JPS61295299A - Preparation of silicon carbide whisker - Google Patents

Preparation of silicon carbide whisker

Info

Publication number
JPS61295299A
JPS61295299A JP60136579A JP13657985A JPS61295299A JP S61295299 A JPS61295299 A JP S61295299A JP 60136579 A JP60136579 A JP 60136579A JP 13657985 A JP13657985 A JP 13657985A JP S61295299 A JPS61295299 A JP S61295299A
Authority
JP
Japan
Prior art keywords
raw material
contg
carbon
molded body
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136579A
Other languages
Japanese (ja)
Other versions
JPH0353280B2 (en
Inventor
Katsunori Shimazaki
嶋崎 勝乗
Yoshiro Kaji
梶 吉郎
Masakazu Yamamoto
正和 山本
Keita Yura
由良 慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP60136579A priority Critical patent/JPS61295299A/en
Publication of JPS61295299A publication Critical patent/JPS61295299A/en
Publication of JPH0353280B2 publication Critical patent/JPH0353280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prepare SiC whisker contg. no powdery or bent SiC and having high linearity by heating directly a molded body comprising siliceous raw material contg. SiO2 and a molded body comprising carbonaceous raw material contg. C at high temp. in specified H2 atmosphere. CONSTITUTION:A molded body molded previously to a specified shape from SiO2-contg. siliceous raw material (e.g. siliceous stone powder, powdery silica gel, clay, etc.) and a molded body molded previously to a specified shape from C-contg. carbonaceous raw material (e.g. carbon black, powdery active carbon, carbon obtd. by the heat treatment of tar or pitch) are heated at >=1,400 deg.C in H2-contg. atmosphere contg. >=20vol% H2. Formation of SiC whisker by the gaseous phase reaction is prompted. On the other hand, reactions in the solid phase between the SiO2-contg. raw material and the C-contg. raw material or direct gas/solid reaction between SiO2 vapor and solid C-contg. raw material, are retarded. Thus, powdery or bent SiC is scarcely formed and SiC whisker having superior linearity is obtd. at high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化ケイ素ウィスカーの製造方法に関し、詳
しくは、高純度であって、且つ、直線性にすぐれる炭化
ケイ素ウィスカーを高収率にて製造する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing silicon carbide whiskers, and more specifically, a method for producing silicon carbide whiskers of high purity and excellent linearity in a high yield. The present invention relates to a method of manufacturing the same.

(従来の技術) 炭化ケイ素ウィスカーは、軽量、高強度、高弾性を有し
、近年、複合材料の強化材として注目されているのみな
らず、酸に対する耐食性及び耐酸化性がすぐれるところ
から、例えば、リン酸型燃料電池用材料としても注目さ
れるに至っている。
(Prior Art) Silicon carbide whiskers are lightweight, have high strength, and have high elasticity, and have recently attracted attention not only as reinforcing materials for composite materials, but also because they have excellent corrosion resistance and oxidation resistance against acids. For example, it is attracting attention as a material for phosphoric acid fuel cells.

このような炭化ケイ素ウィスカーの製造方法は、従来、
炭素を含む原料及びケイ素を含む原料の一方又は両方を
気相にて反応炉内の所定の高温の反応域に供給する気相
合成法と、炭素を含む原料及びケイ素を含む原料として
共に固体を用いる固相合成法とに大別される。気相合成
法は、例えば、特公昭50−18480号公報、特公昭
52−28757号公報、特公昭52−28759号公
報等に記載されており、また、固相合成法は、例えば、
特開昭58−20799号公報、特開昭58−4591
8号公報、特開昭58−145700号公報等に記載さ
れている。
Conventionally, the manufacturing method of such silicon carbide whiskers is
A gas-phase synthesis method in which one or both of a carbon-containing raw material and a silicon-containing raw material is supplied in a gas phase to a predetermined high-temperature reaction zone in a reactor, and a solid material is used as both a carbon-containing raw material and a silicon-containing raw material. It is broadly classified into the solid phase synthesis method used. Gas phase synthesis methods are described, for example, in Japanese Patent Publications No. 50-18480, Japanese Patent Publication No. 52-28757, Japanese Patent Publication No. 52-28759, etc., and solid phase synthesis methods are described in, for example,
JP-A-58-20799, JP-A-58-4591
It is described in Publication No. 8, Japanese Patent Application Laid-open No. 58-145700, etc.

しかし、従来より知られている上記のような気相合成法
によれば、気相原料の利用率が著しく低い、気相原料が
反応炉内で分解し、反応炉がこれら分解物によって汚染
される、更に、生成した炭化ケイ素ウィスカー中にこれ
ら分解物が混入する等の問題を有しており、一方、従来
の固相合成法によれば、ケイ素を含む原料粉末とケイ素
を含む原料粉末とを混合し、これを加熱して、主として
これら粉末間の固相反応にて直接に炭化ケイ素を生成さ
せるので、粉状乃至屈曲状の炭化ケイ素を多く生成し、
直線性にすぐれる炭化ケイ素ウィスカーを得ることが困
難であるほか、得られた炭化ケイ素ウィスカーから上記
のような粉状乃至屈曲状の炭化ケイ素を分離除去するこ
とが容易ではない。
However, according to the conventionally known gas phase synthesis method described above, the utilization rate of the gas phase raw material is extremely low, the gas phase raw material decomposes in the reactor, and the reactor is contaminated with these decomposed products. Furthermore, there are problems such as the contamination of these decomposed products into the generated silicon carbide whiskers.On the other hand, according to the conventional solid phase synthesis method, the raw material powder containing silicon and the raw material powder containing silicon are mixed together. are mixed and heated to directly generate silicon carbide mainly through solid phase reaction between these powders, so a large amount of powdered or curved silicon carbide is generated,
It is difficult to obtain silicon carbide whiskers with excellent linearity, and it is also difficult to separate and remove the above-mentioned powdery or curved silicon carbide from the obtained silicon carbide whiskers.

(発明の目的) 本発明者らは、従来の炭化ケイ素ウィスカーの製造にお
ける上記した問題を解決するために鋭意研究した結果、
酸化ケイ素を含むケイ素原料と炭素を含む炭素原料とを
共に予め成形し、これらを20体積%以上の水素を含む
雰囲気下に1400℃以上の温度に加熱することによっ
て、粉状乃至屈曲状の炭化ケイ素を含まず、直線性にす
ぐれた炭化ケイ素ウィスカーを得ることができることを
見出して、本発明に至ったものである。
(Objective of the Invention) As a result of intensive research to solve the above-mentioned problems in the production of conventional silicon carbide whiskers, the present inventors found that
A silicon raw material containing silicon oxide and a carbon raw material containing carbon are preformed together and heated to a temperature of 1400°C or higher in an atmosphere containing 20% by volume or more of hydrogen, thereby carbonizing powdery or bent shapes. The present invention was achieved by discovering that it is possible to obtain silicon carbide whiskers that do not contain silicon and have excellent linearity.

(発明の構成) 本発明は、酸化ケイ素を含むケイ素原料と炭素を含む炭
素原料とを加熱して炭化ケイ素ウィスカーを製造する方
法において、酸化ケイ素を含むケイ素原料を予め所定形
状に成形してなる成形体と炭素を含む炭素原料を予め所
定形状に成形してなる成形体とを20体積%以上の水素
を含む雰囲気下に1400℃以上の温度に加熱すること
を特徴とする。
(Structure of the Invention) The present invention provides a method for producing silicon carbide whiskers by heating a silicon raw material containing silicon oxide and a carbon raw material containing carbon, in which the silicon raw material containing silicon oxide is formed into a predetermined shape in advance. It is characterized in that the molded body and a molded body obtained by previously molding a carbon raw material containing carbon into a predetermined shape are heated to a temperature of 1400° C. or higher in an atmosphere containing 20% by volume or more of hydrogen.

本発明の方法において、酸化ケイ素を含むケイ素原料と
しては、例えば、ケイ石粉、粉状シリカゲル、各種の非
晶質シリカ、沈降性シリカ、粘土等が用いられる。本発
明において、これら酸化ケイ素含有原料の成形体(以下
、酸化ケイ素成形体ということがある。)とは、この原
料を適宜の手段、例えば、押出成形、プレス成形、造粒
等の手段によって成形し、板、棒、管、粒乃至球、容器
や箱、線状又はこれらの組み合わせとしての形状を与え
た立体的な固体をいう。
In the method of the present invention, examples of the silicon raw material containing silicon oxide used include silica powder, powdered silica gel, various amorphous silicas, precipitated silica, and clay. In the present invention, molded bodies of these silicon oxide-containing raw materials (hereinafter sometimes referred to as silicon oxide molded bodies) are formed by molding this raw material by appropriate means such as extrusion molding, press molding, granulation, etc. However, it refers to a three-dimensional solid that has the shape of a plate, rod, tube, particle or sphere, container or box, linear shape, or a combination of these.

本発明においては、この酸化ケイ素成形体は、後述する
ように、これを加熱して、−酸化ケイ素ガスを生成させ
、炭素化合物と反応させて、炭化ケイ素ウィスカーを生
成させる際に、この−酸化ケイ素ガスの生成量が成形体
中の酸化ケイ素含有量にほぼ比例するので、高い収率に
て炭化ケイ素ウィスカーを得るためには、酸化ケイ素成
形体は、酸化ケイ素を30重量%以上、特に、40重量
%以上含有することが好ましい。但し、これに限定され
るものではない。尚、成形体が例えば、管状や箱型の容
器等のような成形体であるとき、原料を充填するための
反応容器を兼ねさせることができる。
In the present invention, as described later, this silicon oxide molded body is heated to generate silicon oxide gas, which is reacted with a carbon compound to generate silicon carbide whiskers. Since the amount of silicon gas produced is approximately proportional to the silicon oxide content in the molded body, in order to obtain silicon carbide whiskers in a high yield, the silicon oxide molded body must contain 30% by weight or more of silicon oxide, particularly, The content is preferably 40% by weight or more. However, it is not limited to this. Incidentally, when the molded body is a molded body such as a tubular or box-shaped container, it can also serve as a reaction vessel for filling raw materials.

炭素を含む炭素原料としては、カーボンブラックや粉末
活性炭、或いはタールやピッチの熱処理によって得られ
る炭素等を用いることができる。
As the carbon raw material containing carbon, carbon black, powdered activated carbon, carbon obtained by heat treatment of tar or pitch, etc. can be used.

これら炭素を含む炭素原料の成形体(以下、炭素成形体
ということがある。)も、酸化ケイ素成形体と同じく、
炭素原料を適宜の手段によって成形した立体的な固体を
いい、成形体が容器に形成されているとき、原料を充填
するための反応容器を兼ねさせることができる。
These carbon-containing carbon raw material molded bodies (hereinafter sometimes referred to as carbon molded bodies) also have the same properties as silicon oxide molded bodies.
It refers to a three-dimensional solid formed by molding a carbon raw material by appropriate means, and when the molded body is formed into a container, it can also serve as a reaction vessel for filling the raw material.

本発明の方法においては、これら酸化ケイ素成形体と炭
素成形体を所定の水素雰囲気下に加熱する。ここに、水
素は、本発明者らの研究の結果、単に加熱雰囲気を還元
雰囲気に保持するのみならず、炭素成形体と反応して、
メタンを主とする炭化水素ガスを生成し、これが炭化ケ
イ素ウィスカーの生成を著しく促進することを見出した
In the method of the present invention, these silicon oxide molded bodies and carbon molded bodies are heated in a predetermined hydrogen atmosphere. As a result of the research conducted by the present inventors, hydrogen not only maintains the heating atmosphere in a reducing atmosphere, but also reacts with the carbon molded body,
It was found that hydrocarbon gas, mainly methane, was produced, which significantly promoted the formation of silicon carbide whiskers.

即ち、従来、酸化ケイ素原料粉末と炭素含有原料粉末と
を反応させるとき、一般に、次のような反応によって、
炭化ケイ素ウィスカーが生成するとされている。
That is, conventionally, when silicon oxide raw material powder and carbon-containing raw material powder are reacted, the following reaction generally takes place:
It is believed that silicon carbide whiskers are produced.

Sing(固)十〇(固)→5in(気) + CO(
気)(l)Sin(気)  + 3CO(気) = 5
iC(固)  + 2CO□(気)(2)2COz(気
)  + 2C(固) −4GO(気)(3)従って、
総括反応は、 SiO□+3C−SiC+ 2GO(4)で表わされる
とされている。
Sing (solid) 10 (solid) → 5in (ki) + CO (
Qi) (l) Sin (Qi) + 3CO (Qi) = 5
iC (solid) + 2CO□ (air) (2) 2COz (air) + 2C (solid) -4GO (air) (3) Therefore,
The overall reaction is said to be represented by: SiO□+3C-SiC+2GO (4).

しかし、本発明者らは、上記反応について詳細に研究し
た結果、上記の反応以外に、 C(固)  + 28z→CH4(気)(5)CH4(
気)  + Sin、(固) −= 5in(気)  
+ GO(気)+ 2H1(気)(6) Sin(気)  + 2CH,(気)→5IC(固) 
 + CO(気)+ 4Hz(気)(7) 等の反応が起こり、炭化ケイ素ウィスカーの生成に対し
て、これらの反応の寄与が極めて大きいことを見出した
。即ち、水素ガスを含まない雰囲気下、例えば、アルゴ
ン、窒素、ヘリウム等の不活性ガス雰囲気下、又は水素
ガスが体積%で2θ%よりも少ない雰囲気下では、同じ
温度に加熱しても、炭化ケイ素ウィスカーの生成量が少
ないうえに、その直線性も劣る。しかし、本発明“の方
法によれば、水素の存在下に炭素成形体を加熱すること
によって、酸化ケイ素成形体からの一酸化ケイ素の発生
が促進されると共に、前記(2)式の反応に加えて、上
記−酸化ケイ素が炭素化合物ガスとの気相反応によって
直線性にすぐれた炭化ケイ素ウィスカーを生成するので
ある。
However, as a result of detailed research on the above reaction, the present inventors found that in addition to the above reaction, C (solid) + 28z → CH4 (air) (5) CH4 (
Qi) + Sin, (solid) -= 5in (Qi)
+ GO (Ki) + 2H1 (Ki) (6) Sin (Ki) + 2CH, (Ki) → 5IC (Solid)
It has been found that reactions such as + CO (air) + 4Hz (air) (7) occur, and that these reactions make an extremely large contribution to the production of silicon carbide whiskers. That is, in an atmosphere that does not contain hydrogen gas, for example, an inert gas atmosphere such as argon, nitrogen, helium, etc., or an atmosphere in which hydrogen gas is less than 2θ% by volume, even if heated to the same temperature, carbonization will not occur. The amount of silicon whiskers produced is small, and the linearity is also poor. However, according to the method of the present invention, by heating the carbon molded body in the presence of hydrogen, the generation of silicon monoxide from the silicon oxide molded body is promoted, and the reaction of formula (2) is promoted. In addition, silicon carbide whiskers with excellent linearity are produced by the gas phase reaction of the silicon oxide with a carbon compound gas.

上述したところは、従来、一般に直線性の良好な炭化ケ
イ素ウィスカーを得るには、気相での反応が適している
とされている点と一致する。
The above-mentioned points are in agreement with the point that it has been conventionally believed that reaction in the gas phase is generally suitable for obtaining silicon carbide whiskers with good linearity.

これに対して、酸化ケイ素含有原料粉末と炭素含有原料
粉末とを加熱反応させる従来の固相合成法によれば、ケ
イ素含有原料と炭素含有原料との接触部位が極めて多い
ので、その接触部位にセける直接的な固相反応や、Si
ngが還元されて生じるSiOガスと固体状炭素原料と
の直接的な気固間の反応が生じ、このような反応の結果
として、粉末状乃至は屈曲状を有する炭化ケイ素が多量
に生成する。これらの炭化ケイ素はウィスカー中に均一
に分散されるため、その除去が困難である。
On the other hand, according to the conventional solid-phase synthesis method in which silicon oxide-containing raw material powder and carbon-containing raw material powder are heated and reacted, there are extremely many contact points between the silicon-containing raw material and the carbon-containing raw material. direct solid-phase reaction, Si
A direct gas-solid reaction occurs between the SiO gas produced by the reduction of ng and the solid carbon raw material, and as a result of such a reaction, a large amount of powdery or curved silicon carbide is produced. These silicon carbides are difficult to remove because they are uniformly dispersed in the whiskers.

上記固相反応や気固間の反応は次式で表わされよう。The above-mentioned solid phase reaction and gas-solid reaction may be expressed by the following equation.

Sing(固)  + 3G(固)→5iC(固)  
+ 2CO(気)(8)Sin(気)+ 2G(固)→
 5iC(固)十CO(気)(9)本発明の方法によれ
ば、酸化ケイ素成形体と炭素成形体とを用いることによ
って、かかる固相反応や気固間の反応が著しく軽減され
、代わって上記したような気相反応によって炭化ケイ素
ウィスカーが生成するために、直線性にすぐれた炭化ケ
イ素ウィスカーを得ることができる。更に、このような
固相反応や気固間の反応が一部に生じても、これによっ
て生成する炭化ケイ素を炭素成形体の表面に限定して生
成させるので、得られた炭化ケイ素ウィスカーからこれ
ら粉状乃至は屈曲状の炭化ケイ素を除去することが容易
である。
Sing (solid) + 3G (solid) → 5iC (solid)
+ 2CO (air) (8) Sin (air) + 2G (solid) →
5iC (solid) + CO (gas) (9) According to the method of the present invention, by using the silicon oxide molded body and the carbon molded body, such solid phase reactions and gas-solid reactions are significantly reduced, and instead Since silicon carbide whiskers are produced by the gas phase reaction as described above, silicon carbide whiskers with excellent linearity can be obtained. Furthermore, even if some of these solid-phase reactions or gas-solid reactions occur, the resulting silicon carbide is limited to the surface of the carbon compact, so these can be removed from the resulting silicon carbide whiskers. Powdery or curved silicon carbide can be easily removed.

本発明の方法による炭化ケイ素ウィスカーの製造におい
ては、好ましくは反応触媒が用いられる。
In the production of silicon carbide whiskers by the method of the invention, preferably a reaction catalyst is used.

反応触媒としては、鉄、ニッケル、コバルト又はこれら
の化合物、例えば、酸化物、硝酸塩、炭酸塩、硫酸塩等
が用いられる。これら化合物は、粉末、水溶液その他適
宜の形態で酸化ケイ素成形体及び炭素成形体と共に使用
される。例えば、水溶液を成形体に噴霧し、乾燥させて
もよい。かかる触媒のうち、化合物を用いる場合も、本
発明の方法による反応条件下ではすべて金属に還元され
ている。これら触媒は、前記(2)式及び(7)式の反
応を促進して、直線状で高純度の炭化ケイ素ウィスカー
の生成速度を早めると共に、その結果として、併発的に
生じる望ましくない反応(8)や(9)を抑制する作用
がある。
As the reaction catalyst, iron, nickel, cobalt, or compounds thereof, such as oxides, nitrates, carbonates, sulfates, etc., are used. These compounds are used in the form of powder, aqueous solution, or other appropriate forms together with silicon oxide molded bodies and carbon molded bodies. For example, an aqueous solution may be sprayed onto the molded body and dried. Among such catalysts, even when compounds are used, they are all reduced to metals under the reaction conditions of the method of the present invention. These catalysts promote the reactions of formulas (2) and (7) above, increasing the rate of production of linear and highly pure silicon carbide whiskers, and as a result, undesirable reactions (8 ) and (9).

本発明の方法において、上記触媒は、金属換算にて、好
ましくは、酸化ケイ素成形体の単位表面積(ad)当り
、通常、lXl0−’〜5X10−″gの範囲で用いら
れる。触媒量が酸化ケイ素成形体の単位表面積(cd)
当りlXl0−’gよりも少ないときは、その触媒作用
が不十分である結果、前記反応(8)や(5)によって
炭素成形体上に生成する非ウィスカー状の炭化ケイ素が
増加し、炭化ケイ素ウィスカーの収量が低下する。他方
、5X10−’gよりも多いときは、反応の過程で触媒
の微粒子が凝集粗大化し、生成する炭化ケイ素ウィスカ
ーの径が過度に大きくなる傾向が強い。
In the method of the present invention, the above-mentioned catalyst is preferably used in the range of 1X10-' to 5X10-''g per unit surface area (ad) of the silicon oxide molded body in terms of metal. Unit surface area (cd) of silicon molded body
When the amount is less than lXl0-'g, the catalytic action is insufficient, and as a result, the amount of non-whisker-like silicon carbide produced on the carbon compact due to reactions (8) and (5) increases, and silicon carbide Whisker yield is reduced. On the other hand, when the amount is more than 5 x 10-'g, there is a strong tendency that fine particles of the catalyst aggregate and become coarse during the reaction process, and the diameter of the silicon carbide whiskers produced becomes excessively large.

本発明の方法において、酸化ケイ素成形体と炭素成形体
とを水素雰囲気下で加熱する温度は、1400℃以上が
好適であり、特に、1450℃以上が好ましい。140
0℃よりも低い温度では、炭化ケイ素ウィスカーの生成
が極めて遅く、実用上好ましくないからである。一方、
余りに高温であるときは、反応条件が過激にすぎて、ウ
ィスカー径が肥大化し、また、ウィスカーに分岐や折れ
曲がり等の乱れが発生するようになる。従って、反応温
度は、通常、1700℃以下がよい。また、加熱時間は
、特に制限されるものではないが、通常、0.5〜30
時間が適当である。反応時間が余りに短いときは、未反
応原料が多量に残留し、一方、余りに長時間反応させて
も、炭化ケイ素ウィスカーの収量の増加が僅かであるの
で、生産性及び熱エネルギー費用の観点からみて、何ら
利点がないからである。
In the method of the present invention, the temperature at which the silicon oxide molded body and the carbon molded body are heated in a hydrogen atmosphere is preferably 1400°C or higher, particularly preferably 1450°C or higher. 140
This is because, at a temperature lower than 0° C., silicon carbide whisker formation is extremely slow, which is practically undesirable. on the other hand,
If the temperature is too high, the reaction conditions will be too extreme, the diameter of the whiskers will increase, and disturbances such as branching and bending will occur in the whiskers. Therefore, the reaction temperature is usually 1700°C or lower. In addition, the heating time is not particularly limited, but is usually 0.5 to 30
The time is appropriate. If the reaction time is too short, a large amount of unreacted raw materials will remain; on the other hand, if the reaction is too long, the yield of silicon carbide whiskers will increase only slightly. , because there is no advantage.

上記のように、酸化ケイ素成形体と炭素成形体とを所定
の水素雰囲気下に所定の温度に加熱した後、これを徐冷
若しくは放冷し、好ましくは、反応生成物に含まれる余
剰の炭素を酸化焼却することによって、通常、綿状の炭
化ケイ素ウィスカーを得ることができる。
As described above, after heating the silicon oxide molded body and the carbon molded body to a predetermined temperature in a predetermined hydrogen atmosphere, this is slowly cooled or left to cool, preferably to remove excess carbon contained in the reaction product. A flocculent silicon carbide whisker can usually be obtained by oxidative incineration.

(発明の効果) 以上のように、本発明の方法によれば、酸化ケイ素成形
体と炭素成形体とを水素雰囲気下に加熱するので、気相
反応による炭化ケイ素ウィスカーの生成が促進される一
方、酸化ケイ素含有原料と炭素含有原料との間の固相反
応や、SiOガスと固体状炭素原料との直接的な気固間
の反応が抑制され、粉状や屈曲状炭化ケイ素が生成し難
くなり、その結果として、直線性にすぐれた炭化ケイ素
ウィスカーを高収率にて得ることができる。更に、本発
明の方法によれば、上記のような固相反応や気固間の反
応が一部に生じても、かかる反応によって生成する炭化
ケイ素の生成が炭素成形体の表面に局限されるので、炭
化ケイ素ウィスカーからこれら粉状乃至は屈曲状の炭化
ケイ素を除去することが容易である。
(Effects of the Invention) As described above, according to the method of the present invention, since the silicon oxide molded body and the carbon molded body are heated in a hydrogen atmosphere, the formation of silicon carbide whiskers by a gas phase reaction is promoted. , the solid-phase reaction between the silicon oxide-containing raw material and the carbon-containing raw material and the direct gas-solid reaction between SiO gas and the solid carbon raw material are suppressed, making it difficult to generate powdered or bent silicon carbide. As a result, silicon carbide whiskers with excellent linearity can be obtained in high yield. Furthermore, according to the method of the present invention, even if a solid phase reaction or a gas-solid reaction as described above occurs in a portion, the production of silicon carbide generated by such reaction is localized to the surface of the carbon molded body. Therefore, it is easy to remove these powdered or curved silicon carbide from the silicon carbide whiskers.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 市販のセラミックス管(日本化学陶業■製NC管、内径
291m、外径251m、長さ100m、Sin、含有
量49重量%)を酸化ケイ素成形体として用い、その内
部に触媒としての硝酸第二鉄の10重量%水溶液1gを
噴霧乾燥した。別に、カーボンブラック粉末90重量部
にバインダーピッチ10重量部を加え、造粒後、100
0℃で焼成してなる球状の炭素成形体(直径2〜3m>
に硝酸第二鉄の10重量%水溶液を噴霧し、乾燥し、こ
れを前記セラミックス管に充填した。
Example 1 A commercially available ceramic tube (NC tube manufactured by Nippon Kagaku Co., Ltd., inner diameter 291 m, outer diameter 251 m, length 100 m, Sin, content 49% by weight) was used as a silicon oxide molded body, and nitric acid as a catalyst was contained inside it. 1 g of a 10% by weight aqueous solution of ferric iron was spray dried. Separately, 10 parts by weight of binder pitch was added to 90 parts by weight of carbon black powder, and after granulation, 100 parts by weight of
Spherical carbon molded body fired at 0℃ (diameter 2-3m>
A 10% by weight aqueous solution of ferric nitrate was sprayed onto the tube, dried, and filled into the ceramic tube.

これを内径30鶴の電気炉内に装入し、窒素を50m1
/分の割合で流しながら、200℃/時の速度で昇温し
、1000℃に達した時点で窒素、を水素に切り換えた
。その後、はぼ同じ昇温速度にて1600℃まで昇温し
、この温度で2時間保持した後、徐冷した。この徐冷の
過程で炉内温度が1000℃に達したとき、水素を窒素
に切り換えた。室温まで冷却した後、炉内容物を取り出
して、ケーキ状の反応生成物を得た。
This was charged into an electric furnace with an inner diameter of 30 mm, and 50 ml of nitrogen was added.
The temperature was raised at a rate of 200° C./hour while flowing at a rate of 1000° C./minute, and when the temperature reached 1000° C., nitrogen was replaced with hydrogen. Thereafter, the temperature was raised to 1600° C. at approximately the same temperature increase rate, and after being maintained at this temperature for 2 hours, it was gradually cooled. When the temperature inside the furnace reached 1000° C. during this slow cooling process, hydrogen was switched to nitrogen. After cooling to room temperature, the contents of the furnace were taken out to obtain a cake-like reaction product.

この反応生成物を炉内温度750℃に保持したマツフル
炉内で5時間保持し、余剰炭素を酸化除去して、球形殻
状黒縁色物質が混在する灰緑色のケーキ状物質を得た。
This reaction product was kept in a Matsufuru furnace at an internal temperature of 750° C. for 5 hours to oxidize and remove excess carbon to obtain a gray-green cake-like substance in which spherical shell-like black-edged substances were mixed.

これを100メツシユの振動ふるいにてほぐしながら、
ふるい分けして、綿状物質1.52gを得た。
While loosening this with a 100 mesh vibrating sieve,
After sieving, 1.52 g of floc was obtained.

この綿状物質についてのX線回折の結果、すべてのピー
クはβ−炭化ケイ素に帰属された。また、フッ酸を含む
混酸に浸漬して調べた結果、フッ酸溶解分は1.8重量
%であって、極めて高純度の炭化ケイ素であることが確
認された。
As a result of X-ray diffraction of this flocculent material, all peaks were assigned to β-silicon carbide. Furthermore, as a result of immersion in a mixed acid containing hydrofluoric acid, the amount dissolved in hydrofluoric acid was 1.8% by weight, and it was confirmed that the silicon carbide had extremely high purity.

また、セラミックス管の重量減少は2.47 gであっ
て、セラミックス管中のケイ素を基準とする炭化ケイ素
ウィスカーの収率は90.7%であった。
Further, the weight reduction of the ceramic tube was 2.47 g, and the yield of silicon carbide whiskers based on the silicon in the ceramic tube was 90.7%.

尚、収率は、次式によって計算される。Incidentally, the yield is calculated by the following formula.

更に、走査型電子顕微鏡にてその形状を観察した結果、
直線性にすぐれた高アスペクト比の炭化ケイ素ウィスカ
ーであることが確認された。
Furthermore, as a result of observing its shape with a scanning electron microscope,
It was confirmed that it was a high aspect ratio silicon carbide whisker with excellent linearity.

実施例2 市販のケイ石煉瓦(Sing含有量97重量%)をダイ
ヤモンドカッターにて幅20鶴、厚さ5日、長さ100
鶴の板状に切出し、これを酸化ケイ素成形体として用い
、その表面に硝酸コバルトの10重量%水溶液1gを噴
霧乾燥した。別に、市販の等方性黒鉛質炭素(東洋炭素
■製IG−11)を用いて製作した容器(内法幅9日、
長さ95++n、高さ20m、器壁厚さ5寵)を炭素成
形体とし、その内側表面に硝酸コバルトの10重量%水
溶液1gを噴霧乾燥した。
Example 2 Commercially available silica bricks (Sing content 97% by weight) were cut into widths of 20mm, thickness of 5days, and length of 100mm using a diamond cutter.
A crane was cut into a plate shape and used as a silicon oxide molded body, and 1 g of a 10% by weight aqueous solution of cobalt nitrate was spray-dried on the surface. Separately, a container (inner width 9 days,
A carbon molded body having a length of 95++n, a height of 20m, and a wall thickness of 5mm was spray-dried with 1g of a 10% by weight aqueous solution of cobalt nitrate on its inner surface.

上記ケイ石煉瓦から切り出した酸化ケイ素成形体を炭素
成形体としての上記容器内にその長手方向に平行に、且
つ、表面が長手方向の器壁から間隔を有するように両端
部を容器壁にて支持させ、これを電気炉内に装入し、実
施例1と同様にして昇温し、1650℃の温度で6時間
加熱した。この後、放冷し、炉内容物を取り出したとこ
ろ、炭素成形体である容器の内壁とケイ石煉瓦の板状成
形体の表面との間隙に灰緑色のケーキ状物質1.95g
を得た。
The silicon oxide molded body cut from the silica brick is placed in the container as a carbon molded body in parallel to its longitudinal direction, and both ends are attached to the container wall so that the surface has a distance from the longitudinal wall. This was supported, placed in an electric furnace, heated in the same manner as in Example 1, and heated at a temperature of 1650° C. for 6 hours. After this, the contents of the furnace were left to cool, and when the contents of the furnace were taken out, 1.95 g of a gray-green cake-like substance was found in the gap between the inner wall of the container, which was a carbon molded product, and the surface of the silica brick plate-shaped molded product.
I got it.

このケーキ状物質のフッ酸を含む混酸への溶解骨は0.
8重量%であって、極めて高純度の炭化ケイ素であるこ
とが確認された。また、ケイ石煉瓦板状成形体の重量減
少は3.05 gであったので、実施例1と同様の計算
による炭化ケイ素ウィスカーの収率は95.1%であっ
た。更に、走査型電子顕微鏡にてその形状を観察した結
果、直線性のすぐれた高アスペクト比の炭化ケイ素ウィ
スカーであった。
The amount of bone dissolved in this cake-like substance in a mixed acid containing hydrofluoric acid is 0.
It was confirmed that the content was 8% by weight, which was extremely high purity silicon carbide. Further, since the weight reduction of the silica brick plate-shaped molded body was 3.05 g, the yield of silicon carbide whiskers was 95.1% according to the same calculation as in Example 1. Furthermore, as a result of observing the shape with a scanning electron microscope, it was found to be silicon carbide whiskers with excellent linearity and a high aspect ratio.

実施例3 実施例1において、雰囲気を水素30体積%及びアルボ
フッ0体積%とした以外は、実施例1と全く同様にして
炭化ケイ素を製造し、余剰炭素を除去した後、ふるい分
けして、綿状物質1.02gを得た。
Example 3 Silicon carbide was produced in exactly the same manner as in Example 1, except that the atmosphere was changed to 30% by volume of hydrogen and 0% by volume of albofluoride, and after removing excess carbon, it was sieved and made into cotton. 1.02 g of a similar substance was obtained.

この物質のフッ酸を含む混酸への溶解骨は4.2重量%
であり、炭化ケイ素ウィスカーの収率は82、0%であ
った。また、走査型電子顕微鏡による観察の結果、直線
性のすぐれた炭化ケイ素ウィスカーであった。
The amount of bone dissolved in mixed acid containing hydrofluoric acid is 4.2% by weight.
The yield of silicon carbide whiskers was 82.0%. Furthermore, as a result of observation using a scanning electron microscope, it was found to be silicon carbide whiskers with excellent linearity.

比較例1 市販の高純度SiO□粉末(■龍森製りリスタライトA
A)100重量部、実施例1において用いたカーボンブ
ラック粉末200重量部及び硝酸第二鉄30重量部をボ
ールミルにて1時間混合して原料とした。
Comparative Example 1 Commercially available high-purity SiO□ powder (■Tatsumori Listalite A
A) 100 parts by weight, 200 parts by weight of the carbon black powder used in Example 1, and 30 parts by weight of ferric nitrate were mixed in a ball mill for 1 hour to prepare a raw material.

この混合粉末2.05 gを高純度アルミナタンマン管
(日本化学陶業■製5SA−S、Ah03含有量97重
量%以上、内径20tm、外径25mm、長さ100+
+n)に充填し、実施例1と同様にして加熱反応させた
後、余剰炭素を除去して、綿状物質0.42gを得た。
2.05 g of this mixed powder was put into a high-purity alumina Tanmann tube (5SA-S manufactured by Nihon Kagaku Togyo ■, Ah03 content 97% by weight or more, inner diameter 20 tm, outer diameter 25 mm, length 100+
+n), heated and reacted in the same manner as in Example 1, and excess carbon was removed to obtain 0.42 g of flocculent material.

この綿状物質のフッ酸溶解骨は24.8重量%、また、
反応に用いた5i02中のケイ素を基準として、収率は
76.3%であった。また、走査型電子顕微鏡による観
察の結果、粒状及び屈曲状の物質が混在していることが
確認された。
The hydrofluoric acid-dissolved bone in this cotton material is 24.8% by weight, and
The yield was 76.3% based on the silicon in 5i02 used in the reaction. Further, as a result of observation using a scanning electron microscope, it was confirmed that granular and curved substances were present in the sample.

比較例2 実施例2において、雰囲気を水素10体積%、残部をア
ルゴンとした以外は、実施例2と全く同様にして炭化ケ
イ素を製造し、余剰炭素を除去した。このようにして生
成物0.53 gを得たが、走査型電子顕微鏡による観
察の結果、若干量の粒状及び屈曲状の物質が混在してい
ることが確認された。
Comparative Example 2 Silicon carbide was produced in exactly the same manner as in Example 2, except that the atmosphere was 10% by volume of hydrogen and the remainder was argon, and excess carbon was removed. In this way, 0.53 g of a product was obtained, but as a result of observation using a scanning electron microscope, it was confirmed that a small amount of granular and bent substances were present.

比較例3 実施例1において、炭素を含む原料としてカーボンブラ
ック粉末を用いた以外は、実施例1と全く同様にして炭
化ケイ素を製造し、余剰炭素を除去した。このようにし
て生成物1.61gを得た。
Comparative Example 3 Silicon carbide was produced in exactly the same manner as in Example 1, except that carbon black powder was used as the carbon-containing raw material, and excess carbon was removed. 1.61 g of product were thus obtained.

収率は93%、フッ酸を含む混酸への溶解骨は6%であ
った。また、走査型電子顕微鏡による観察の結果、若干
量の粒状及び屈曲状の物質が混在していることが確認さ
れた。
The yield was 93%, and the amount of bone dissolved in the mixed acid containing hydrofluoric acid was 6%. Furthermore, as a result of observation using a scanning electron microscope, it was confirmed that a small amount of granular and curved substances were present.

特許出願人  株式会社神戸製鋼所 同  鐘紡株式会社 代理人 弁理士  牧 野 逸 部 手続補正書(自発) 12.事件の表示 昭和60年特許願第136579号 2、発明の名称 炭化ケイ素ウィスカーの製造方法 3、補正をする者 事件との関係 特許出願人 住 所 神戸市中央区脇浜町1丁目3番18号名 称 
株式会社神戸製鋼所 4゜代理人 住 所 大阪市西区新町1丁目8番3号新町七福ビル 5、補正命令の日付 昭和  年  月  日(発送日
 昭和  年  月  日) 6、補正により増加する発明の数 7、補正の対象 明細書発明の詳細な説明の欄補正の内
容 (1)  明細書第13頁第11行の「内径29籠」を
[内径20mJと補正する。
Patent applicant Kobe Steel, Ltd. Kanebo Co., Ltd. Agent Patent attorney Ittsu Makino Department procedural amendment (voluntary) 12. Description of the case 1985 Patent Application No. 136579 2 Name of the invention Method for manufacturing silicon carbide whiskers 3 Person making the amendment Relationship to the case Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe City name
Kobe Steel, Ltd. 4゜Agent Address: 5 Shinmachi Shichifuku Building, 1-8-3 Shinmachi, Nishi-ku, Osaka Date of Amendment Order: Month, Day, 1920 (Date of Shipment: Month, Day, 1920) 6. Inventions Increased by Amendment Number 7, subject of correction Contents of correction in the detailed description of the invention in the specification (1) "Inner diameter 29 cage" on page 13, line 11 of the specification is corrected to [inner diameter 20 mJ].

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)酸化ケイ素を含むケイ素原料と炭素を含む炭素原
料とを加熱して炭化ケイ素ウィスカーを製造する方法に
おいて、酸化ケイ素を含むケイ素原料を予め所定形状に
成形してなる成形体と炭素を含む炭素原料を予め所定形
状に成形してなる成形体とを20体積%以上の水素を含
む雰囲気下に1400℃以上の温度に加熱することを特
徴とする炭化ケイ素ウィスカーの製造方法。
(1) A method for producing silicon carbide whiskers by heating a silicon raw material containing silicon oxide and a carbon raw material containing carbon, which includes a molded body obtained by pre-forming a silicon raw material containing silicon oxide into a predetermined shape and carbon. A method for producing silicon carbide whiskers, which comprises heating a molded body obtained by previously molding a carbon raw material into a predetermined shape to a temperature of 1400°C or higher in an atmosphere containing 20% by volume or more of hydrogen.
(2)酸化ケイ素を含むケイ素原料を予め所定形状に成
形してなる成形体と炭素を含む炭素原料を予め所定形状
に成形してなる成形体とを触媒の存在下に加熱すること
を特徴とする特許請求の範囲第1項記載の炭化ケイ素ウ
ィスカーの製造方法。
(2) A molded body formed by forming a silicon raw material containing silicon oxide into a predetermined shape in advance and a molded body formed by forming a carbon raw material containing carbon into a predetermined shape in advance are heated in the presence of a catalyst. A method for producing silicon carbide whiskers according to claim 1.
(3)触媒が鉄、コバルト、ニッケル又はこれらの化合
物であることを特徴とする特許請求の範囲第2項記載の
炭化ケイ素ウィスカーの製造方法。
(3) The method for producing silicon carbide whiskers according to claim 2, wherein the catalyst is iron, cobalt, nickel, or a compound thereof.
JP60136579A 1985-06-21 1985-06-21 Preparation of silicon carbide whisker Granted JPS61295299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136579A JPS61295299A (en) 1985-06-21 1985-06-21 Preparation of silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136579A JPS61295299A (en) 1985-06-21 1985-06-21 Preparation of silicon carbide whisker

Publications (2)

Publication Number Publication Date
JPS61295299A true JPS61295299A (en) 1986-12-26
JPH0353280B2 JPH0353280B2 (en) 1991-08-14

Family

ID=15178574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136579A Granted JPS61295299A (en) 1985-06-21 1985-06-21 Preparation of silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPS61295299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911781A (en) * 1987-05-05 1990-03-27 The Standard Oil Company VLS Fiber growth process
EP0712946A3 (en) * 1994-11-17 1996-06-05 Sumitomo Electric Industries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922320A (en) * 1972-06-23 1974-02-27
JPS5820799A (en) * 1981-07-28 1983-02-07 Tateho Kagaku Kogyo Kk Preparation of silicon carbide whisker
JPS599517A (en) * 1982-07-08 1984-01-18 Iwai Kikai Kogyo Kk Method and device for measuring flow rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922320A (en) * 1972-06-23 1974-02-27
JPS5820799A (en) * 1981-07-28 1983-02-07 Tateho Kagaku Kogyo Kk Preparation of silicon carbide whisker
JPS599517A (en) * 1982-07-08 1984-01-18 Iwai Kikai Kogyo Kk Method and device for measuring flow rate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911781A (en) * 1987-05-05 1990-03-27 The Standard Oil Company VLS Fiber growth process
EP0712946A3 (en) * 1994-11-17 1996-06-05 Sumitomo Electric Industries
US5858523A (en) * 1994-11-17 1999-01-12 Sumitomo Electric Industries, Ltd. Porous ceramic film and process for producing the same

Also Published As

Publication number Publication date
JPH0353280B2 (en) 1991-08-14

Similar Documents

Publication Publication Date Title
JPH03357B2 (en)
JPS6112844B2 (en)
JP3834634B2 (en) Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS61295299A (en) Preparation of silicon carbide whisker
JPH0353279B2 (en)
JP3882077B2 (en) Method for producing boron nitride nanotubes using gallium oxide as a catalyst
JPS62241812A (en) Manufacture of silicon nitride
JP2013112544A (en) High-purity silicon carbide whisker and method for producing the same
JPS6122000A (en) Preparation of silicon carbide whisker
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JP3951107B2 (en) Porous silicon oxide powder
JPS62113799A (en) Production of silicon carbide whisker
JPS5945640B2 (en) Method for manufacturing SiC whiskers
JPH0476359B2 (en)
JPS5849611A (en) Powder containing 2h type silicon carbide and its preparation
JPS63156100A (en) Production of silicon carbide whisker
JPS6111885B2 (en)
JPH0448760B2 (en)
JPH0351679B2 (en)
JPS6272600A (en) Production of silicon carbide whisker
JPS6046912A (en) Production of ultrafine granule of silicon carbide
JPS63156098A (en) Production of silicon carbide whisker
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JPS63159297A (en) Production of silicon carbide whisker