JPS63143955A - Gas separation method - Google Patents

Gas separation method

Info

Publication number
JPS63143955A
JPS63143955A JP29150586A JP29150586A JPS63143955A JP S63143955 A JPS63143955 A JP S63143955A JP 29150586 A JP29150586 A JP 29150586A JP 29150586 A JP29150586 A JP 29150586A JP S63143955 A JPS63143955 A JP S63143955A
Authority
JP
Japan
Prior art keywords
gas
gas separation
oxygen
membrane
separating membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29150586A
Other languages
Japanese (ja)
Inventor
Shintarou Yokawa
慎太郎 与川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP29150586A priority Critical patent/JPS63143955A/en
Publication of JPS63143955A publication Critical patent/JPS63143955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To increase separation rate of a gas separating membrane, by ionizing mixed gas and increasing the concentration of a substance to be separated on the surface of the gas separating membrane. CONSTITUTION:The gas separation method is carried out by a gas separating membrane 17 and a device with an ionization device with an electrode, close to the gas separating membrane 17, consisting of an electric discharge pole 21 and a grounding pole 19, to which voltage is applied. When negative voltage is applied to an electric source for discharging 23, corona discharge is generated between the electric discharge pole 21 and the grounding pole 19 to ionize the gas around the electric discharge pole 21. At that time, in case of a substance with much of electronic affinity and easily converting into negative ion, for instance, air constituted with a mixture of oxygen and nitrogen, oxygen is selectively ionized. The ionized oxygen monocules charged as negative are attracted to the grounding pole 19 by static to increase highly the oxygen concentration around the surface of the gas separating membrane 17 and also increase separation rate to a great extent.

Description

【発明の詳細な説明】 技術分野 本発明は、気体分離膜を用いて、気体を分離する方法に
関し、特に、放電極と接地極とからなる電極により混合
気体にイオン化処理を放して、気体を分離する方法に係
る。
Detailed Description of the Invention Technical Field The present invention relates to a method of separating gases using a gas separation membrane, and in particular, to a method of separating gases by applying ionization to a mixed gas using an electrode consisting of a discharge electrode and a ground electrode. It concerns the method of separation.

従来技術 気体分離膜を用いて混合ガス中の特定の気体を分離する
方法は、構造が単純であり、分離膜の性能が向上するこ
とに伴って、飛躍的に使用が増加している(雑誌「化学
装置41985年9月号。
Conventional technology The method of separating a specific gas in a mixed gas using a gas separation membrane has a simple structure, and its use is increasing dramatically as the performance of separation membranes improves (magazine). “Chemistry Equipment 4 September 1985 issue.

112〜117頁)。112-117).

この膜分離方法は、混合ガス中の各気体成分の膜透過速
度の差を利用するものであり、膜中な気体が溶解・拡散
する非多孔質膜と、クヌーセン流れにより多孔膜中を通
過させる多孔質膜とが知られている。
This membrane separation method utilizes the difference in the membrane permeation rate of each gas component in a mixed gas, and uses a non-porous membrane in which the gas dissolves and diffuses, and a porous membrane in which the gas is passed through by Knudsen flow. Porous membranes are known.

第3図は従来の気体分離システムの説明図である。窒素
分子41と酸素分子43との混合物である空気(混合ガ
ス)を気体分離膜17に接触させると、分離対象物質で
ある酸素分子43が選択的に気体分離膜17を通過し、
酸素濃度が高い酸素濃縮空気(酸素富化ガス)が得られ
る。
FIG. 3 is an explanatory diagram of a conventional gas separation system. When air (mixed gas), which is a mixture of nitrogen molecules 41 and oxygen molecules 43, is brought into contact with the gas separation membrane 17, the oxygen molecules 43, which are the substance to be separated, selectively pass through the gas separation membrane 17,
Oxygen-enriched air (oxygen-enriched gas) with a high oxygen concentration can be obtained.

気体分離膜の透過速度、即ち1分離対象物資の分難速度
は、膜中における物質の移動の難易(拡散性)と分離対
象物資(酸素分子)が膜の表面にどの程度存在するか(
溶解性)によって決まり、前者の気体分離膜の物性に依
存する。溶解性を高めるためには膜表面への分離対象物
質の供給を増加させることが必要となる。処理の対象と
される混合ガス中に分離対象物質は均一に存在している
ので、分類対象物質の膜表面への供給を増加させるため
には、処理対象ガスの供給速度を大きくすることが必要
となる。しかし、ガス速度を過度に上昇させると膜の破
壊を招くことになり、おのずから限界がある。
The permeation rate of a gas separation membrane, that is, the rate of separation of substances to be separated, is determined by the difficulty of movement of substances in the membrane (diffusivity) and the extent to which substances to be separated (oxygen molecules) exist on the surface of the membrane (
The former depends on the physical properties of the gas separation membrane. In order to improve solubility, it is necessary to increase the supply of the substance to be separated to the membrane surface. Since the substances to be separated are uniformly present in the mixed gas to be processed, it is necessary to increase the supply rate of the gas to be processed in order to increase the supply of the substances to be classified to the membrane surface. becomes. However, if the gas velocity is increased too much, it will lead to destruction of the membrane, so there is a natural limit to this.

発明の目的 本発明は、混合気体にイオン化処理を施し膜表面の分離
対象物質の濃度を高め、気体分離膜による分離速度を改
善することを目的とする。
OBJECTS OF THE INVENTION The present invention aims to improve the separation rate by a gas separation membrane by subjecting a mixed gas to ionization treatment to increase the concentration of a substance to be separated on the membrane surface.

見匪辺I戚 本発明の気体分離方法は、処理対象とする混合物体を気
体分離膜に接触させ、混合気体分中の分離対象物質を選
択的に気体分離膜を透過して分跪する分離方法において
、気体分離膜の近傍に放電極と接地極とからなる電圧が
印加される電極を設け、混合気体にイオン化処理を施し
分離対象物質を選択的に帯電せしめて気体分離膜に供給
し、静電引力により気体近傍の分離対象物質濃度を高め
ることを特徴とする。
The gas separation method of the present invention is a separation process in which a mixture to be treated is brought into contact with a gas separation membrane, and the substance to be separated in the mixed gas is selectively passed through the gas separation membrane. In the method, an electrode consisting of a discharge electrode and a ground electrode to which a voltage is applied is provided near the gas separation membrane, and the mixed gas is subjected to ionization treatment to selectively charge the substance to be separated and supplied to the gas separation membrane, It is characterized by increasing the concentration of the substance to be separated near the gas by electrostatic attraction.

以下、添付図面に沿って本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

本発明の気体分離方法は、気体分離膜と、放電極と接地
極とからなる電圧が印加される電極を気体分離膜の近傍
に設けたイオン化装置を備えた装置により実施すること
ができる。第1図は、このようなシステムの基本的な構
成例を示す説明図であり、空気(処理対象混合気体)は
、送風機11によりフィルター13を介して膜モジュー
ル15に送られる。膜モジュール15は気体分離膜17
により仕切られて供給室31と回収室33とが形成され
ている。回収室33は減圧ポンプ35により減圧されて
おり、供給室31と回収室33とには圧力差が設定され
ている。空気が供給室31に送られると、酸素が選択的
に気体分離膜17を透過して回収室に入り、フィルター
37を介して酸素濃縮空気として回収される。 本発明
では、第1図に示したような気体分離システムにおいて
The gas separation method of the present invention can be carried out using an apparatus equipped with a gas separation membrane and an ionization device in which an electrode including a discharge electrode and a ground electrode to which a voltage is applied is provided near the gas separation membrane. FIG. 1 is an explanatory diagram showing an example of the basic configuration of such a system. Air (mixed gas to be treated) is sent to a membrane module 15 via a filter 13 by a blower 11. The membrane module 15 is a gas separation membrane 17
A supply chamber 31 and a recovery chamber 33 are formed by partitioning. The pressure in the recovery chamber 33 is reduced by a pressure reduction pump 35, and a pressure difference is set between the supply chamber 31 and the recovery chamber 33. When air is sent to the supply chamber 31, oxygen selectively permeates through the gas separation membrane 17, enters the recovery chamber, and is recovered as oxygen-enriched air via the filter 37. In the present invention, in a gas separation system as shown in FIG.

さらに、気体分離膜17の近傍に設けた電圧が印加され
る電極からなるイオン化処理手段とが設けられている。
Furthermore, ionization processing means consisting of an electrode provided near the gas separation membrane 17 and to which a voltage is applied is provided.

第2図は、イオン化処理手段として、気体分離膜に近接
して放電装置を設けて静電分離する例を示す説明図であ
る。供給室31には放電極21が設けられ、また、気体
分離膜17の近傍にはスクリーン状の接地極19が設け
られている。z3は放電用電源を示す。
FIG. 2 is an explanatory diagram showing an example in which a discharge device is provided in close proximity to a gas separation membrane to perform electrostatic separation as an ionization treatment means. A discharge electrode 21 is provided in the supply chamber 31, and a screen-shaped ground electrode 19 is provided near the gas separation membrane 17. z3 indicates a discharge power source.

放電用電源23に負電圧を印加すると、放電極21と接
地%19との間でコロナ放電が起こり、放電極21近傍
の気体がイオン化される。このとき、イオン化は各種気
体に対して一律に起こるのではなく、放電の技術分野に
おいて良く知られるように、電子親和性が大きく負イオ
ンになりやすい物質が選択的にイオン化される。例えば
When a negative voltage is applied to the discharge power source 23, a corona discharge occurs between the discharge electrode 21 and the ground 19, and the gas near the discharge electrode 21 is ionized. At this time, ionization does not uniformly occur for various gases, but as is well known in the field of discharge technology, substances that have a large electron affinity and tend to become negative ions are selectively ionized. for example.

酸素と窒素の混合気体である空気の場合には、窒素はほ
とんどイオン化されず、酸素が選択的にイオン化される
。イオン化され、負に帯電した酸素分子は、クーロン力
(静電力)により接地極19に引き付けられ、気体分離
膜17の表面近傍の酸素濃度を飛范的に高めることがで
き、よって、分離速度の大幅な向上が可能となる。
In the case of air, which is a mixed gas of oxygen and nitrogen, nitrogen is hardly ionized and oxygen is selectively ionized. The ionized and negatively charged oxygen molecules are attracted to the ground electrode 19 by Coulomb force (electrostatic force), and can dramatically increase the oxygen concentration near the surface of the gas separation membrane 17, thereby increasing the separation rate. Significant improvements are possible.

また、第2図の構成では、スクリーン状の接地極19を
気体分離膜17の前面に設けることにより、処理対象ガ
ス中に同伴される異物等が気体分離膜に衝空することを
有効に防止することができ、気体分離膜の寿命を改善す
ることができる。
In addition, in the configuration shown in FIG. 2, by providing a screen-shaped ground electrode 19 in front of the gas separation membrane 17, it is possible to effectively prevent foreign substances entrained in the gas to be treated from being blown into the gas separation membrane. The life of the gas separation membrane can be improved.

以上の説明では、空気中からの酸素の分離(濃縮化)に
ついて説明したが、酸素以外の気体の分離においても、
各種気体成分の電子親和性の差により特定のガス成分を
分離膜表面近傍に濃縮することが可能となる。従来技術
では、膜表面の分離対象物質の濃度を処理対象混合物気
体の濃度以上に高めることは不可能である。したがって
1分離対象物質の膜表面への供給を増加しようとすると
、処理対象混合気体の供給速度を増加させることが不可
避となり、膜の破壊を招くことにもなる。これに対して
本発明の方法によれば1分離対象物質の膜表面濃度を成
分比以上とすることができるので、気体の分離速度が向
上する。
In the above explanation, we have explained the separation (concentration) of oxygen from the air, but it is also possible to separate gases other than oxygen.
Differences in electron affinity between various gas components make it possible to concentrate specific gas components near the surface of the separation membrane. With the conventional technology, it is impossible to increase the concentration of the substance to be separated on the membrane surface to a level higher than the concentration of the mixture gas to be treated. Therefore, if an attempt is made to increase the supply of the substance to be separated to the membrane surface, it becomes inevitable to increase the supply rate of the mixed gas to be treated, which may lead to destruction of the membrane. On the other hand, according to the method of the present invention, the membrane surface concentration of one substance to be separated can be made equal to or higher than the component ratio, so that the gas separation rate is improved.

また、以上の実施例ではコロナ放電により各成分の電子
親和性の差を利用して静電分離してイオン化することを
説明したが、処理対象気体のイオン化方法はこれに限定
されず、例えば、電子ビーム等を利用してイオン化して
もよい。
Further, in the above embodiments, it has been explained that the difference in electron affinity of each component is used to electrostatically separate and ionize the gas by corona discharge, but the method of ionizing the gas to be treated is not limited to this, for example, Ionization may be performed using an electron beam or the like.

この場合にも、気体分離膜の近傍に電極を設け、この電
極に電圧を印加してバイアスをかけることにより、帯電
した処理対象物質を引き寄せて。
In this case as well, an electrode is provided near the gas separation membrane, and a voltage is applied to the electrode to apply a bias to attract the charged substance to be treated.

気体分離膜表面における濃度を高めることができる。The concentration at the surface of the gas separation membrane can be increased.

充訓Bγ廟果 本発明によれば、処理対象とする混合ガスにイオン化処
理を施し、混合ガス中の各成分の電子親和性の差を利用
して選択的に処理対象物質をイオン化して帯電せしめ、
電圧が印加された電極を気体分離膜の近傍に設け、帯電
した分離対象物質をこの電極との静電引力により気体分
離膜側に引き寄せて、気体分前膜表面での分前対象物質
濃度を高めることにより、気体分離膜の分離速度を向上
させることができる。
According to the present invention, a mixed gas to be treated is subjected to ionization treatment, and the substance to be treated is selectively ionized and charged by utilizing the difference in electron affinity of each component in the mixed gas. Seshime,
An electrode to which a voltage is applied is installed near the gas separation membrane, and the charged target substance to be separated is drawn toward the gas separation membrane by the electrostatic attraction between the electrode and the concentration of the target substance to be separated on the surface of the gas separation membrane. By increasing the separation rate of the gas separation membrane, the separation speed of the gas separation membrane can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の気体分離方法について
示す説明図である。 第3図は気体分離膜の原理を示す説明図である。 11・・・送風機     15・・・膜モジュール1
7・・・気体分離膜   19・・・接地極21・・・
放電極     35・・・減圧ポンプ特許出願人 住
友重機械工業株式会社 代理人弁理士 9藤 正信−−外1名 1・じ、゛ ・l、、、、j I′ 第1図 第2因 0狐 合琲気 空気
FIG. 1 and FIG. 2 are explanatory diagrams showing the gas separation method of the present invention. FIG. 3 is an explanatory diagram showing the principle of a gas separation membrane. 11...Blower 15...Membrane module 1
7... Gas separation membrane 19... Ground electrode 21...
Discharge electrode 35...Reducing pump patent applicant Sumitomo Heavy Industries Co., Ltd. Representative Patent Attorney 9 Masanobu Fuji -- and 1 other person 1・J,゛・l,...,j I' Figure 1 Cause 2 0 fox air

Claims (1)

【特許請求の範囲】[Claims] 1、混合気体を気体分離膜に接触させ、混合気体中の分
離対象物質を選択的に気体分離膜を透過して分離する気
体分離方法において、気体分離膜の近傍に放電極と接地
極とからなる電圧が印加される電極を設け、混合気体に
イオン化処理を施し分離対象物質を選択的に帯電せしめ
て気体分離膜に供給し、静電引力により気体分離膜近傍
の分離対象物質濃度を高めることを特徴とする気体分離
方法。
1. In a gas separation method in which a gas mixture is brought into contact with a gas separation membrane and the target substance in the gas mixture is selectively separated by passing through the gas separation membrane, a discharge electrode and a ground electrode are connected near the gas separation membrane. An electrode to which a voltage of A gas separation method characterized by:
JP29150586A 1986-12-09 1986-12-09 Gas separation method Pending JPS63143955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29150586A JPS63143955A (en) 1986-12-09 1986-12-09 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29150586A JPS63143955A (en) 1986-12-09 1986-12-09 Gas separation method

Publications (1)

Publication Number Publication Date
JPS63143955A true JPS63143955A (en) 1988-06-16

Family

ID=17769753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29150586A Pending JPS63143955A (en) 1986-12-09 1986-12-09 Gas separation method

Country Status (1)

Country Link
JP (1) JPS63143955A (en)

Similar Documents

Publication Publication Date Title
AU5142385A (en) Removing suspended particles from a gas stream
US4955991A (en) Arrangement for generating an electric corona discharge in air
WO1995012894A3 (en) Micromachined mass spectrometer
US6364935B1 (en) Method and device for cleaning of a gaseous fluid
US20030201389A1 (en) Soft ionization device with characterization systems and methods of manufacture
EP1036429A4 (en) Method and device for ion generation
MY107109A (en) Procedure and apparatus for the purification of air, flue gases or equivalent
KR970021656A (en) Exhaust particulate collection device of diesel engine by electric control
JP2003532991A (en) In-line gas ionization apparatus and method
CA2362721C (en) Method and process for separating materials in the form of particles and/or drops from a gas
US20170246337A1 (en) Air disinfection method and a device for implementation thereof
GB1014545A (en) Improvements in or relating to precipitators
JP3115326B2 (en) Method and apparatus for treating gas carrier particles and use of the apparatus
KR950025117A (en) Breakaway Method and Breakaway Mechanism
JPS63143955A (en) Gas separation method
JPS63158114A (en) Gas separation method
AU8643791A (en) Method for detection of alien matter contents in gases
DK372687D0 (en) PROCEDURES FOR CONTINUOUS SEPARATION OF ELECTRICALLY CHARGED FINE INORGANIC PARTICLES IN AN Aqueous MEDIUM OF ELECTROPHORESIS AND ELECTROOSMOSIS
GB831240A (en) Electrostatic method and apparatus for concentrating minerals
JP3653565B2 (en) Method and apparatus for separating ionic substances
JPS559107A (en) Ion generation method and device for ionization detection
CA2898030C (en) Air disinfection method and a device for implementation thereof
GB1500154A (en) Method and apparatus for precipitating particles from a gaseous effluent
ES2183966T3 (en) FILTER APPARATUS WITH INDECTED VOLTAGE ELECTRODE.
SU866467A1 (en) Method of determining ion content