vulcanization accelerator. If any one of these elements is missing, a good cured product cannot be obtained. The elastic body formed from this composition not only has excellent ozone resistance, but also has excellent abrasion resistance, hot water resistance, solvent resistance, weather resistance, flame retardancy, and chemical resistance. It has excellent properties such as hardness, heat resistance, and adhesiveness, so it can be used for a variety of purposes. For example, lining materials, potting materials, sealing materials, waterproof coating materials, adhesives,
Suitable for applications such as cast molded products and sponge materials. It is also possible to add isocyanate prepolymers of various polyether polyols and polyester polyols to the composition within a range that does not reduce the performance of the cured product formed as a chloroprene-based elastomer. Furthermore, if necessary for practical purposes, ordinary compound ingredients such as titanium dioxide, calcium carbonate, silica, clay, fillers such as carbon black, petroleum oils, phthanolic acid esters,
Softeners such as tars, resins, bituminous substances, and solvents as compound viscosity modifiers may be included. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way. All amounts used in the examples are shown on a weight basis, and the following liquid chloroprene-based polymers were used including the comparative examples. Polymer 1: Obtained by radical polymerization of 88 parts of chloroprene, 5 parts of 2,3-dichlorobutadiene-1,3, and 7 parts of 2-hydroxyethyl acrylate in a toluene solvent at 50°C in the presence of 1.6 parts of 2-mercaptoethanol. Liquid polymer. Burdskfield viscosity 210,000 centipoise measured at 25°C. Number average molecular weight 5640. Hydroxyl group content 0.657%.
Average hydroxyl functionality in the molecule 2.18. Polymer 2: Liquid polymer obtained by radical polymerization of 88 parts of chloroprene and 12 parts of 2-hydroxyethyl methacrylate in the presence of 5.7 parts of n-dodecylmercaptan at 50°C in a toluene solvent. Burdskfield viscosity 115,000 centipoise measured at 25°C. Number average molecular weight 4970. Hydroxyl group content 0.797%.
Average hydroxyl functionality in the molecule is 2.33. Polymer 3: A liquid polymer obtained by radical polymerization of 95 parts of chloroprene and 5 parts of 2-hydroxyethyl methacrylate in the presence of 2.5 parts of 2-mercaptoethanol in a benzene solvent at 50°C. Burdskfield viscosity 59,000 centipoise measured at 25°C. Number average molecular weight 3900. Hydroxyl group content 0.73%.
Average hydroxyl functionality in the molecule is 1.67. The number average molecular weight of the polymer was measured using an everiometer, and the hydroxyl group content was measured using an acetyl chloride method. The average hydroxyl functionality in the molecule was obtained by dividing the number average molecular weight by the hydroxyl equivalent molecular weight determined from the hydroxyl group content using the following formula. Hydroxyl group equivalent molecular weight = 17.0 x 100/% hydroxyl group content Analysis of isocyanate content in the following examples was conducted according to the purity analysis method (dibutylamine method) described in JISK1556 Tolylene diisocyanate test method. Example 1 (Test No. 1) 100 parts by weight of Polymer 1 was accurately weighed into a separable flask equipped with a stirring bar, thoroughly dried and purged with nitrogen, and diphenylmethane diisocyanate was added to it.
Weighed and added so that NCO/OH = 2.2, and heated to 100℃.
The mixture was stirred and reacted for 5 hours. The isocyanate group content in the obtained liquid polychloroprene-based isocyanate prepolymer was 1.78%. This liquid polychloroprene-based isocyanate prepolymer is designated as A. Based on 100 parts by weight of this prepolymer A, 5 parts of zinc white and 3 parts in an amount corresponding to NH 2 /NCO = 0.95,
3'-dichloro-4,4'-diaminodiphenylmethane was mixed with a paint mill, added at 100℃ for 1 hour, cured at 120℃ for 2 hours, and then heated to 50% at 20℃.
The physical properties of the chloroprene elastomer obtained by aging under humidity for 7 days are 100% modulus 73 (Kg/cm 2 ), tensile strength 122 (Kg/cm 2 ), elongation 280 (%), and hardness 87.
(JIS), ozone resistance 200pphm, 40℃, 20%, stretching
No cracking occurred for 168 hours. Example 2 (Test Nos. 2 to 5) Polymer 2 was prepolymerized in the same manner as in Example 1. The isocyanate group content in the obtained liquid polychloroprene-based isocyanate prepolymer was 2.10%. This liquid polychloroprene-based isocyanate prepolymer is designated as B. For 100 parts by weight of this prepolymer B, zinc white,
Varying amounts of zinc butyl xanthate and 1,4-butanediol were mixed in a paint mill, cured for 3 hours at a temperature of 100°C, and then aged for 7 days at a temperature of 20°C and a humidity of 50%. Table 1 shows the physical properties of the chloroprene-based elastomer. Note that Test No. 5 is a comparative example. Example 3 (Test No. 6) A compound prepared by blending liquid polychloroprene isocyanate A in a paint mill according to the following formulation was poured into a mold with a thickness of 2 mm, and heated at a temperature of 100°C for 1 hour. Press hardened, then released from the mold and heated in a gear oven at a temperature of 120℃ for 2 hours.
Table 2 shows the physical properties of the chloroprene-based elastomer obtained by aging for 7 days at a temperature of 20° C. and a humidity of 50% after curing by heating for a period of time. The results shown here also indicate that the chloroprene-based elastomer obtained from the composition of the present invention has excellent ozone resistance.

【衚】【table】

【衚】【table】

【衚】 比范䟋 詊隓No. 実斜䟋ず同様の方法で重合䜓をプレポリマ
ヌ化した。埗られた液状クロロプレン系む゜シア
ネヌトプレポリマヌ䞭のむ゜シアネヌト基含量は
1.94パヌセントであ぀た。このプレポリマヌ100
重量郚に察し、亜鉛華郚及びNH2NCO
0.95に盞圓する量の3′−ゞクロロ−4′−
ゞアミノゞプニルメタンをペむントミルで混合
し100℃で時間さらに120℃で時間硬化埌、20
℃、50湿床䞋で日間熟成しお埗られた硬化物
シヌトは衚面にタツクがあり、ベタ぀く感じのも
ので硬化䞍良のものであ぀た。その物性は100
モゞナラス11Kgcm2、匕匵匷床25Kgcm2、䌞
び150、硬床38JIS −6301であ぀た。 このように氎酞基官胜性がに満たない液状ク
ロロプレン系重合䜓より埗られるプレポリマヌは
よい硬化物を䞎えないこずがわかる。
[Table] Comparative Example (Test No. 7) Polymer 3 was made into a prepolymer in the same manner as in Example 1. The isocyanate group content in the obtained liquid chloroprene-based isocyanate prepolymer is
It was 1.94%. This prepolymer 100
Based on parts by weight, 5 parts of zinc white and NH 2 /NCO=
3,3'-dichloro-4,4'- in an amount corresponding to 0.95
Mix diaminodiphenylmethane in a paint mill, cure at 100℃ for 1 hour, and then cure at 120℃ for 2 hours.
The cured sheet obtained by aging at 50% humidity for 7 days had a tacky surface, a sticky feel, and was poorly cured. Its physical properties are 100%
The modulus was 11 (Kg/cm 2 ), the tensile strength was 25 (Kg/cm 2 ), the elongation was 150 (%), and the hardness was 38 (JIS K-6301). It can thus be seen that prepolymers obtained from liquid chloroprene polymers having a hydroxyl functionality of less than 2 do not give good cured products.

Claims (1)

【特蚱請求の範囲】  分子䞭に平均個以䞊の氎酞基を有する数平
均分子量が500〜10000である液状クロロプレン系
重合䜓の氎酞基圓量に察し、官胜性む゜シアネ
ヌト化合物のむ゜シアネヌト基が1.5〜3.0倍圓量
ずなる割合で䞡者を反応させお埗た液状ポリクロ
ロプレン系む゜シアネヌトプレポリマヌに該プレ
ポリマヌ䞭のむ゜シアネヌト基に察し0.8〜1.1倍
圓量反応するに充分な量の架橋剀及びポリクロロ
プレンの加硫促進剀を配合しおなる液状ポリクロ
ロプレン系む゜シアネヌトプレポリマヌ組成物。  液状ポリクロロプレン系重合䜓がクロロプレ
ン又は、クロロプレン及びそれず共重合可胜な単
量䜓ず、氎酞基を有するアクリレヌトもしくはメ
タクリレヌトをラゞカル重合法により共重合させ
お埗た共重合䜓である特蚱請求の範囲第項蚘茉
の液状ポリクロロプレン系む゜シアネヌトプレポ
リマヌ組成物。
[Scope of Claims] 1. The isocyanate group of the difunctional isocyanate compound is 1.5 to 3.0 with respect to the hydroxyl equivalent of the liquid chloroprene polymer having an average of two or more hydroxyl groups in the molecule and a number average molecular weight of 500 to 10,000. Vulcanization of a liquid polychloroprene-based isocyanate prepolymer obtained by reacting both at a double equivalent ratio with a crosslinking agent in an amount sufficient to react with 0.8 to 1.1 times the equivalent of isocyanate groups in the prepolymer and polychloroprene. A liquid polychloroprene isocyanate prepolymer composition containing an accelerator. 2. The liquid polychloroprene-based polymer is chloroprene or a copolymer obtained by copolymerizing chloroprene and a monomer copolymerizable therewith with acrylate or methacrylate having a hydroxyl group by a radical polymerization method. The liquid polychloroprene-based isocyanate prepolymer composition according to item 1.
JP4318980A 1980-04-02 1980-04-02 Liquid polychloroprene series isocyanate prepolymer composition Granted JPS56139522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318980A JPS56139522A (en) 1980-04-02 1980-04-02 Liquid polychloroprene series isocyanate prepolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318980A JPS56139522A (en) 1980-04-02 1980-04-02 Liquid polychloroprene series isocyanate prepolymer composition

Publications (2)

Publication Number Publication Date
JPS56139522A JPS56139522A (en) 1981-10-31
JPS6315933B2 true JPS6315933B2 (en) 1988-04-06

Family

ID=12656965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318980A Granted JPS56139522A (en) 1980-04-02 1980-04-02 Liquid polychloroprene series isocyanate prepolymer composition

Country Status (1)

Country Link
JP (1) JPS56139522A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201114B (en) * 2021-04-06 2023-03-28 郑州䞭原思蓝執高科股仜有限公叞 Isocyanate-terminated polyurethane prepolymer and double-component polyurethane cold-patch adhesive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132039A (en) * 1977-04-22 1978-11-17 Denki Kagaku Kogyo Kk Adhesive composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132039A (en) * 1977-04-22 1978-11-17 Denki Kagaku Kogyo Kk Adhesive composition

Also Published As

Publication number Publication date
JPS56139522A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
US2929800A (en) Polytetramethylene ether polyurethane polymers
JP2001505597A (en) Composition for producing thermoplastic polyurethane
WO1995029198A1 (en) Process for producing rapidly cold-curable polyurethane coating waterproofing material
JPS617317A (en) Silane-containing isocyanate prepolymer
MX2014001230A (en) New composite materials based on rubbers, elastomers, and their recycled.
US3859244A (en) Post-curable cured polyurethanes soluble in ketones and other oxygen-containing solvents
JPS6315933B2 (en)
JPS59232110A (en) Production of urethane-vinyl resin
JPS6366218A (en) Production of thermoplastic polyurethane
JPS5931526B2 (en) Liquid chloroprene polymer composition
JP3447101B2 (en) Method for producing thermoplastic polyurethane elastomer molded article
JPH0337217A (en) Ultrasoft elastomer composition
JPS6251966B2 (en)
JPH0410891B2 (en)
JPS6248988B2 (en)
JPS58189222A (en) Polyurethane composition
JPS641485B2 (en)
US20160229947A1 (en) Polyurea prepolymers
JP2956351B2 (en) Polyol composition
JP2000063658A (en) Moisture-curing urethane composition
JP5544138B2 (en) Urea urethane composition
JPH09221533A (en) Poly(urethane)urea elastomer composition and its production
JPS6315934B2 (en)
JPS5883019A (en) Polyurethane resin composition
JPH04153208A (en) Vinyl chloride resin composition