JPS63158114A - Gas separation method - Google Patents

Gas separation method

Info

Publication number
JPS63158114A
JPS63158114A JP30537486A JP30537486A JPS63158114A JP S63158114 A JPS63158114 A JP S63158114A JP 30537486 A JP30537486 A JP 30537486A JP 30537486 A JP30537486 A JP 30537486A JP S63158114 A JPS63158114 A JP S63158114A
Authority
JP
Japan
Prior art keywords
gas separation
gas
separation membrane
membrane
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30537486A
Other languages
Japanese (ja)
Inventor
Shintarou Yokawa
慎太郎 与川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP30537486A priority Critical patent/JPS63158114A/en
Publication of JPS63158114A publication Critical patent/JPS63158114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve separation rate by causing a material to be separated to be selectively charged into a mixed gas through ionization treatment, attracted to the direction of an attractive electrode provided near a gas separation membrane by means of electrostatic force, and thereby increasing the density of a material to be separated near the membrane. CONSTITUTION:A supply air passes between electrodes 21, 23 via a filter 13, and O2 is selectively ionized among other gases near a discharging electrode 21 by a corona discharge generated between both electrodes 21, 23. Next, the air is supplied to a gas separation membrane 18 and attracted by the electrostatic force to an attractive grounding electrode 19, thus increasing the O2 concentration in the neighborhood of the surface of a gas separation membrane 17. O2 permeates the gas separation membrane 17 selectively, and a gas separation rate is increased because of a high O2 concentration near the membrane.

Description

【発明の詳細な説明】 狡徽分立 本発明は、気体分離膜を用いて気体を分離する方法に関
し、特に、混合気体にイオン化処理を施して気体を分離
する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of separating gases using a gas separation membrane, and particularly to a method of separating gases by subjecting a mixed gas to ionization treatment.

災来伎! 気体分離膜を用いて混合ガス中の特定の気体を分離する
方法は、装置構造が単純であり、分離膜の性能が向上す
ることに伴って、飛躍的に使用が増加している(雑誌「
化学装置J1985年9月号、112〜117頁)。
Disaster! The method of separating a specific gas in a mixed gas using a gas separation membrane has a simple device structure, and its use is increasing dramatically as the performance of separation membranes improves (Magazine ``
Kagaku Instruments J, September 1985 issue, pp. 112-117).

この膜分離方法は、混合ガス中の各気体成分の膜透過速
度の差を利用するものであり、膜中を気体が溶解・拡散
する非多孔質膜と、クヌーセン流れにより多孔膜中を通
過させる多孔質膜とが知られている。
This membrane separation method utilizes the difference in the membrane permeation rate of each gas component in a mixed gas, and uses a non-porous membrane in which the gas dissolves and diffuses, and a porous membrane in which the gas is passed through by Knudsen flow. Porous membranes are known.

第6図は従来の気体分離システムの説明図である。窒素
分子41と酸素分子43との混合物である空気(混合ガ
ス)を気体分離膜17に接触させると、分離対象物質で
ある酸素分子43が選択的に気体分離膜17を通過し、
酸素濃度が高い酸素濃縮空気(酸素富化ガス)が得られ
る。
FIG. 6 is an explanatory diagram of a conventional gas separation system. When air (mixed gas), which is a mixture of nitrogen molecules 41 and oxygen molecules 43, is brought into contact with the gas separation membrane 17, the oxygen molecules 43, which are the substance to be separated, selectively pass through the gas separation membrane 17,
Oxygen-enriched air (oxygen-enriched gas) with a high oxygen concentration can be obtained.

気体分離膜の透過速度、即ち、分離対象物質の分離速度
は、膜中における物質の移動の難易(拡散性)と分離対
象物質(酸素分子)が膜の表面にどの程度存在するか(
溶解性)によって決まり。
The permeation rate of a gas separation membrane, that is, the separation rate of a substance to be separated, is determined by the difficulty of movement of the substance in the membrane (diffusivity) and the extent to which the substance to be separated (oxygen molecules) exists on the surface of the membrane (
determined by solubility).

前者は気体分離膜の物性に依存する。溶解性を高めるた
めには膜表面への分離対象物質の供給を増加させること
が必要となる。処理の対象とされる混合ガス中に分離対
象物質は均一に存在しているので、分離対象物質の膜表
面への供給を増加させるためには、処理対象ガスの供給
速度を大きくすることが必要となる。しかし、ガス速度
を過度に上昇させると膜の破壊を招くことになり、おの
ずから限界がある。
The former depends on the physical properties of the gas separation membrane. In order to improve solubility, it is necessary to increase the supply of the substance to be separated to the membrane surface. Since the substances to be separated are uniformly present in the mixed gas to be processed, it is necessary to increase the supply rate of the gas to be processed in order to increase the supply of the substances to be separated to the membrane surface. becomes. However, if the gas velocity is increased too much, it will lead to destruction of the membrane, so there is a natural limit to this.

本発明者は、先に気体分離膜の近傍に設けた接地極と放
電極との間でコロナ放電を起こすことにより混合ガス中
の分離対象物質を選択的にイオン化せしめ、この帯電し
た分離対象物質を接地極に引き寄せて、分離膜近傍の分
離対象物質の濃度を高めることを提案した(昭和61年
12月9日付けの同一出願人による特許出願「発明の名
称:気体分離方法」)、第5図はこの発明の気体分離方
法を示すものであり、フィルタ13を介して導入された
供給空気は、気体分離膜17により酸素が選択的に透過
され、酸素富化空気が回収される。気体分離膜17の近
傍に設けられたスクリーン状の放電用接地極21と放電
極23との内に電圧が印加されて放電(コロナ放電)が
起こり、これにより空気中の酸素が選択的に帯電し、静
電引力により放電用接地極21に引き寄せられ、気内分
離膜17の近傍の酸素ガス分子の濃度が高められる。
The inventor of the present invention selectively ionizes a substance to be separated in a mixed gas by causing a corona discharge between a ground electrode and a discharge electrode provided in the vicinity of a gas separation membrane. proposed to increase the concentration of the substance to be separated in the vicinity of the separation membrane by drawing it to the ground electrode (patent application filed by the same applicant on December 9, 1985 titled "Title of the invention: Gas separation method"), No. FIG. 5 shows the gas separation method of the present invention, in which oxygen is selectively permeated from the supply air introduced through the filter 13 through the gas separation membrane 17, and oxygen-enriched air is recovered. A voltage is applied between the screen-shaped discharge ground electrode 21 and the discharge electrode 23 provided near the gas separation membrane 17, causing discharge (corona discharge), whereby oxygen in the air is selectively charged. However, they are attracted to the discharge ground electrode 21 by electrostatic attraction, and the concentration of oxygen gas molecules near the air separation membrane 17 is increased.

この方法によれば、このように気体分離膜表面での分離
対象物質の濃度を相対的に高めることができ、気内分離
膜の分離速度を向上するこができる。
According to this method, the concentration of the substance to be separated on the surface of the gas separation membrane can be relatively increased, and the separation speed of the gas separation membrane can be improved.

しかしこの方法では、以下のような問題が生じる。However, this method causes the following problems.

■ 放電極23と放電用接地極21との絶縁手段が必要
となる。
(2) Insulating means between the discharge electrode 23 and the discharge ground electrode 21 is required.

■ 両電極の間隔を一定に保持する必要があるため(最
悪でも接触させないことが必要)、気体分離膜17およ
び電極21 、23の据付精度を十分に高くする必要が
ある。そのため、気体分離膜17の大型化が困難になり
、また、気体分離膜17の間隔を狭めて膜充填度を高め
るごとが困難となる。
(2) Since it is necessary to maintain a constant distance between the two electrodes (at worst, they must not come into contact with each other), it is necessary to ensure that the installation accuracy of the gas separation membrane 17 and the electrodes 21 and 23 is sufficiently high. Therefore, it becomes difficult to increase the size of the gas separation membrane 17, and it also becomes difficult to increase the degree of membrane filling by narrowing the interval between the gas separation membranes 17.

■ 上記の■、■の要求を満たすために、コストの上昇
を招く。
■ In order to meet the above requirements (■) and (■), costs will increase.

見豆立l孜 本発明は、気体分離膜による分離速度を改善し、しかも
簡略化され、高密度化ないしはコンパクト化が容易な気
体分離方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas separation method that improves the separation rate using a gas separation membrane, and that is simplified and can be easily made dense or compact.

月m収 本発明の気体分離方法は、処理対象とする混合物体を気
体分離膜に接触させ、混合気体中の分離対象物質を選択
的に気体分離膜に透過させて分離する分離方法において
、該混合気体をイオン化処理手段へ通過せしめてイオン
化処理を施し分離対象物質を選択的に帯電させ、該帯電
分離対象物を気体分離線近傍に設けた吸引用電極方向に
静電引力により吸引せしめ、気体分離′   膜近傍の
分離対象物質濃度を高めることを特徴とする。
Monthly income in m The gas separation method of the present invention is a separation method in which a mixture to be treated is brought into contact with a gas separation membrane, and a substance to be separated in the mixed gas is selectively permeated through the gas separation membrane to be separated. The mixed gas is passed through an ionization treatment means to perform ionization treatment to selectively charge the separation target substance, and the charged separation target substance is attracted by electrostatic attraction toward a suction electrode provided near the gas separation line, and the gas is Separation' is characterized by increasing the concentration of the substance to be separated near the membrane.

叉11 以下、添付図面に沿って本発明の一実施例について詳細
に説明する。
11 Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明の気体分離方法は、近傍に帯電ガス分子の吸引極
を設けた気体分離膜と、この気体分離膜の前段に設けら
れたイオン化手段を備えた装置により実施することがで
きる。第1図は、このようなシステムの基本的な構成例
を示す説明図であり、供給空気(処理対象混合気体)は
、送風機11によりフィルタ13を介して膜モジュール
15に送られる。膜モジュール15は気体分離膜17に
より仕切られて供給室31と回収室33とが形・ 成さ
れている6回収室33は減圧ポンプ35により゛ 減圧
されており、供給室31と回収室33とには圧力差が設
定されている。空気が供給室31に送られると、酸素が
選択的に気体分離膜17を透過して回収室に入り、フィ
ルタ37を介して酸素濃縮空気として回収される。
The gas separation method of the present invention can be carried out using an apparatus equipped with a gas separation membrane provided with a suction electrode for charged gas molecules in the vicinity, and an ionization means provided upstream of the gas separation membrane. FIG. 1 is an explanatory diagram showing an example of the basic configuration of such a system. Supply air (mixed gas to be treated) is sent by a blower 11 to a membrane module 15 via a filter 13. The membrane module 15 is partitioned by a gas separation membrane 17 to form a supply chamber 31 and a recovery chamber 33. The recovery chamber 33 is depressurized by a vacuum pump 35, and the supply chamber 31 and recovery chamber 33 are separated from each other. A pressure difference is set. When air is sent to the supply chamber 31, oxygen selectively permeates through the gas separation membrane 17 and enters the recovery chamber, where it is recovered as oxygen-enriched air via the filter 37.

本発明では、第1図に示したような気体分離システムに
おいて、さらに、気体分離膜17の近傍に帯電ガスの吸
引用接地極を設け、かつ、この気体分離帯域の前段にイ
オン化処理手段が設けられている。第2図は、イオン化
処理手段として、気体分離膜の前段に放電装置を設けて
静電分離する例を示す説明図であり、第3図は気体分離
膜17の近傍を模式的に示す説明図である。
In the present invention, in the gas separation system as shown in FIG. 1, a ground electrode for sucking charged gas is further provided in the vicinity of the gas separation membrane 17, and an ionization processing means is provided upstream of this gas separation zone. It is being FIG. 2 is an explanatory diagram showing an example of electrostatic separation by providing a discharge device upstream of the gas separation membrane as an ionization treatment means, and FIG. 3 is an explanatory diagram schematically showing the vicinity of the gas separation membrane 17. It is.

気体分離膜17の前段には放電極21と放電用接地極2
3とからなる放電装置が設けられて帯電帯域22を形成
し、また、気体分離膜17の近傍にはスクリーン状の吸
引用接地極19が設けられて気体分離帯域18を構成し
ている。
A discharge electrode 21 and a discharge ground electrode 2 are provided before the gas separation membrane 17.
3 is provided to form a charging zone 22, and a screen-shaped suction ground electrode 19 is provided near the gas separation membrane 17 to form a gas separation zone 18.

電極21.23間に電圧を印加すると、両電極21゜2
3間でコロナ放電が起こり、放電極21近傍の気体がイ
オン化される。このとき、イオン化は各種気体に対して
一律に起こるのではなく、放電の技術分野において良く
知られるように、電子親和性が大きく負イオンになりや
すい物質が選択的にイオン化される0例えば、酸素と窒
素の混合気体である空気の場合には、窒素はほとんどイ
オン化されず、酸素が選択的にイオン化される。選択的
にイオン化され負に帯電した酸素分子を含む空気が気体
分離帯域18に供給され。
When a voltage is applied between the electrodes 21 and 23, both electrodes 21°2
3, corona discharge occurs and the gas near the discharge electrode 21 is ionized. At this time, ionization does not occur uniformly for various gases, but as is well known in the field of electrical discharge technology, substances that have a large electron affinity and tend to become negative ions are selectively ionized.For example, oxygen In the case of air, which is a mixed gas of nitrogen and nitrogen, nitrogen is hardly ionized and oxygen is selectively ionized. Air containing selectively ionized and negatively charged oxygen molecules is supplied to gas separation zone 18 .

クーロン力(静電力)により吸引用接地極19に引き付
けられ、気体分離膜17の表面近傍の酸素濃度を飛躍的
に高めることができ、よって、分離速度の大幅な向上が
可能となる。
It is attracted to the suction ground electrode 19 by Coulomb force (electrostatic force), and the oxygen concentration near the surface of the gas separation membrane 17 can be dramatically increased, thereby making it possible to significantly improve the separation speed.

また、第5図に示した構成では放電極23と放電用接地
極21に電圧が印加されるために電極間隔を一定に保持
する必要があり、このため気体分離膜17の間隔を一定
(例えば数1011III+)以下にできないのに対し
、第2図に示した本発明の構成では供給空気の通路が塞
がる限界(例えば2〜3 in)まで、気体分離膜17
の間隔を小さくすることができる。第5図に示した構成
では電極21゜23が接触すると電圧印加が不可能とな
り全体の機能が停止するのに対し、第2図の構成では吸
引用接地極19や気体分離膜17の接触があってもその
部分で供給空気通路が塞がるだけで、全体の機能は停止
しない。
Furthermore, in the configuration shown in FIG. 5, since a voltage is applied to the discharge electrode 23 and the discharge ground electrode 21, it is necessary to maintain a constant electrode spacing. Therefore, the spacing between the gas separation membranes 17 must be kept constant (for example, In contrast, in the configuration of the present invention shown in FIG. 2, the gas separation membrane 17
The interval between can be reduced. In the configuration shown in FIG. 5, if the electrodes 21 and 23 come into contact, voltage cannot be applied and the entire function stops, whereas in the configuration shown in FIG. Even if there is, it will only block the supply air passage in that part and will not stop the entire function.

酸素イオンのような帯電気体分子は移動しゃすく、電界
がかけられていなくても、吸引用接地極19に向かって
移動することができる。また。
Charged electric molecules such as oxygen ions are mobile and can move toward the suction ground electrode 19 even when no electric field is applied. Also.

吸引用接地極19にバイアス電圧を印加し、電界をかけ
ることもできる。
An electric field can also be applied by applying a bias voltage to the attraction ground electrode 19.

さらに、第2図のおよび第3図に示した構成では、スク
リーン状の吸引用接地極19を気体分離膜17の前面に
設けることにより、処理対象ガス中に同伴される異物等
が気体分離膜に衝突することを有効に防止することがで
き、気体分離膜の寿命を改善することができる。
Furthermore, in the configurations shown in FIGS. 2 and 3, by providing the screen-shaped suction ground electrode 19 on the front surface of the gas separation membrane 17, foreign substances entrained in the gas to be treated are removed from the gas separation membrane. collision can be effectively prevented, and the lifespan of the gas separation membrane can be improved.

第4図は、本願発明で用いられる他の構成を示し、帯電
帯域22にイオン化手段としてイオンビーム源25が設
けられいる以外は第2図と同様である。イオンビーム源
25からイオンビームが照射され、供給空気中の酸素が
選択的にイオン化され、これが気体分離帯域18に送ら
れる。
FIG. 4 shows another configuration used in the present invention, which is the same as FIG. 2 except that an ion beam source 25 is provided in the charging zone 22 as an ionization means. An ion beam is emitted from the ion beam source 25 to selectively ionize oxygen in the supplied air, which is then sent to the gas separation zone 18 .

以上の説明では、空気中からの酸素の分離(濃縮化)に
ついて説明したが、酸素以外の気体の分離においても、
各種気体成分の電子親和性の差により特定のガス成分を
分離膜表面近傍に濃縮することが可能となる。従来技術
では、膜表面の°分離対象物質の濃度を処理対象混合物
気体の濃度以上に高めることは不可能である。したがっ
て、分離対、象物質の膜表面への供給を増加しようとす
ると、処理対象混合気体の供給速度を増加させることが
不可避となり、膜の破壊を招くことにもなる。これに対
して本発明の方法によれば、分離対象物質の膜表面濃度
を成分比以上とすることができるので、気体の分離速度
が向上する。
In the above explanation, we have explained the separation (concentration) of oxygen from the air, but it is also possible to separate gases other than oxygen.
Differences in electron affinity between various gas components make it possible to concentrate specific gas components near the surface of the separation membrane. With the conventional technology, it is impossible to increase the concentration of the substance to be separated on the membrane surface to a level higher than the concentration of the mixture gas to be treated. Therefore, if an attempt is made to increase the supply of the target substance to be separated to the membrane surface, it becomes inevitable to increase the supply rate of the mixed gas to be treated, which may lead to destruction of the membrane. On the other hand, according to the method of the present invention, the membrane surface concentration of the substance to be separated can be made equal to or higher than the component ratio, so that the gas separation rate is improved.

見豆互羞呆 本発明によれば、前段で処理対象とする混合ガスにイオ
ン化処理を施し、混合ガス中の各成分の電子親和性の差
を利用して選択的に処理対象物質をイオン化して帯電せ
しめ、気体分離膜の近傍に設けた帯電分離対象物質の吸
引用電極との静電引力によりこれを気体分離膜側に引き
寄せて、気体分離膜表面での分離対象物質濃度を高める
ことにより、気体分離膜の分離速度を向上させることが
できる。
According to the present invention, the mixed gas to be treated is subjected to ionization treatment in the first stage, and the substance to be treated is selectively ionized by utilizing the difference in electron affinity of each component in the mixed gas. By charging the substance with electricity and drawing it toward the gas separation membrane through electrostatic attraction with the suction electrode for the charged substance to be separated, which is provided near the gas separation membrane, the concentration of the substance to be separated on the surface of the gas separation membrane is increased. , the separation speed of the gas separation membrane can be improved.

また、気体分離膜の近傍に設けた吸引用電極に電圧を印
加する必要がないので、精度の要求される電極や絶縁手
段が不要となり、大幅なコストダウンが可能となる。さ
らに気体分離膜間隔を小さくできるので、装置全体のコ
ンパクト化ないし高密度化が可能となる。
Furthermore, since there is no need to apply a voltage to the suction electrode provided near the gas separation membrane, there is no need for electrodes or insulating means that require precision, and it is possible to significantly reduce costs. Furthermore, since the gap between the gas separation membranes can be reduced, the entire device can be made more compact or more dense.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、本発明の気体分離方法
について示す説明図である。 第4図は、本発明の他の実施例を示す説明図である。 第5図は、比較例の気体分離方法を示す説明図である。 第6図は気体分離膜の原理を示す説明図である。 11・・・送風機     15・・・膜モジュール1
7・・・気体分離膜   19・・・吸引用接地極21
・・・放電極     25・・・イオンビーム源35
・・・減圧ポンプ 特許畠願人 住友重機械工業株式会社 第1図 第2図 排気(空入) 第3図 合II気 第6図 介排気 空気
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams showing the gas separation method of the present invention. FIG. 4 is an explanatory diagram showing another embodiment of the present invention. FIG. 5 is an explanatory diagram showing a gas separation method of a comparative example. FIG. 6 is an explanatory diagram showing the principle of a gas separation membrane. 11...Blower 15...Membrane module 1
7... Gas separation membrane 19... Suction ground electrode 21
...Discharge electrode 25...Ion beam source 35
...Decompression pump patent applicant Sumitomo Heavy Industries, Ltd. Figure 1 Figure 2 Exhaust air (empty air) Figure 3 II air Figure 6 Exhaust air

Claims (1)

【特許請求の範囲】[Claims] 1、混合気体を気体分離膜に接触させ、混合気体中の分
離対象物質を選択的に気体分離膜に透過させて分離する
気体分離方法において、該混合気体をイオン化処理手段
へ通過せしめてイオン化処理を施し分離対象物質を選択
的に帯電させ、該帯電分離対象物を気体分離膜近傍に設
けた吸引用電極方向に静電引力により吸引せしめ、気体
分離膜近傍の分離対象物質濃度を高めることを特徴とす
る気体分離方法。
1. In a gas separation method in which a mixed gas is brought into contact with a gas separation membrane and the substance to be separated in the mixed gas is selectively permeated through the gas separation membrane to be separated, the mixed gas is passed through an ionization treatment means to undergo ionization treatment. selectively charges the substance to be separated, and the charged substance to be separated is attracted by electrostatic attraction toward a suction electrode provided near the gas separation membrane, thereby increasing the concentration of the substance to be separated near the gas separation membrane. Characteristic gas separation method.
JP30537486A 1986-12-23 1986-12-23 Gas separation method Pending JPS63158114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30537486A JPS63158114A (en) 1986-12-23 1986-12-23 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30537486A JPS63158114A (en) 1986-12-23 1986-12-23 Gas separation method

Publications (1)

Publication Number Publication Date
JPS63158114A true JPS63158114A (en) 1988-07-01

Family

ID=17944345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30537486A Pending JPS63158114A (en) 1986-12-23 1986-12-23 Gas separation method

Country Status (1)

Country Link
JP (1) JPS63158114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034508A (en) * 2001-07-18 2003-02-07 Roki Techno Co Ltd Oxygen concentrator
EP1673154A2 (en) * 2003-10-06 2006-06-28 Parsa Investments, L.P. Multi-sectional system for continuous gas separation
US7318858B2 (en) 2002-07-12 2008-01-15 Parsa Investment, L.P. Gas separator for providing an oxygen-enriched stream

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034508A (en) * 2001-07-18 2003-02-07 Roki Techno Co Ltd Oxygen concentrator
US7252810B2 (en) * 2002-07-12 2007-08-07 Parsa Investments, L.P. Multi-sectional system for continuous gas separation
US7318858B2 (en) 2002-07-12 2008-01-15 Parsa Investment, L.P. Gas separator for providing an oxygen-enriched stream
EP1673154A2 (en) * 2003-10-06 2006-06-28 Parsa Investments, L.P. Multi-sectional system for continuous gas separation
WO2005042128A3 (en) * 2003-10-06 2007-02-01 Parsa Investments L P Multi-sectional system for continuous gas separation
EP1673154A4 (en) * 2003-10-06 2007-11-28 Parsa Investments L P Multi-sectional system for continuous gas separation

Similar Documents

Publication Publication Date Title
US6642526B2 (en) Field ionizing elements and applications thereof
US4734105A (en) Process and device for the removal of solid or liquid particles in suspension from a gas stream by means of an electric field
US4976752A (en) Arrangement for generating an electric corona discharge in air
US4955991A (en) Arrangement for generating an electric corona discharge in air
US6124675A (en) Metastable atom bombardment source
EP1650784B1 (en) Multimode ionization source with mode separator
US4313739A (en) Removal of contaminants from gases
WO1995012894A3 (en) Micromachined mass spectrometer
JPH0576126B2 (en)
JP2010051957A (en) Method and apparatus for cleaning gaseous fluid
WO1989004586A3 (en) Method and apparatus for generating particle beams
US20040007134A1 (en) Continuous gas separation in an open system
JP2003532991A (en) In-line gas ionization apparatus and method
JPS63158114A (en) Gas separation method
US20130056632A1 (en) Detectors And Ion Sources
JPH07110331B2 (en) Method for purifying helium gas and / or neon gas
EP0027748A1 (en) Ion mobility detector for either simultaneous or sequential detection of positive and negative ions
JPS63143955A (en) Gas separation method
GB1400333A (en) Method and system for detecting polynitro compounds
SE8600229L (en) SET TO REGENATE A SEPARATION DEVICE FOR A LIQUID MEDIUM CONTAINING UNLOSTED INGREDIENTS
AU8643791A (en) Method for detection of alien matter contents in gases
JP3653565B2 (en) Method and apparatus for separating ionic substances
JP2687310B2 (en) Generation method of charged particles in tandem electrostatic accelerator
JPS559107A (en) Ion generation method and device for ionization detection
SU866467A1 (en) Method of determining ion content