JPS63159298A - Continuous production of silicon carbide whisker and apparatus therefor - Google Patents

Continuous production of silicon carbide whisker and apparatus therefor

Info

Publication number
JPS63159298A
JPS63159298A JP61305122A JP30512286A JPS63159298A JP S63159298 A JPS63159298 A JP S63159298A JP 61305122 A JP61305122 A JP 61305122A JP 30512286 A JP30512286 A JP 30512286A JP S63159298 A JPS63159298 A JP S63159298A
Authority
JP
Japan
Prior art keywords
silicon carbide
reaction
raw material
carbide whiskers
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61305122A
Other languages
Japanese (ja)
Other versions
JPH0448760B2 (en
Inventor
Yoshiro Kaji
梶 吉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP61305122A priority Critical patent/JPS63159298A/en
Priority to US07/096,743 priority patent/US4873070A/en
Priority to DE8787308276T priority patent/DE3777577D1/en
Priority to EP87308276A priority patent/EP0272773B1/en
Publication of JPS63159298A publication Critical patent/JPS63159298A/en
Publication of JPH0448760B2 publication Critical patent/JPH0448760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To continuously produce the titled whisker having high purity and excellent linearity, by transferring a silicon-containing raw material, carbon- containing raw material and reaction catalyst, heating them in a non-oxidizing atmosphere and depositing a low boiling point component by forced cooling the component in a cooling zone. CONSTITUTION:A reaction raw material consisting of silicon-containing raw material, carbon-containing raw material and reaction catalyst is charged into a vessel 42 and the raw material charged vessel is inserted into a reaction furnace from a inlet door 16 through a insert zone 11 under a non-oxidizing gas atmosphere and fed to a heat zone 13 via middle door 17 through a preheating zone 12 under a non-oxidizing gas atmosphere and heated at the prescribed temperature to provide the aimed SiC whisker. Then the vessel 42 is passed through the middle door 17 and fed to a cooling zone 14 wherein a cooling inert gas is introduced from a inlet tubes 18 and 19 and subjected to forced cooling to deposit the low boiling point component on a furnace wall and the deposited component is collected.

Description

【発明の詳細な説明】 棄朶上例珂里分互 本発明は、炭化ケイ素ウィスカーの連続製造方法及びそ
のための装置に関し、詳しくは、高純度であって、且つ
、直線性にすぐれる針状炭化ケイ素ウィスカー結晶を連
続方式にて高収率にて製造する方法及びそのための装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing silicon carbide whiskers and an apparatus therefor, and specifically relates to a method for continuously producing silicon carbide whiskers, and more specifically, to a method for continuously producing silicon carbide whiskers. The present invention relates to a method for producing silicon carbide whisker crystals in a continuous manner with high yield, and an apparatus therefor.

l米久韮貢 炭化ケイ素ウィスカーは、軽量、高強度、高弾性を有し
、近年、複合材料の強化材として、種々の用途が期待さ
れている。
Silicon carbide whiskers are lightweight, have high strength, and have high elasticity, and have recently been expected to be used in a variety of ways as reinforcing materials for composite materials.

このような炭化ケイ素ウィスカーの製造方法は従来、炭
素を含む原料及びケイ素を含む原料の一方又は両方を気
相にて反応炉内の所定の高温の反応域に供給する気相合
成法と、炭素を含む原料及びケイ素を含む原料として共
に固体を用いる固相合成法とに大別される。気相合成法
は、例えば、特公昭50−18480号公報、特公昭5
2−28757号公報、特公昭52−28759号公報
等に記載されており、また、固相合成法は、例えば、特
開昭58−20799号公報、特開昭58−45918
号公報、特開昭58−145700号公報等に記載され
ている。
Conventionally, methods for producing such silicon carbide whiskers include a gas phase synthesis method in which one or both of a carbon-containing raw material and a silicon-containing raw material are supplied in a gas phase to a predetermined high-temperature reaction zone in a reactor; It is broadly divided into solid-phase synthesis methods that use solids as raw materials containing silicon and silicon-containing raw materials. The gas phase synthesis method is described, for example, in Japanese Patent Publication No. 50-18480 and Japanese Patent Publication No. 50-18480.
2-28757, Japanese Patent Publication No. 52-28759, etc., and the solid phase synthesis method is described in, for example, JP-A-58-20799, JP-A-58-45918.
JP-A-58-145700, etc.

上記のような従来の気相合成法は、−iに、針状結晶を
得るには有利であるが、反面、気相原料の利用率が著し
く低い、気相原料が反応炉内で分解し、反応炉がこれら
分解物によって汚染される、更に、生成した炭化ケイ素
ウィスカー中にこれら分解物が混入する等の問題を有し
ているので、炭化ケイ素ウィスカーの大量生産には不適
当であり、一方、従来の固相合成法によれば、ケイ素を
含む原料粉末と炭素を含む原料粉末とを混合し、これを
加熱して、主としてこれら粉末間の固相反応にて直接に
炭化ケイ素を生成させるので、粉状乃至屈曲状の炭化ケ
イ素を多(生成し、直線性にすぐれる炭化ケイ素ウィス
カーを得ることが困難であるほか、得られた炭化ケイ素
ウィスカーから上記のような粉状乃至屈曲状の炭化ケイ
素を分離除去することが容易ではない。
The conventional gas phase synthesis method described above is advantageous in obtaining needle-shaped crystals, but on the other hand, the utilization rate of the gas phase raw material is extremely low, and the gas phase raw material is decomposed in the reactor. It is unsuitable for mass production of silicon carbide whiskers because it has problems such as the reactor being contaminated by these decomposed products and furthermore, these decomposed products are mixed into the generated silicon carbide whiskers. On the other hand, according to the conventional solid-phase synthesis method, silicon carbide is directly produced by mixing raw material powder containing silicon and raw material powder containing carbon, heating the mixture, and directly producing silicon carbide mainly through a solid-phase reaction between these powders. As a result, it is difficult to obtain silicon carbide whiskers with excellent linearity. It is not easy to separate and remove silicon carbide.

そこで、本発明者らは、炭素含有原料として炭素粉末を
用い、ケイ素含有原料として二酸化ケイ素を含有する所
定形状の成形体を用いる方法を既に提案している。この
方法によれば、成形体の反応残分としてのケイ素が生成
する炭化ケイ素ウィスカーに混入することがなく、従っ
て、生成する炭化ケイ素ウィスカーには、その生成時に
副生ずるケイ素及び/又は二酸化ケイ素が微量に混入す
るにすぎない。また、反応残分としての炭素は、反応終
了後に反応生成物を大気中で燃焼させることによって容
易に除去することができるので、高純度の炭化ケイ素ウ
ィスカーを得ることができる。
Therefore, the present inventors have already proposed a method in which a carbon powder is used as the carbon-containing raw material and a molded body having a predetermined shape containing silicon dioxide is used as the silicon-containing raw material. According to this method, silicon as a reaction residue of the compact does not mix with the silicon carbide whiskers produced, and therefore, the silicon carbide whiskers produced contain silicon and/or silicon dioxide, which are by-products during the production. Only a small amount is mixed in. Further, carbon as a reaction residue can be easily removed by burning the reaction product in the atmosphere after the reaction is completed, so that highly pure silicon carbide whiskers can be obtained.

しかし、本発明者らは、上記方法によって炭化ケイ素ウ
ィスカーを連続製造する場合に、炉材や反応原料を充填
した反応容器からす) IJウム、カリウム、マグネシ
ウム、カルシウム、イオウ、鉄、ケイ素等の元素を、含
む低沸点成分の蒸気が反応炉内に発生し、反応炉の排ガ
ス管系を閉塞して、長期間にわたる炭化ケイ素ウィスカ
ーの連続製造を妨げることがあることを見出し、そこで
、かかる問題を解決するために鋭意研究した結果、反応
炉内に非酸化性ガス雰囲気下で反応原料を均一に加熱す
る加熱帯と共に、その下流側に冷却帯を設けて、加熱反
応によって生じた反応生成物と炉内雰囲気を強制冷却し
、上記加熱反応時に副生じた低沸点成分の蒸気を析出さ
せて、これを捕集することによって、長期にわたる安定
な連続運転が可能となることを見出して、本発明に至っ
たものである。
However, the present inventors have found that when silicon carbide whiskers are continuously produced by the above method, the reaction vessel glass filled with furnace materials and reaction raw materials (IJ), potassium, magnesium, calcium, sulfur, iron, silicon, etc. It has been discovered that vapors of low boiling point components, including elements, are generated in the reactor and can clog the exhaust gas pipe system of the reactor, hindering the continuous production of silicon carbide whiskers over a long period of time. As a result of intensive research to solve this problem, we installed a heating zone in the reactor to uniformly heat the reaction raw materials in a non-oxidizing gas atmosphere, and a cooling zone downstream of the heating zone to heat the reaction materials in a non-oxidizing gas atmosphere. We discovered that stable continuous operation over a long period of time was possible by forcibly cooling the atmosphere in the furnace, precipitating the vapor of low-boiling components that was produced as a by-product during the heating reaction, and collecting it. This led to the invention.

更に、本発明者らは、上記の方法において、炭素含有原
料が生成する炭化ケイ素ウィスカーに及ぼす影響につい
て研究を重ねた結果、所定の性質を有するカーボンブラ
ックを炭素含有原料として用いることによって、特に、
直線性及び均質性にすぐれる針状炭化ケイ素ウィスカー
結晶を高収率にて得ることができることを見出して本発
明に至ったものである。
Furthermore, as a result of repeated research on the influence of the carbon-containing raw material on the silicon carbide whiskers produced in the above method, the present inventors found that by using carbon black having predetermined properties as the carbon-containing raw material, in particular,
The present invention was developed based on the discovery that acicular silicon carbide whisker crystals with excellent linearity and homogeneity can be obtained in high yield.

本発明による炭化ケイ素ウィスカーの連続製造方法は、
反応炉内において、ケイ素含有原料、炭素含有原料及び
反応触媒を移送しつつ、非酸化性ガス雰囲気下に所定温
度に加熱して、炭化ケイ素ウィスカーを生成させる方法
において、反応炉の出口側に配設した冷却帯にて低沸点
成分の蒸気を強制冷却して析出させ、捕集することを特
徴とする。
The continuous manufacturing method of silicon carbide whiskers according to the present invention includes:
In a method of generating silicon carbide whiskers by transferring a silicon-containing raw material, a carbon-containing raw material, and a reaction catalyst in a reactor and heating them to a predetermined temperature in a non-oxidizing gas atmosphere, It is characterized by forcibly cooling the vapor of low boiling point components to precipitate and collect them in the provided cooling zone.

本発明の方法においては、ケイ素含有原料としては、後
述するように、二酸化ケイ素を含む成形体を用いること
が好ましいが、しかし、粉末状のケイ素含有原料を用い
ることもできる。
In the method of the present invention, as the silicon-containing raw material, it is preferable to use a molded body containing silicon dioxide, as described later, but a powdered silicon-containing raw material can also be used.

本発明の方法において用いるケイ素含有原料としては、
例えば、ケイ素、ケイ石粉、粉状シリカゲル、各種の非
晶質シリカ、沈降性シリカ、粘土等を挙げることができ
るが、好ましくは、二酸化ケイ素を含有し、特に、良好
な収率にて炭化ケイ素ウィスカーを製造し得るように、
二酸化ケイ素を30重四%以上含有することが好ましい
The silicon-containing raw materials used in the method of the present invention include:
For example, silicon, silica powder, powdered silica gel, various amorphous silicas, precipitated silica, clay, etc. can be mentioned, but preferably it contains silicon dioxide, and especially silicon carbide in good yield. so that whiskers can be manufactured,
It is preferable to contain silicon dioxide in an amount of 30% by weight or more.

本発明において、かかるケイ素含有原料からなる成形体
とは、この原料を適宜の手段、例えば、押出成形、プレ
ス成形、造粒等の手段にて成形し、焼成して、板、棒、
管、筒、球、線状及びこれらの組み合わせとしての形状
を与えた立体的な固体をいう。
In the present invention, a molded body made of such a silicon-containing raw material is formed by molding this raw material by an appropriate means such as extrusion molding, press molding, granulation, etc., and firing it to form a plate, rod, etc.
A three-dimensional solid that has the shape of a tube, cylinder, sphere, line, or a combination of these.

一般に、固体状のケイ素含有原料と炭素含有原料とを加
熱反応させて、炭化ケイ素ウィスカーを製造する方法に
おいては、これら原料を反応容器内に充填し、加熱手段
を備えた反応炉、例えば、トレープッシャ一式電気炉内
に挿入して、所定の温度に加熱するが、本発明の方法に
おいては、上記ケイ素含有原料からなる成形体は、例え
ば、管状や箱型の容器等のように、炭素粉末を充填する
ための反応容器を兼ねることができる。
In general, in a method for producing silicon carbide whiskers by heating and reacting a solid silicon-containing raw material and a carbon-containing raw material, these raw materials are filled into a reaction vessel, and a reactor equipped with a heating means, such as a tray, is used. A pusher set is inserted into an electric furnace and heated to a predetermined temperature. In the method of the present invention, the molded body made of the silicon-containing raw material is made of carbon powder, such as a tubular or box-shaped container. It can also serve as a reaction vessel for filling.

このように、固体状のケイ素含有原料をその成形体とし
て用いるとき、この成形体からケイ素化合物が選択的に
気化し、炭素と反応して、炭化ケイ素ウィスカーを生成
するので、固体ケイ素含有原料として、ケイ素又は酸化
ケイ素含有量の低いものを使用しても、不純物が数%以
下の高純度の炭化ケイ素ウィスカーを得ることができる
。しかも、生成する炭化ケイ素ウィスカーは、成形体か
ら分離することが非常に容易である。
In this way, when a solid silicon-containing raw material is used as a molded body, the silicon compound from this molded body selectively vaporizes and reacts with carbon to produce silicon carbide whiskers. Even if a material with a low content of silicon or silicon oxide is used, a highly pure silicon carbide whisker containing impurities of several percent or less can be obtained. Furthermore, the silicon carbide whiskers produced are very easy to separate from the compact.

炭素含有原料としては、粉末状炭素を用いることが好ま
しく、カーボンブラックや粉末活性炭等を用いることが
できるが、これら炭素粉末は、微粉であって、嵩高いほ
ど反応性が高いので、特にカーボンブラックが好ましい
。しかも、後述するように、所定の性質を有するカーボ
ンブラックを用いることが好ましい。即ち、本発明にお
いては、カーボンブラックとして、BET比表面積10
0ra2/g以上、平均粒子径35nm以下、及び嵩密
度0.06〜0.2 g /cm’であるカーボンブラ
ックを用いることが特に好ましい。
As the carbon-containing raw material, it is preferable to use powdered carbon, and carbon black, powdered activated carbon, etc. can be used. However, these carbon powders are fine powders, and the more bulky they are, the higher the reactivity is. is preferred. Moreover, as will be described later, it is preferable to use carbon black having predetermined properties. That is, in the present invention, carbon black has a BET specific surface area of 10
It is particularly preferable to use carbon black having an average particle diameter of 0ra2/g or more, an average particle diameter of 35 nm or less, and a bulk density of 0.06 to 0.2 g/cm'.

本発明の方法においては、好ましくは、二酸化ケイ素含
有原料と炭素粉末とを非酸化性ガス雲囲気下において、
例えば、電気炉のような限られた空間内で所定温度に加
熱して、炭化ケイ素ウィスカーを得るものである。
In the method of the present invention, preferably, the silicon dioxide-containing raw material and the carbon powder are placed under a non-oxidizing gas cloud,
For example, silicon carbide whiskers are obtained by heating to a predetermined temperature in a limited space such as an electric furnace.

かかる本発明の方法においては、炭化ケイ素ウィスカー
は、非酸化性ガスとして水素ガスを用いる場合を例とし
て説明すれば、主として、次のような反応によって生成
するものとみられる。但し、本発明は、反応機構によっ
て何ら制限されるものではない。
In the method of the present invention, silicon carbide whiskers are mainly produced by the following reaction, taking as an example the case where hydrogen gas is used as the non-oxidizing gas. However, the present invention is not limited in any way by the reaction mechanism.

C(s) +2!h(g) ’−’ CH4(g)  
          (IISiOz(s) +CHn
(g) −SiO(g) +CO(g) +2Hz(g
)  (21SiO(g) +2C(s) −= 5i
C(s) +CO(g)       (31即ち、先
ず、水素ガスと炭素粉末とが反応fllによってメタン
ガスを生成し、これが二酸化ケイ素含有成形体の表面に
おいて、反応(2)によって−酸化ケイ素ガスが生成す
る。次いで、この−酸化ケイ素ガスと炭素との反応(3
)によって、炭化ケイ素が生成する。従って、総括反応
式は、 5iOz(s) +3C(s) −” 5iC(s) 
+2CO(g)       (Jで表わされることと
なる。
C(s) +2! h(g) '-' CH4(g)
(IISiOz(s) +CHn
(g) -SiO(g) +CO(g) +2Hz(g
) (21SiO(g) +2C(s) −= 5i
C(s) +CO(g) (31 That is, first, hydrogen gas and carbon powder react to generate methane gas, which is then reacted on the surface of the silicon dioxide-containing compact to generate -silicon oxide gas by reaction (2). Next, the reaction between this silicon oxide gas and carbon (3
), silicon carbide is produced. Therefore, the overall reaction equation is: 5iOz(s) +3C(s) −” 5iC(s)
+2CO(g) (It will be expressed as J.

本発明の方法においては、通常、二酸化ケイ素含有成形
体と炭素粉末は適宜の反応容器内に充填され、反応炉内
で水素雰囲気下に加熱される。例えば、反応容器内に板
状の二酸化ケイ素含有成形体が間隔をおいて平行に立て
られ、その空隙に炭素粉末が充填される。反応容器は、
例えば、アルミナ製でもよく、また、高純度炭素型であ
ってもよい。
In the method of the present invention, the silicon dioxide-containing compact and carbon powder are usually filled into a suitable reaction vessel and heated in a hydrogen atmosphere in a reaction furnace. For example, plate-shaped silicon dioxide-containing molded bodies are placed in parallel at intervals in a reaction vessel, and the gaps are filled with carbon powder. The reaction vessel is
For example, it may be made of alumina or may be of high purity carbon type.

前記反応式(4)においては、水素は炭化ケイ素の生成
に関与していないが、水素は、炭素のメタンガス化反応
(1)に不可欠であるので、炭素は、水素ガスと高い反
応性を有することが要求される。他方、反応(2)は、
炭素を充填した空間全体にわたってほぼ一様に進行し、
その結果、炭化ケイ素ウィスカーは、この空間全体にわ
たって生成し、他方、この空間以外では殆ど生成しない
。従って、反応温度、雰囲気ガス、触媒等の反応条件と
共に、成形体から生じる一酸化ケイ素を炭素を充填した
反応空間中に所定濃度に保持することが重要であり、こ
のために、炭素が適度の空隙をもつ凝集構造を有するこ
とが必要である。
In the reaction formula (4), hydrogen does not participate in the production of silicon carbide, but since hydrogen is essential for the carbon methane gasification reaction (1), carbon has high reactivity with hydrogen gas. This is required. On the other hand, reaction (2) is
Proceeds almost uniformly throughout the carbon-filled space,
As a result, silicon carbide whiskers form throughout this space, while forming very little outside of this space. Therefore, in addition to reaction conditions such as reaction temperature, atmospheric gas, and catalyst, it is important to maintain a predetermined concentration of silicon monoxide produced from the compact in the carbon-filled reaction space. It is necessary to have a cohesive structure with voids.

以上のように、上記の反応においては、水素ガスが炭化
ケイ素ウィスカーの生成に重要な寄与をなし、本発明に
よれば、反応域における雰囲気の水素ガスを常に70%
以上とすることによって、炭化ケイ素ウィスカーの収率
を著しく高めると共に、その針状性を著しく高めること
ができる。反応域における雰囲気を常に70%以上の水
素ガスを含むようにするには、具体的には、例えば、反
応炉中に大量の水素を流通させ、上記したように、副生
ずる一酸化炭素の生成に伴う水素濃度の低減を防止する
。水素ガス濃度が70%よりも少ないときは、炭化ケイ
素ウィスカーの収量が著しく低減するのみならず、その
長さも短く、また、粉状や屈曲状等の異形の炭化ケイ素
ウィスカーの生成量が増大する。
As described above, in the above reaction, hydrogen gas makes an important contribution to the generation of silicon carbide whiskers, and according to the present invention, the hydrogen gas in the atmosphere in the reaction zone is always reduced by 70%.
By doing so, the yield of silicon carbide whiskers can be significantly increased, and the acicularity thereof can be significantly improved. In order to make the atmosphere in the reaction zone always contain 70% or more hydrogen gas, for example, a large amount of hydrogen is passed through the reactor, and as mentioned above, carbon monoxide is generated as a by-product. prevent the reduction in hydrogen concentration associated with When the hydrogen gas concentration is less than 70%, not only the yield of silicon carbide whiskers is significantly reduced, but also the length is short, and the amount of silicon carbide whiskers produced in irregular shapes such as powder and bent shapes increases. .

尚、反応炉が、例えば、二酸化ケイ素成形体と固体炭素
含有原料とを加熱反応させる加熱帯を含む複数の帯域か
らなる場合は、本発明によれば、限られた空間とは、上
記加熱帯をいい、反応炉の少なくとも加熱帯の雰囲気を
水素濃度70%以上の雰囲気に保持すればよい。
In addition, when the reaction furnace is composed of a plurality of zones including a heating zone in which the silicon dioxide molded body and the solid carbon-containing raw material are heated and reacted, according to the present invention, the limited space is defined as the heating zone The atmosphere in at least the heating zone of the reactor may be maintained at an atmosphere with a hydrogen concentration of 70% or more.

カーボンブラックのBET比表面積、粒子径及び嵩密度
の三つの物性は、相互に完全に独立した物性ではなく、
相互に関連を有しつつ、水素ガスとの反応性及び凝集構
造を規定する。しかし、これらのうち、BET比表面積
は、カーボンブラックと水素ガスとの接触量をあられす
量であり、主として、気体との反応の指標となる。一方
、平均粒子径及び嵩密度は、カーボンブラックの主とし
て凝集構造の指標となる。ここに、本発明の方法によれ
ば、好ましくは、BET比表面積100m2/g以上、
平均粒子径35nm以下、及び嵩密度0、06〜0.2
 g /cm’であるカーボンブラックを用いるとき、
かかるカーボンブラックが水素ガスとの高い反応性をも
ち、前記した条件を満たすために、粉状、粒状、屈曲状
等の異形の副生なしに、針状性の高い炭化ケイ素つ・イ
スカーを生成することができるのであろう。
The three physical properties of carbon black, BET specific surface area, particle size, and bulk density, are not completely independent physical properties from each other;
It defines the reactivity with hydrogen gas and the agglomerated structure while being related to each other. However, among these, the BET specific surface area is an amount that indicates the amount of contact between carbon black and hydrogen gas, and is mainly an index of the reaction with gas. On the other hand, the average particle size and bulk density are mainly indicators of the agglomerated structure of carbon black. According to the method of the present invention, preferably a BET specific surface area of 100 m2/g or more,
Average particle diameter of 35 nm or less, and bulk density of 0.06 to 0.2
When using carbon black which is g/cm',
Such carbon black has high reactivity with hydrogen gas, and in order to meet the above conditions, it produces highly acicular silicon carbide iscar without producing irregularly shaped by-products such as powder, granules, and bent shapes. It may be possible to do so.

本発明の方法による炭化ケイ素ウィスカーの製造におい
ては、好ましくは反応触媒が用いられる。
In the production of silicon carbide whiskers by the method of the invention, preferably a reaction catalyst is used.

反応触媒としては、鉄、ニッケル、コバルト又はこれら
の化合物、例えば、酸化物、硝酸塩、炭酸塩、硫酸塩等
が用、いられる。これら化合物は、粉末、水溶液その他
適宜の形態で炭素含有原料粉末に加え、混在せしめられ
る。これら触媒は、直線状で高純度の炭化ケイ素ウィス
カーの生成速度を早めると共に、その結果として、併発
的に生じる望ましくない反応を抑制する作用がある。
As the reaction catalyst, iron, nickel, cobalt, or compounds thereof, such as oxides, nitrates, carbonates, sulfates, etc. are used. These compounds are added to and mixed with the carbon-containing raw material powder in the form of powder, aqueous solution, or other appropriate form. These catalysts have the effect of accelerating the production of linear, high-purity silicon carbide whiskers and, as a result, suppressing undesirable reactions that occur concurrently.

本発明の方法において、二酸化ケイ素含有成形体と固体
炭素原料とを水素を含む雰囲気下で加熱する温度は、1
300℃以上が好適であり、特に、1400℃以上が好
ましい。1300℃よりも低い温度では、炭化ケイ素ウ
ィスカーの生成が極めて遅く、実用上好ましくないから
である。一方、余りに高温であるときは、反応条件が過
激にすぎて、ウィスカー径が肥大化し、また、ウイスカ
−に分岐や折れ曲がり等の乱れが発生するようになる。
In the method of the present invention, the temperature at which the silicon dioxide-containing molded body and the solid carbon raw material are heated in an atmosphere containing hydrogen is 1
The temperature is preferably 300°C or higher, particularly preferably 1400°C or higher. This is because, at a temperature lower than 1300° C., silicon carbide whisker formation is extremely slow, which is practically undesirable. On the other hand, when the temperature is too high, the reaction conditions are too extreme, the diameter of the whiskers increases, and disturbances such as branching and bending occur in the whiskers.

従って、反応温度は、通常、1700℃以下がよい。ま
た、加熱時間は、特に制限されるものではないが、通常
、0.5〜30時間が適当である。
Therefore, the reaction temperature is usually 1700°C or lower. Further, the heating time is not particularly limited, but is usually suitable for 0.5 to 30 hours.

反応時間が余りに短いときは、未反応原料が多量に残留
し、一方、余りに長時間反応させても、炭化ケイ素ウィ
スカーの収量の増加が僅かであるので、生産性及び熱エ
ネルギー費用の観点からみて、何ら利点がないからであ
る。
If the reaction time is too short, a large amount of unreacted raw materials will remain; on the other hand, if the reaction is too long, the yield of silicon carbide whiskers will increase only slightly. , because there is no advantage.

上記のように、本発明の方法においては、反応原料を高
温に加熱するので、前述したように、この加熱反応時に
炉材や反応原料を充填した反応容器からナトリウム、カ
リウム、マグネシウム、カルシウム、イオウ、鉄、ケイ
素等の元素を含む低沸点成分の蒸気が発生し、反応炉の
排ガス管系を閉塞することを防止するために、上記反応
原料の加熱の後、反応生成物と雰囲気とを強制冷却して
、上記低沸点成分の蒸気を強制的に冷却し、これを炉壁
に析出付着させて、捕集する。従って、かかる本発明の
方法によれば、上記低沸点成分の蒸気は、排ガス管系に
おいて析出付着することがないので、炭化ケイ素ウィス
カーの連続製造を安定して行なうことができる。
As mentioned above, in the method of the present invention, the reaction raw materials are heated to a high temperature, so during this heating reaction, sodium, potassium, magnesium, calcium, and sulfur are removed from the furnace material and the reaction vessel filled with the reaction raw materials. In order to prevent the generation of steam of low-boiling components containing elements such as iron, silicon, etc. and clogging the exhaust gas pipe system of the reactor, after heating the above reaction raw materials, the reaction products and the atmosphere are forced. By cooling, the vapor of the low boiling point component is forcibly cooled, deposited on the furnace wall, and collected. Therefore, according to the method of the present invention, the vapor of the low boiling point component does not precipitate and adhere in the exhaust gas pipe system, so that silicon carbide whiskers can be continuously produced stably.

この後、必要に応じて、反応生成物を放冷し、好ましく
は、反応生成物に含まれる余剰の炭素を酸化焼却するこ
とによって、通常、綿状の炭化ケイ素ウィスカーを得る
ことができる。
Thereafter, if necessary, the reaction product is allowed to cool, and preferably, excess carbon contained in the reaction product is oxidized and incinerated to usually obtain flocculent silicon carbide whiskers.

本発明による炭化ケイ素ウィスカーの連続製造装置は、
ケイ素含有原料、炭素含有原料及び反応触媒からなる反
応原料を反応炉内において非酸化性ガス雰囲気下に所定
の反応温度に加熱して、炭化ケイ素ウィスカーを生成さ
せる装置において、上記反応炉内に上記反応原料を所定
の反応温度に加熱する加熱帯と、この後、反応生成物と
雰囲気とを強制冷却する冷却帯とが形成されており、こ
の冷却帯にて低沸点成分の蒸気を強制的に冷却して析出
させ、捕集することを特徴とする。
The continuous production device for silicon carbide whiskers according to the present invention includes:
In an apparatus for generating silicon carbide whiskers by heating a reaction raw material consisting of a silicon-containing raw material, a carbon-containing raw material, and a reaction catalyst to a predetermined reaction temperature in a non-oxidizing gas atmosphere in a reactor, the above-mentioned A heating zone is formed to heat the reaction raw materials to a predetermined reaction temperature, and a cooling zone is then formed to forcibly cool the reaction products and the atmosphere.In this cooling zone, the vapor of low boiling point components is forcibly cooled. It is characterized by being cooled, precipitated, and collected.

以下、本発明による装置を図面に基づいて具体的に説明
する。第1図は本発明による装置の正面断面図、第2図
は第1図に示す装置の平面断面図である。
Hereinafter, the apparatus according to the present invention will be specifically explained based on the drawings. FIG. 1 is a front sectional view of an apparatus according to the invention, and FIG. 2 is a plan sectional view of the apparatus shown in FIG.

反応炉10は角管状に形成されており、上記反応原料を
炉内に挿入する端部である挿入帯1)、反応原料を予め
所定温度まで予熱する予熱帯12、反応原料を所定の反
応温度に加熱するための加熱帯13、反応後に反応生成
物及び雰囲気ガスを冷却するための冷却帯14、及び冷
却された反応生成物を炉から取出すための取出帯15を
有する。
The reactor 10 is formed into a rectangular tube shape, and includes an insertion zone 1) which is an end portion for inserting the reaction raw material into the furnace, a preheating zone 12 for preheating the reaction raw material to a predetermined temperature, and a preheating zone 12 for preheating the reaction raw material to a predetermined temperature. It has a heating zone 13 for heating the reaction product to a temperature of 50%, a cooling zone 14 for cooling the reaction product and atmospheric gas after the reaction, and a take-out zone 15 for taking out the cooled reaction product from the furnace.

挿入帯1)の入口には入口扉16が、また、挿入帯と予
熱帯12との間には中扉17がそれぞれ開閉可能に且つ
炉断面を横切るように配設されて、挿入帯と予熱帯の雰
囲気が必要に応じて遮断される。同様に、冷却帯14と
取出帯15との間にも、それぞれの雰囲気を必要に応じ
て遮断するために、開閉可能に且つ炉断面を横切るよう
に中扉18が設けられている。
An inlet door 16 is provided at the entrance of the insertion zone 1), and an inner door 17 is provided between the insertion zone and the preheating zone 12 so as to be openable and closable and to cross the furnace cross section. The tropical atmosphere is blocked out as needed. Similarly, an inner door 18 is provided between the cooling zone 14 and the take-out zone 15 so as to be openable and closable and to cross the furnace cross section in order to shut off the respective atmospheres as necessary.

上記挿入帯は、不活性ガス導入管27と排出管26とを
備え、予熱帯に挿入された反応原料と共に搬入された空
気は例えば窒素と置換され、反応原料は不活性ガス雰囲
気下におかれる。
The insertion zone is equipped with an inert gas introduction pipe 27 and an exhaust pipe 26, and the air carried in together with the reaction materials inserted into the preheating zone is replaced with, for example, nitrogen, and the reaction materials are placed in an inert gas atmosphere. .

次に、予熱帯12の導入側には、非酸化性ガス、例えば
、水素導入管21及び28が配設されており、反応原料
の移送方向と同じ方向に流れるように、水素ガスが予熱
帯及び加熱帯に供給される。
Next, non-oxidizing gas, for example, hydrogen introduction pipes 21 and 28 are arranged on the introduction side of the pre-heating zone 12, and hydrogen gas is introduced into the pre-heating zone so that it flows in the same direction as the transfer direction of the reaction raw materials. and supplied to the heating zone.

上記予熱帯及び加熱帯には、ケイ素含有原料、炭素粉末
及び反応触媒を含む反応原料をそれぞれ所定温度に予熱
し、又は加熱するための加熱手段として電気ヒーター4
1が炉壁に取付けられている。
In the preheating zone and the heating zone, an electric heater 4 is provided as a heating means for preheating or heating the reaction raw materials including the silicon-containing raw material, carbon powder, and reaction catalyst to predetermined temperatures, respectively.
1 is attached to the furnace wall.

また、冷却帯14には、その導入側及び搬出側にそれぞ
れ冷却用不活性ガス導入管29及び31が配設され、搬
出側寄りに冷却用不活性ガス排出管25及び30が配設
されていて、冷却用不活性ガスが冷却帯に導入されて、
雰囲気ガス及び反応生成物を強制冷却し、雰囲気ガスに
含まれる前記低沸点成分の蒸気を炉壁に析出付着させる
。必要に応じて、低沸点成分の蒸気の冷却析出効率を高
めるために、冷却帯には炉壁に沿って冷却器(図示せず
)、例えば、冷却板を取替可能に配設し、この冷却板の
内部に冷却水を流通して、所定の温度に冷却してもよい
Further, the cooling zone 14 is provided with cooling inert gas introduction pipes 29 and 31 on its introduction side and discharge side, respectively, and cooling inert gas discharge pipes 25 and 30 on its discharge side. Then, a cooling inert gas is introduced into the cooling zone.
The atmospheric gas and the reaction product are forcibly cooled, and the vapor of the low boiling point component contained in the atmospheric gas is deposited and deposited on the furnace wall. If necessary, a cooler (not shown), such as a cooling plate, is replaceably installed along the furnace wall in the cooling zone in order to increase the efficiency of cooling and precipitation of low-boiling point component vapor. Cooling water may be passed through the cooling plate to cool it to a predetermined temperature.

本発明による装置においては、好ましくは、冷却帯14
は、加熱帯13よりも大きい炉内断面積を有して、大き
い炉内容積を有するように形成され、冷却帯において、
炉壁や冷却器に低沸点成分が層をなして析出付着しても
、反応容器が反応炉内を支障なく移送され得るように、
十分な空間を有せしめる。この冷却帯は、一定期間の運
転後に、炉壁や冷却器に析出付着した低沸点成分を除去
し得ると共に、連続製造の効率を高めるために、取替式
に反応炉に配設されていてもよい、しかし、炉体自体を
取替可能とすることなく、炉壁を外側炉壁と内側炉壁と
からなる二重構造とし、内側炉壁を炉体に対して取替可
能に構成することもできる。
In the device according to the invention, preferably the cooling zone 14
is formed to have a larger inner furnace cross-sectional area and larger inner furnace volume than the heating zone 13, and in the cooling zone,
Even if low boiling point components deposit and adhere to the furnace walls and cooler, the reactor can be transported through the reactor without any problems.
Make sure you have enough space. This cooling zone is replaceable in the reactor in order to remove low-boiling components deposited on the furnace walls and cooler after a certain period of operation, and to improve the efficiency of continuous production. However, instead of making the furnace body itself replaceable, the furnace wall has a double structure consisting of an outer furnace wall and an inner furnace wall, and the inner furnace wall is configured to be replaceable with respect to the furnace body. You can also do that.

上記冷却帯の搬出側端部は取出帯15に接続されている
。取出帯にも、その導入側と搬出側にそれぞれ不活性ガ
ス導入管32と排出管33とが配設され、反応生成物は
この取出帯にて不活性ガス雰囲気下におかれ、必要に応
じて更に冷却された後、反応炉より取出される。
The discharge side end of the cooling zone is connected to the take-out zone 15. The take-out zone is also provided with an inert gas introduction pipe 32 and a discharge pipe 33 on the inlet side and the discharge side, respectively, and the reaction product is placed under an inert gas atmosphere in this take-out zone, and is discharged as necessary. After further cooling, it is taken out from the reactor.

次に、かかる装置による炭化ケイ素ウィスカーの連続製
造について説明する。
Next, continuous production of silicon carbide whiskers using such an apparatus will be explained.

ケイ素含有原料、炭素含有原料及び反応触媒からなる反
応原料は、適宜の反応容器42又は匣鉢、例えば、ムラ
イト、アルミナ等からなるセラミックス製容器や黒鉛製
容器に充填されて、反応炉に挿入帯1)から順次挿入さ
れ、不活性ガス雰囲気下におかれる。次いで、挿入帯か
ら予熱帯12に移送された反応原料は、この予熱帯で所
定温度まで予熱された後、加熱帯13にて反応原料の移
送方向と並流に流通される非酸化性ガス、例えば、水素
ガスの雰囲気下に所定の反応温度に加熱されて、炭化ケ
イ素ウィスカーを生成する。
The reaction raw materials consisting of a silicon-containing raw material, a carbon-containing raw material, and a reaction catalyst are filled into a suitable reaction vessel 42 or sagger, for example, a ceramic vessel made of mullite, alumina, etc., or a graphite vessel, and inserted into the reactor. They are inserted sequentially starting from 1) and placed under an inert gas atmosphere. Next, the reaction raw material transferred from the insertion zone to the preheating zone 12 is preheated to a predetermined temperature in the preheating zone, and then in the heating zone 13, a non-oxidizing gas is passed through the heating zone 13 in parallel with the transfer direction of the reaction raw material. For example, it is heated to a predetermined reaction temperature in an atmosphere of hydrogen gas to produce silicon carbide whiskers.

上記加熱帯における反応温度及び反応時間については、
既に先に説明されている。反応容器に充填された反応原
料は、加熱帯に所定時間滞留するように、前記挿入帯か
ら順次に間欠的に反応炉内に挿入される。
Regarding the reaction temperature and reaction time in the above heating zone,
Already explained earlier. The reaction raw materials filled in the reaction vessel are sequentially and intermittently inserted into the reactor from the insertion zone so as to stay in the heating zone for a predetermined period of time.

冷却帯14には、前記したように、冷却用不活性ガス導
入管29及び31とガス排出管25及び30とが配設さ
れて、反応原料は、上記したように、加熱帯にて所定の
反応温度への加熱によって炭化ケイ素ウィスカーを生成
した後、この冷却帯で不活性ガスによって強制冷却され
、上記加熱反応によって副生じた低沸点成分の蒸気を炉
壁に析出させて捕集し、かくして、低沸点成分の蒸気の
ガス排出管系における析出付着を防止するのである。
As described above, the cooling zone 14 is provided with the cooling inert gas introduction pipes 29 and 31 and the gas discharge pipes 25 and 30, and the reaction raw materials are heated to a predetermined level in the heating zone as described above. After silicon carbide whiskers are generated by heating to the reaction temperature, they are forcibly cooled by inert gas in this cooling zone, and the vapor of low boiling point components produced by the heating reaction is deposited on the furnace wall and collected, thus This prevents vapors of low boiling point components from depositing and adhering in the gas exhaust pipe system.

前述したように、予熱帯及び加熱帯に供給された水素も
、反応原料の加熱後は、冷却帯に導入された不活性ガス
や冷却帯で除去されない非凝縮性副生ガスと共に、冷却
帯の搬出側のガス排出管25及び30から反応炉外に排
出される。
As mentioned above, after the reaction materials are heated, the hydrogen supplied to the pre-heating zone and the heating zone, together with the inert gas introduced into the cooling zone and the non-condensable by-product gas that is not removed in the cooling zone, flows into the cooling zone. The gas is discharged from the reactor through the gas discharge pipes 25 and 30 on the discharge side.

以上のようにして、得られた炭化ケイ素ウィスカーは、
冷却帯の搬出側を経て、取出帯15に移送され、取出帯
から取出された反応生成物は、次いで、マツフル炉内に
て未反応炭素原料を酸化焼却し、このようにして炭化ケ
イ素ウィスカーを得ることができる。
The silicon carbide whiskers obtained in the above manner are
The reaction product is transferred to the take-out zone 15 via the take-out side of the cooling zone, and the reaction product taken out from the take-out zone is then oxidized and incinerated in a Matsufuru furnace to oxidize and incinerate the unreacted carbon raw material, thus converting silicon carbide whiskers into silicon carbide whiskers. Obtainable.

発明の効果 以上のように、本発明の方法及び装置によれば、反応原
料の加熱帯における加熱によって発生した低沸点成分の
蒸気を冷却帯にて強制冷却して、析出させ、これを捕集
するので、これら蒸気がガス排出管系に付着することが
防止される。従って、本発明によれば、長期にわたって
連続して、且つ、安定に炭化ケイ素ウィスカーを製造す
ることができる。
Effects of the Invention As described above, according to the method and apparatus of the present invention, the vapor of the low boiling point component generated by heating the reaction raw material in the heating zone is forcibly cooled in the cooling zone, precipitated, and collected. This prevents these vapors from adhering to the gas exhaust pipe system. Therefore, according to the present invention, silicon carbide whiskers can be produced continuously and stably over a long period of time.

また、本発明に従って、二酸化ケイ素含有成形体と所定
の物性を有するカーボンブラックとを非酸化性ガス、特
に、水素ガス雰囲気下に加熱することによって、針状性
の高い炭化ケイ素ウィスカー結晶を高収率て製造するこ
とができると共に、塩化ナトリウムのようなハロゲン化
金属からなる反応促進剤を用いる必要がないので、これ
らの反応炉壁への付着や反応炉を腐食させる腐食性ガス
の発生もない。
Furthermore, according to the present invention, highly acicular silicon carbide whisker crystals can be produced in high yield by heating a silicon dioxide-containing molded body and carbon black having predetermined physical properties in an atmosphere of non-oxidizing gas, particularly hydrogen gas. In addition to being able to be manufactured at high speed, there is no need to use reaction accelerators made of metal halides such as sodium chloride, so there is no need for these to adhere to the reactor walls or generate corrosive gases that corrode the reactor. .

更に、本発明の方法によれば、反応空間を確保するため
の反応促進剤を用いる必要がなく、従って、炭化ケイ素
ウィスカーの装造において、反応炉壁にこれらが析出付
着することがなく、また、腐食性ガスの発生もないので
、反応炉を損傷させない。
Further, according to the method of the present invention, there is no need to use a reaction accelerator to secure a reaction space, and therefore, when silicon carbide whiskers are installed, there is no need to deposit and adhere the silicon carbide whiskers to the reactor wall. Since no corrosive gas is generated, the reactor will not be damaged.

大施斑 以下に実施例と共に比較例を挙げて本発明を説明するが
、本発明はこれら実施例によって何ら制限されるもので
はない。
Large Spotting The present invention will be explained below by giving Examples and Comparative Examples, but the present invention is not limited to these Examples in any way.

実施例 製造装置として図示したように、加熱帯及び冷却帯を備
えたトレープッシャ一式加熱炉を用い、反応炉内に水素
ガスを反応原料の移送方向と並流に流通させると共に、
加熱帯における温度を1600℃として、冷却帯に冷却
用窒素ガスを送入して、炭化ケイ素ウィスカーの連続製
造を行なった。
As shown in the figure as the example manufacturing apparatus, a heating furnace with a tray pusher set equipped with a heating zone and a cooling zone is used, hydrogen gas is caused to flow in the reaction furnace in parallel with the direction of transfer of the reaction raw materials,
The temperature in the heating zone was set at 1600° C., and cooling nitrogen gas was fed into the cooling zone to continuously produce silicon carbide whiskers.

即ち、炭素匣鉢にケイ素含有原料と比表面積250m2
/g、平均粒子径14nm、嵩密度190g/cm’及
び触媒としての少量の酸化ニッケルを充填し、加熱帯に
おいて上記反応原料を95%水素15%窒素雰囲気下に
1600℃の温度に2時間加熱し、この後、冷却帯にて
窒素ガスにて冷却する条件にて1か月間の連続運転を行
なった。
That is, a silicon-containing raw material and a specific surface area of 250 m2 are placed in a carbon pot.
/g, an average particle diameter of 14 nm, a bulk density of 190 g/cm', and a small amount of nickel oxide as a catalyst, and heated the above reaction raw material in a heating zone to a temperature of 1600 ° C. in an atmosphere of 95% hydrogen 15% nitrogen for 2 hours. After this, continuous operation was performed for one month under conditions of cooling with nitrogen gas in a cooling zone.

この間、冷却帯の炉壁に設けた覗き窓から炉内を観察し
たところ、冷却帯の炉壁には低沸点成分の析出が認めら
れたが、排ガス管系には殆ど析出が認められず、連続運
転を安定に続けることができた。
During this period, when the inside of the furnace was observed through a viewing window installed in the furnace wall of the cooling zone, precipitation of low-boiling components was observed on the furnace wall of the cooling zone, but almost no precipitation was observed on the exhaust gas pipe system. We were able to continue stable continuous operation.

また、このようにして得られた炭化ケイ素ウィスカーは
、フッ酸可溶分が2%以下であって、しかも、その形状
は針状であって、針状比の高いものであった。
Furthermore, the silicon carbide whiskers thus obtained had a hydrofluoric acid soluble content of 2% or less, and were acicular in shape, with a high acicular ratio.

比較例 上記実施例において、反応炉内に冷却帯を設けて、ここ
ての反応生成物及び雰囲気の強制冷却を行なわなかった
以外は、上記実施例と同様にして炭化ケイ素ウィスカー
を連続製造したところ、運転を開始してから僅か1時間
後には、低沸点成分の蒸気の析出付着による排ガス管系
の閉塞が始まり、炉内圧力が上昇したため、予備の排ガ
ス管系を併用せざるを得なかった。しかも、このように
予備の排ガス管系を併用しても、それらも、その2日後
に閉塞傾向を示し、連続操業における安全運転の確保が
困難であった。
Comparative Example Silicon carbide whiskers were continuously produced in the same manner as in the above example, except that a cooling zone was provided in the reactor and the reaction products and atmosphere were not forcedly cooled. Just one hour after the start of operation, the exhaust gas pipe system began to become clogged due to deposits of vapor containing low boiling point components, and the pressure inside the furnace rose, so a backup exhaust gas pipe system had to be used. . Moreover, even if such a spare exhaust gas pipe system was used in combination, they also tended to become clogged two days later, making it difficult to ensure safe operation in continuous operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の実施例を示す正面断面図、
第2図は第1図に示す装置の平面断面図である。 10・・・反応炉、1)・・・挿入帯、12・・・予熱
帯、13・・・加熱帯、14・・・冷却帯、15・・・
取出帯、26・・・不活性ガス排出管、21・・・水素
導入管、25・・・冷却用不活性ガス排出管、27・・
・不活性ガス導入管、28・・・水素導入管、29・・
・冷却用不活性ガス導入管、25・・・冷却用不活性ガ
ス排出管、31・・・冷却用不活性ガス導入管、42・
・・反応容器。 特許出願人  株式会社神戸製鋼所 同  鐘紡株式会社
FIG. 1 is a front sectional view showing an embodiment of the device according to the present invention;
FIG. 2 is a sectional plan view of the device shown in FIG. 1. DESCRIPTION OF SYMBOLS 10...Reactor, 1)...Insertion zone, 12...Pre-preparation zone, 13...Heating zone, 14...Cooling zone, 15...
Take-out zone, 26... Inert gas discharge pipe, 21... Hydrogen introduction pipe, 25... Inert gas discharge pipe for cooling, 27...
・Inert gas introduction pipe, 28...Hydrogen introduction pipe, 29...
- Inert gas introduction pipe for cooling, 25... Inert gas discharge pipe for cooling, 31... Inert gas introduction pipe for cooling, 42.
...Reaction container. Patent applicant: Kobe Steel, Ltd. Kanebo Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] (1)反応炉内において、ケイ素含有原料、炭素含有原
料及び反応触媒を移送しつつ、非酸化性ガス雰囲気下に
所定温度に加熱して、炭化ケイ素ウィスカーを生成させ
る方法において、反応炉の出口側に配設した冷却帯にて
低沸点成分の蒸気を強制冷却して析出させ、捕集するこ
とを特徴とする炭化ケイ素ウィスカーの連続製造方法。
(1) In a method of generating silicon carbide whiskers by transferring a silicon-containing raw material, a carbon-containing raw material, and a reaction catalyst in a reactor and heating them to a predetermined temperature in a non-oxidizing gas atmosphere, the outlet of the reactor A method for continuous production of silicon carbide whiskers, characterized by forcibly cooling, precipitating and collecting vapor of low boiling point components in a cooling zone provided on the side.
(2)炭素含有原料がBET比表面積100m^2/g
以上、平均粒子径35nm以下、及び嵩密度0.06〜
0.2g/cm^3であるカーボンブラックであること
を特徴とする炭化ケイ素ウィスカーの連続製造方法。
(2) Carbon-containing raw material has a BET specific surface area of 100 m^2/g
above, average particle diameter of 35 nm or less, and bulk density of 0.06 to
A method for continuously producing silicon carbide whiskers, characterized in that the carbon black is 0.2 g/cm^3.
(3)炭素含有原料に触媒を混在させることを特徴とす
る特許請求の範囲第1項又は第2項記載の炭化ケイ素ウ
ィスカーの連続製造方法。
(3) A method for continuously producing silicon carbide whiskers according to claim 1 or 2, characterized in that a catalyst is mixed in the carbon-containing raw material.
(4)触媒が鉄、ニッケル又はコバルト又はその化合物
であることを特徴とする特許請求の範囲第3項記載の炭
化ケイ素ウィスカーの製造方法。
(4) The method for producing silicon carbide whiskers according to claim 3, wherein the catalyst is iron, nickel, cobalt, or a compound thereof.
(5)反応温度が1400〜1700℃であることを特
徴とする特許請求の範囲第1項記載の炭化ケイ素ウィス
カーの連続製造方法。
(5) The method for continuously producing silicon carbide whiskers according to claim 1, wherein the reaction temperature is 1400 to 1700°C.
(6)非酸化性ガスが濃度70%以上の水素であること
を特徴とする特許請求の範囲第1項記載の炭化ケイ素ウ
ィスカーの連続製造方法。
(6) The method for continuously producing silicon carbide whiskers according to claim 1, wherein the non-oxidizing gas is hydrogen with a concentration of 70% or more.
(7)ケイ素含有原料、炭素含有原料及び反応触媒から
なる反応原料を反応炉内において非酸化性ガス雰囲気下
に所定の反応温度に加熱して、炭化ケイ素ウィスカーを
生成させる装置において、上記反応炉内に上記反応原料
を所定の反応温度に加熱する加熱帯と、この後、反応生
成物と雰囲気とを強制冷却する冷却帯とが形成されてお
り、この冷却帯にて低沸点成分の蒸気を強制的に冷却し
て析出させ、捕集することを特徴とする炭化ケイ素ウィ
スカーの連続製造装置。
(7) In an apparatus for producing silicon carbide whiskers by heating a reaction raw material consisting of a silicon-containing raw material, a carbon-containing raw material, and a reaction catalyst to a predetermined reaction temperature in a non-oxidizing gas atmosphere in a reactor, A heating zone for heating the reaction raw materials to a predetermined reaction temperature and a cooling zone for forcibly cooling the reaction products and the atmosphere are formed in the cooling zone. A continuous production device for silicon carbide whiskers, which is characterized by forcibly cooling, precipitation, and collection.
(8)冷却帯に冷却用不活性ガスを導入し、排出するた
めの冷却用不活性ガス管系が接続されていることを特徴
とする特許請求の範囲第7項記載の炭化ケイ素ウィスカ
ーの連続製造装置。
(8) A series of silicon carbide whiskers according to claim 7, characterized in that a cooling inert gas pipe system for introducing and discharging a cooling inert gas is connected to the cooling zone. Manufacturing equipment.
(9)非酸化性ガスが反応炉内を反応原料の移送方向に
流通されることを特徴とする特許請求の範囲第7項記載
の炭化ケイ素ウィスカーの連続製造装置。
(9) The continuous production apparatus for silicon carbide whiskers according to claim 7, wherein the non-oxidizing gas is passed through the reactor in the direction of transfer of the reaction raw materials.
(10)非酸化性ガスが濃度70%以上の水素であるこ
とを特徴とする特許請求の範囲第7項記載の炭化ケイ素
ウィスカーの連続製造装置。
(10) The continuous production apparatus for silicon carbide whiskers according to claim 7, wherein the non-oxidizing gas is hydrogen with a concentration of 70% or more.
JP61305122A 1986-12-17 1986-12-20 Continuous production of silicon carbide whisker and apparatus therefor Granted JPS63159298A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61305122A JPS63159298A (en) 1986-12-20 1986-12-20 Continuous production of silicon carbide whisker and apparatus therefor
US07/096,743 US4873070A (en) 1986-12-17 1987-09-15 Process for producing silicon carbide whiskers
DE8787308276T DE3777577D1 (en) 1986-12-17 1987-09-18 METHOD FOR PRODUCING SILICON CARBIDE WHISKERS.
EP87308276A EP0272773B1 (en) 1986-12-17 1987-09-18 Process for production silicon carbide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305122A JPS63159298A (en) 1986-12-20 1986-12-20 Continuous production of silicon carbide whisker and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63159298A true JPS63159298A (en) 1988-07-02
JPH0448760B2 JPH0448760B2 (en) 1992-08-07

Family

ID=17941367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305122A Granted JPS63159298A (en) 1986-12-17 1986-12-20 Continuous production of silicon carbide whisker and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63159298A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528779U (en) * 1978-08-15 1980-02-25
JPS6126600A (en) * 1984-07-17 1986-02-05 Nippon Light Metal Co Ltd Preparation of beta type silicon carbide whisker
JPS61127700A (en) * 1984-11-21 1986-06-14 Tokai Carbon Co Ltd Manufacture of sic whisker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528779U (en) * 1978-08-15 1980-02-25
JPS6126600A (en) * 1984-07-17 1986-02-05 Nippon Light Metal Co Ltd Preparation of beta type silicon carbide whisker
JPS61127700A (en) * 1984-11-21 1986-06-14 Tokai Carbon Co Ltd Manufacture of sic whisker

Also Published As

Publication number Publication date
JPH0448760B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
JP6755269B2 (en) A method for producing solid carbon by reducing carbon dioxide
JP6379085B2 (en) Method for treating off-gas containing carbon oxides
US20160039677A1 (en) Direct combustion heating
EP0070440B1 (en) Method for synthesizing amorphous silicon nitride
EP0272773B1 (en) Process for production silicon carbide whiskers
JPH0353279B2 (en)
JPS63159298A (en) Continuous production of silicon carbide whisker and apparatus therefor
JPS6122000A (en) Preparation of silicon carbide whisker
JPH042560B2 (en)
JPS644999B2 (en)
JPS5891018A (en) Manufacture of fine nitride powder
JPS63159299A (en) Production of silicon carbide whisker
JPS63156100A (en) Production of silicon carbide whisker
JPS623100A (en) Continuous production of silicon carbide whisker
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JPS61295299A (en) Preparation of silicon carbide whisker
JPH0633237B2 (en) Method for producing high-purity silicon carbide whisker
JPS5945636B2 (en) Method for manufacturing silicon carbide whiskers
JPS63156098A (en) Production of silicon carbide whisker
JPS63103898A (en) Production of silicon carbide whisker of high-quality
JPH0471040B2 (en)
JPH0372008B2 (en)
JPH0511047B2 (en)
JPH029800A (en) Raw material composition for production of silicon carbide whisker
JPS6272600A (en) Production of silicon carbide whisker