JP2687310B2 - Generation method of charged particles in tandem electrostatic accelerator - Google Patents
Generation method of charged particles in tandem electrostatic acceleratorInfo
- Publication number
- JP2687310B2 JP2687310B2 JP6321981A JP32198194A JP2687310B2 JP 2687310 B2 JP2687310 B2 JP 2687310B2 JP 6321981 A JP6321981 A JP 6321981A JP 32198194 A JP32198194 A JP 32198194A JP 2687310 B2 JP2687310 B2 JP 2687310B2
- Authority
- JP
- Japan
- Prior art keywords
- charged particles
- accelerator
- voltage terminal
- high voltage
- electrostatic accelerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Particle Accelerators (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、複数の原子で構成さ
れる多様な分子イオンやクライスターイオン或は高エネ
ルギー中性粒子を発生することができるタンデム型静電
加速器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tandem type electrostatic accelerator capable of generating various molecular ions composed of a plurality of atoms, crystallite ions or high energy neutral particles.
【0002】タンデム型静電加速器は加速器の入口と出
口が共に接地され、加速中心部に数100kV から20MV程度
までの直流高電圧ターミナル部を持つ荷電粒子加速装置
であって、加速器入口から上記高電圧ターミナル部まで
と高電圧ターミナル部から出口迄の2段に加速すること
から「タンデム型」と称されている。The tandem electrostatic accelerator is a charged particle accelerator which has a DC high voltage terminal section of several 100 kV to 20 MV in the center of acceleration, in which both the entrance and the exit of the accelerator are grounded. It is called a "tandem type" because it accelerates in two steps, from the voltage terminal section to the high voltage terminal section to the exit.
【0003】1段加速(シングル型)の場合には高電圧
部に荷電粒子の発生源(イオン源)を搭載するのに対
し、タンデム型ではイオン源を接地できるため、軽イオ
ンや重イオンを始め複数個の原子から構成される分子イ
オンやクライスターイオンに至るまでの、バリエーショ
ン豊かな荷電粒子の加速を可能とするなどの特徴があ
る。In the case of the one-step acceleration (single type), the source of the charged particles (ion source) is mounted in the high voltage portion, whereas in the tandem type the ion source can be grounded, so that light ions and heavy ions are It has features such as enabling acceleration of charged particles with a wide variety of variations, starting from molecular ions composed of multiple atoms to crystallite ions.
【0004】従来原子核物理学の分野で、核構造解析の
手段として高エネルギー荷電粒子を得るために、より高
電圧の静電加速器開発が進められ、大型加速器の建設が
行われてきたが、近年では半導体材料におけるイオン注
入、鋼材改質のためのイオンビーム加工、通常検出が困
難とされる材料中の水素のイオンビーム分析、材料組成
と構造解析のためのイオンビーム分析、構造材や生体細
胞の照射損傷を調べるためのイオンビーム照射、生体内
のトレーサー分析、年代測定のための同位体分離等の材
料科学や生物、医療科学或は考古学等の幅広い分野にお
いては、むしろ数100kV から3MV 程度の比較的小型のタ
ンデム型静電加速器が盛んに利用されている。Conventionally, in the field of nuclear physics, in order to obtain high-energy charged particles as a means for nuclear structure analysis, development of a higher voltage electrostatic accelerator has been promoted, and a large accelerator has been constructed. Then, ion implantation in semiconductor materials, ion beam processing for steel modification, ion beam analysis of hydrogen in materials that are usually difficult to detect, ion beam analysis for material composition and structural analysis, structural materials and biological cells In a wide range of materials science such as ion beam irradiation for investigating irradiation damage, tracer analysis in vivo, isotope separation for dating, biology, medical science or archeology, rather than several 100 kV to 3 MV A relatively small tandem type electrostatic accelerator is widely used.
【0005】タンデム型加速器においては高電圧ターミ
ナル部において荷電粒子の電荷極性を反転させる必要が
あるが、従来極性変換の容易性から通常イオン源から高
電圧ターミナル部迄は負電荷を、高電圧ターミナル部以
降は正電荷を夫々帯びた荷電粒子の加速を行うようにし
てきた。In the tandem type accelerator, it is necessary to invert the charge polarity of the charged particles at the high voltage terminal portion, but conventionally, from the easiness of polarity conversion, a negative charge is usually provided from the ion source to the high voltage terminal portion, and a high voltage terminal portion. Since then, we have been accelerating the charged particles that carry positive charges.
【0006】そして、従来のタンデム型静電加速器にお
いては高電圧ターミナル部における荷電粒子の電荷の極
性反転を、高速荷電粒子が物質を通過する際に生ずる電
子損失を利用して、負電荷を正電荷に変換することが行
われてきた。In the conventional tandem-type electrostatic accelerator, the polarity of the charge of the charged particles in the high voltage terminal is reversed, and the negative charge is made positive by utilizing the electron loss generated when the fast charged particles pass through the substance. Converting into electric charge has been done.
【0007】例えば、大型のタンデム型静電加速器で
は、図2に示すように負イオン加速管3と正イオン加速
管4を接続高電圧ターミナル部5に複数の炭素繊維14を
搭載した無端ベルト15を設け、この無端ベルト15を回動
させて炭素薄膜14の一枚を荷電粒子発生器7より入射さ
れる荷電粒子のビーム軸8を遮るように位置させ、負イ
オン加速管3で高エネルギーにまで加速された負電荷を
持つ荷電粒子をこの炭素薄膜14を通過することにより多
価の正電荷粒子に変換され、正イオン加速器ではこの変
換された正荷電粒子を更に高エネルギーにまで加速し
て、効率よく高エネルギーの荷電粒子を発生させるもの
である。For example, in a large tandem type electrostatic accelerator, as shown in FIG. 2, a negative ion accelerating tube 3 and a positive ion accelerating tube 4 are connected, and an endless belt 15 having a plurality of carbon fibers 14 mounted on a high voltage terminal section 5 is provided. The endless belt 15 is rotated to position one of the carbon thin films 14 so as to block the beam axis 8 of charged particles incident from the charged particle generator 7, and the negative ion accelerating tube 3 provides high energy. The charged particles having the negative charge accelerated up to are converted into multicharged positively charged particles by passing through the carbon thin film 14, and the positive ion accelerator accelerates the converted positively charged particles to higher energy. , Which efficiently generates high-energy charged particles.
【0008】一方、3MV 以下の比較的小型のタンデム型
静電加速器では、負イオン加速管部で加速された荷電粒
子の物質透過能が低いため、図3に示すように加速器を
収容する絶縁用高圧ガスタンク2内に流量調整弁16を有
する荷電変換用ガス供給部17を設け、流量調整弁16を開
いて高電圧ターミナル部5にガスを供給し、ここで負電
荷を持つ荷電粒子と衝突させることにより荷電変換を行
うものである。On the other hand, in a relatively small tandem type electrostatic accelerator of 3 MV or less, the mass permeability of the charged particles accelerated in the negative ion accelerating tube portion is low, and therefore, as shown in FIG. A charge conversion gas supply unit 17 having a flow rate adjusting valve 16 is provided in the high-pressure gas tank 2, and the flow rate adjusting valve 16 is opened to supply gas to the high-voltage terminal unit 5 where it collides with negatively charged particles. By doing so, charge conversion is performed.
【0009】このガスと荷電粒子の衝突により荷電粒子
の荷電変換を行う方法においては、荷電粒子の種類と速
度に応じてガスの圧力を調整することにより、必要な正
電荷の価数が得られる利点を有している。In the method of performing charge conversion of charged particles by collision of the gas and charged particles, the required positive charge valence can be obtained by adjusting the pressure of the gas according to the type and speed of the charged particles. Have advantages.
【0010】[0010]
【発明が解決しようとする課題】しかし、上述の薄膜透
過或はガス衝突何れの方法においても、荷電変換のため
に薄膜透過やガスと衝突させる際、荷電粒子が分子イオ
ンやクライスター等の複数の原子から構成されている場
合、構成原子が個々に電子損失を起こしてイオン化し、
互いの静電斥力によって分子やクライスターが解離して
しまう。However, in any of the above-described thin film permeation or gas collision methods, when the thin film permeation or gas collision is performed for charge conversion, the charged particles are separated into a plurality of molecules such as molecular ions and crystallites. , The constituent atoms individually cause electron loss and ionize,
Molecules and crysters are dissociated by mutual electrostatic repulsion.
【0011】即ち、分子やクライスターを解離させずに
イオン化するためには、複数個の原子で構成される荷電
粒子1個から剥ぎ取る電子の個数を正確に制御する必要
があるが、荷電粒子が透過する膜厚やガス圧の調整で
は、こうした荷電粒子から剥ぎ取る電子の個数制御まで
出来ず、このため分子イオンやクライスターイオン等の
複数の原子から構成される荷電粒子は、炭素薄膜透過や
ガス衝突による荷電変換を行う従来のタンデム型静電加
速器では加速できないという大きな欠点がある。That is, in order to ionize a molecule or a crystal without dissociating it, it is necessary to accurately control the number of electrons stripped from one charged particle composed of a plurality of atoms. It is not possible to control the number of electrons stripped from these charged particles by adjusting the film thickness or gas pressure through which the particles permeate. Therefore, charged particles composed of multiple atoms, such as molecular ions and crystallite ions, cannot pass through the carbon thin film. There is a major drawback that conventional tandem electrostatic accelerators that perform charge conversion by gas collisions cannot be accelerated.
【0012】また従来、ガス衝突による荷電変換を行う
比較的小型のタンデム型静電加速器では、高電圧ターミ
ナル部5におけるガス導入によって、加速管内の真空度
低下を招き、更に加速管内の残留ガスは荷電粒子ビーム
との衝突によって電子を放出し、この電子が加速管壁と
の衝突を繰り返し雪崩式に増倍して高電圧の不安定な状
態を引き起こし、引いては加速管の寿命を短縮すること
になるため、加速管内の真空度の低下は重大な問題であ
る。Conventionally, in a relatively small tandem type electrostatic accelerator which performs charge conversion by gas collision, the introduction of gas into the high-voltage terminal portion 5 causes a decrease in the degree of vacuum in the accelerating tube, and the residual gas in the accelerating tube is further reduced. Electrons are emitted by collision with a charged particle beam, and the electrons repeatedly collide with the accelerating tube wall to multiply in an avalanche manner, causing an unstable state of high voltage, which in turn shortens the life of the accelerating tube. Therefore, lowering the degree of vacuum in the acceleration tube is a serious problem.
【0013】なお、加速管内の真空度の低下を軽減する
ために、高電圧ターミナル部に真空排気装置を取り付け
たタンデム型静電加速器も従来より存在するが、これは
高電圧ターミナル部の構造を複雑にする結果となる。A tandem type electrostatic accelerator having a high-voltage terminal unit equipped with a vacuum exhaust device has been conventionally used in order to reduce the decrease in the degree of vacuum in the acceleration tube, but this has a structure of the high-voltage terminal unit. This results in complications.
【0014】更に、ガス導入による荷電変換では、絶縁
用高圧ガスタンクの外部から直接ガス流量調整操作をす
ることは絶縁破損を生ずるために不可能であり、したが
って絶縁用高圧ガスタンク2内に設けられたガス流量調
整弁16を遠隔制御しなければならないという不便さがあ
った。Further, in the charge conversion by introducing gas, it is impossible to directly adjust the gas flow rate from the outside of the insulating high-pressure gas tank because the insulation is damaged, and therefore the insulating high-pressure gas tank 2 is provided. There is an inconvenience that the gas flow rate adjusting valve 16 has to be remotely controlled.
【0015】一方、炭素薄膜による荷電変換では炭素薄
膜が長時間使用すると破損し、通常1枚の寿命が数時間
から数日程度であり、したがってタンデム型静電加速器
には上述のように無端ベルト15に複数枚の炭素薄膜14が
搭載されているが、それでも数か月毎に炭素薄膜の補給
が必要となり、その都度大型の絶縁用ガスタンクを開閉
しなければならないという不便さがある。On the other hand, in the charge conversion by the carbon thin film, the carbon thin film is damaged when it is used for a long time, and the life of one sheet is usually several hours to several days. Therefore, the endless belt is used in the tandem electrostatic accelerator as described above. Although a plurality of carbon thin films 14 are mounted on the 15, the carbon thin film still needs to be replenished every few months, and there is the inconvenience that a large insulating gas tank must be opened and closed each time.
【0016】[0016]
【課題を解決するための手段】以上の課題を解決するた
め、この発明では、複数個の原子で構成され、且つ光学
的に強い共鳴遷移を持つ荷電粒子を、極性の異なる荷電
粒子の加速部を高電圧ターミナル部で接続するタンデム
型静電加速器の入口から入れて、器内を直進させる一
方、荷電粒子に対する相対的なドップラー効果に起因す
る光の波長が高電圧ターミナル部を通過するときの荷電
粒子の共鳴遷移と一致するように波長調整されたレーザ
ー光を上記荷電粒子のビーム軸に沿って入射させ、その
極性を中性乃至反転させて加速することを特徴とするタ
ンデム型静電加速器における荷電粒子の発生方法を提案
するものである。In order to solve the above problems, in the present invention, a charged particle composed of a plurality of atoms and having an optically strong resonance transition is used as an accelerator for charged particles having different polarities. Is entered from the entrance of the tandem type electrostatic accelerator connected with the high voltage terminal part, and goes straight inside the device, while the wavelength of light caused by the Doppler effect relative to the charged particles passes through the high voltage terminal part. A tandem electrostatic accelerator characterized in that a laser beam whose wavelength is adjusted so as to match the resonance transition of charged particles is incident along the beam axis of the charged particles, and the polarity thereof is neutralized or inverted to accelerate the charged particles. The method of generating charged particles in is proposed.
【0017】この発明で使用するレーザー光は波長可変
で強度調整できる指向性の強い光で、該レーザー光は加
速器外より照射する。The laser light used in the present invention is a light having a strong directivity that can be wavelength-variable and whose intensity can be adjusted, and the laser light is emitted from outside the accelerator.
【0018】負電荷を持つ荷電粒子が光学的に強い共鳴
遷移を持つ場合には、この発明のようにドップラー効果
を利用して波長調整されたレーザー光を荷電粒子のビー
ム軸に沿って入射させることにより、高電圧ターミナル
部で荷電粒子の電荷極性変換ができる。When a charged particle having a negative charge has an optically strong resonance transition, a laser beam whose wavelength is adjusted by utilizing the Doppler effect as in the present invention is made incident along the beam axis of the charged particle. As a result, the charge polarity of the charged particles can be converted at the high voltage terminal portion.
【0019】即ち、移動している荷電粒子から見た光の
波長はドップラー効果によって荷電粒子の速度に依存し
て変化するため、高電圧ターミナル部を通過する荷電流
子から見た光の波長が、丁度その荷電粒子の持つ共鳴遷
移に一致するように入射光の波長を調整し、高電圧ター
ミナル部でのみ荷電粒子の電荷極性変換ができる。That is, since the wavelength of light seen from the moving charged particles changes depending on the velocity of the charged particles due to the Doppler effect, the wavelength of light seen from the charge current element passing through the high-voltage terminal is By adjusting the wavelength of the incident light so that it exactly matches the resonance transition of the charged particle, the charge polarity of the charged particle can be converted only at the high voltage terminal section.
【0020】[0020]
【作用】この発明によればレーザー光のような光を波長
及び強度調整してタンデム型静電加速器の高電圧ターミ
ナル部に入射させることにより、負イオン加速管で加速
された負電荷の荷電粒子より所定の個数の電子を剥ぎ取
ることができ、更にこの電子の剥ぎ取られた荷電粒子を
正イオン加速管で加速することができる。According to the present invention, negatively charged particles accelerated by a negative ion accelerating tube are obtained by adjusting the wavelength and intensity of light such as laser light and making it incident on the high voltage terminal of a tandem electrostatic accelerator. A predetermined number of electrons can be stripped off, and the stripped charged particles of the electrons can be accelerated by the positive ion accelerator tube.
【0021】したがって、この発明によれば波長可変で
強度調整ができる光を利用することにより、1個の荷電
粒子から剥ぎ取られる電子の個数を正確に制御できるた
め、分子イオンやクライスターイオン等の複数原子で構
成される荷電粒子を解離させることなく、高エネルギー
にまで加速することができる。Therefore, according to the present invention, since the number of electrons stripped from one charged particle can be accurately controlled by utilizing the light whose wavelength is variable and whose intensity can be adjusted, molecular ions, crystallite ions, etc. It is possible to accelerate to high energy without dissociating charged particles composed of a plurality of atoms.
【0022】またこの発明によれば荷電粒子から剥ぎ取
る電子の個数を粒子全体の電荷零の中性状態に制御でき
るため、高エネルギーの中性粒子を発生させることがで
きる。Further, according to the present invention, since the number of electrons stripped from the charged particles can be controlled to a neutral state in which the charge of the entire particles is zero, high-energy neutral particles can be generated.
【0023】更にこの発明によれば荷電粒子の電荷極性
変換の際に加速管内部へ光のみを導入するため、加速管
内の真空度の低下を招くことなく、したがって高電圧の
不安定状態を起こして加速管の寿命を縮めることなく、
荷電粒子を安定に高エネルギーにまで加速することがで
きる。Further, according to the present invention, since only light is introduced into the accelerating tube at the time of charge polarity conversion of the charged particles, the vacuum degree in the accelerating tube is not lowered, and thus an unstable state of high voltage is caused. Without shortening the life of the accelerator
The charged particles can be stably accelerated to high energy.
【0024】またこの発明によれば荷電変換に指向性の
強い光を使用するため、絶縁用高圧ガスタンクの外部か
ら直接操作により、絶縁破損を生じさせずに荷電粒子の
電荷極性を換えることができる。Further, according to the present invention, since light having a strong directivity is used for charge conversion, it is possible to change the charge polarity of the charged particles by directly operating from the outside of the insulating high pressure gas tank without causing insulation damage. .
【0025】[0025]
【実施例】以下、この発明を図示の実施例を用いて詳細
に説明する。1は、この発明の一実施例を示す絶縁用高
圧ガスタンク2内に収容されたタンデム型静電加速器
で、タンデム型静電加速器1は負イオン加速器3と正イ
オン加速器4を設け、負イオン加速器3と正イオン加速
器4とは高電圧ターミナル部5で接続する。The present invention will be described in detail below with reference to the illustrated embodiments. 1 is a tandem electrostatic accelerator housed in an insulating high-pressure gas tank 2 showing an embodiment of the present invention. The tandem electrostatic accelerator 1 is provided with a negative ion accelerator 3 and a positive ion accelerator 4, and a negative ion accelerator. 3 and the positive ion accelerator 4 are connected by a high voltage terminal unit 5.
【0026】また、絶縁用高圧タンク2内には高電圧発
生部6が設けられ、高電圧発生部6は高圧ターミナル部
5及び負イオン加速管3の入口3aと正イオン加速管4の
出口4aに接続され、絶縁用高圧ガスタンク2の入口と出
口は共に接地される。A high voltage generator 6 is provided in the insulating high pressure tank 2, and the high voltage generator 6 has a high voltage terminal 5 and an inlet 3a of the negative ion accelerator tube 3 and an outlet 4a of the positive ion accelerator tube 4. And the inlet and outlet of the insulating high-pressure gas tank 2 are both grounded.
【0027】なお、この実施例は負電荷を持つ荷電粒子
が光学的に強い共鳴遷移を持つ場合、短波長のレーザー
光をビーム軸8に沿って入射させる実施例を示すもので
あり、この実施例では負イオン加速管3の入口3aにはビ
ーム軸8に沿って湾曲した導入管10が設けられ、導入管
10の入口に荷電粒子発生器7を設け、一方正イオン加速
管4の出口4aにはビーム軸8に沿って湾曲した導出管11
を設けると共に、ビーム軸8の延長上にレーザー発生器
9を設ける。This embodiment shows an embodiment in which a laser beam having a short wavelength is incident along the beam axis 8 when charged particles having a negative charge have an optically strong resonance transition. In the example, an inlet tube 10 curved along the beam axis 8 is provided at the inlet 3a of the negative ion accelerator tube 3,
A charged particle generator 7 is provided at the inlet of 10, while an outlet 4a of the positive ion accelerating tube 4 is provided with a lead-out tube 11 curved along the beam axis 8.
And the laser generator 9 is provided on the extension of the beam axis 8.
【0028】この場合、レーザー発生器9からは高電圧
ターミナル部5を通過する荷電粒子から見た光の波長
が、丁度素の荷電粒子の持つ共鳴遷移に一致するように
波長調整された短波長のレーザーをビーム軸8に沿って
入射させる。In this case, the wavelength of the light seen from the charged particles passing through the high-voltage terminal section 5 from the laser generator 9 is adjusted to a short wavelength so that it coincides with the resonance transition of the elementary charged particles. The laser is incident along the beam axis 8.
【0029】これにより、高電圧ターミナル部5ではレ
ーザー発生器9より発振したレーザー光の波長が荷電粒
子の持つ共鳴遷移に一致し、電子のイオン化が生ずるの
で、荷電粒子の極性変換が行われ、極性変換された荷電
粒子は正イオン加速管4で加速され、導出管11を通って
放出される。As a result, in the high-voltage terminal section 5, the wavelength of the laser beam oscillated from the laser generator 9 coincides with the resonance transition of the charged particles, and the ionization of electrons occurs, so that the polarity of the charged particles is changed. The charged particles whose polarity has been changed are accelerated by the positive ion accelerating tube 4 and emitted through the outlet tube 11.
【0030】[0030]
【発明の効果】以上要するに、この発明によれば従来の
タンデム型静電加速器では不可能であった複数の原子で
構成される多様な分子イオンやクライスターイオンを加
速することができる。In summary, according to the present invention, it is possible to accelerate various molecular ions and crystallite ions composed of a plurality of atoms, which are not possible with the conventional tandem electrostatic accelerator.
【0031】また、この発明に係るタンデム型静電加速
器によれば従来困難とされた高エネルギー中性粒子ビー
ムを発生させることができる。Further, according to the tandem type electrostatic accelerator of the present invention, it is possible to generate a high energy neutral particle beam which has been difficult in the past.
【図1】この発明の一実施例を示すタンデム型静電加速
器の概略図。FIG. 1 is a schematic diagram of a tandem electrostatic accelerator showing an embodiment of the present invention.
【図2】薄膜透過による荷電変換を利用した従来のタン
デム型静電加速器の概略図。FIG. 2 is a schematic diagram of a conventional tandem electrostatic accelerator that utilizes charge conversion by thin film transmission.
【図3】ガス衝突による荷電変換を利用した従来のタン
デム型静電加速器の概略図。FIG. 3 is a schematic diagram of a conventional tandem electrostatic accelerator that utilizes charge conversion by gas collision.
1 タンデム型静電加速器 2 絶縁用高圧ガスタンク 3 負イオン加速管 4 正イオン加速管 5 高電圧ターミナル部 6 高電圧発生部 7 荷電粒子発生器 8 ビーム軸 9 レーザー発生器 10 導入管 11 導出管 14 炭素薄膜 15 無端ベルト 16 流量調整弁 17 荷電変換用ガス供給部 1 Tandem Electrostatic Accelerator 2 High Pressure Gas Tank for Insulation 3 Negative Ion Accelerator 4 Positive Ion Accelerator 5 High Voltage Terminal 6 High Voltage Generator 7 Charged Particle Generator 8 Beam Axis 9 Laser Generator 10 Introducing Tube 11 Outlet Tube 14 Carbon thin film 15 Endless belt 16 Flow control valve 17 Charge conversion gas supply unit
Claims (1)
強い共鳴遷移を持つ荷電粒子を、極性の異なる荷電粒子
の加速部を高電圧ターミナル部で接続するタンデム型静
電加速器の入口から入れて、器内を直進させる一方、荷
電粒子に対する相対的なドップラー効果に起因する光の
波長が高電圧ターミナル部を通過するときの荷電粒子の
共鳴遷移と一致するように波長調整されたレーザー光を
上記荷電粒子のビーム軸に沿って入射させ、その極性を
中性乃至反転させて加速することを特徴とするタンデム
型静電加速器における荷電粒子の発生方法。1. A charged particle composed of a plurality of atoms and having an optically strong resonance transition is introduced from an entrance of a tandem electrostatic accelerator in which accelerating parts of charged particles having different polarities are connected by a high voltage terminal part. while put, Ru is straight in the converter, load
Of light due to the relative Doppler effect on charged particles
Of the charged particles as the wavelength passes through the high voltage terminal
Laser light whose wavelength is adjusted to match the resonance transition
A method for generating charged particles in a tandem electrostatic accelerator, characterized in that the charged particles are made incident along the beam axis and the polarity thereof is neutralized or inverted to accelerate the particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6321981A JP2687310B2 (en) | 1994-12-26 | 1994-12-26 | Generation method of charged particles in tandem electrostatic accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6321981A JP2687310B2 (en) | 1994-12-26 | 1994-12-26 | Generation method of charged particles in tandem electrostatic accelerator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24556292A Division JPH0668984A (en) | 1992-08-21 | 1992-08-21 | Tandem type electrostatic accelerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07169597A JPH07169597A (en) | 1995-07-04 |
JP2687310B2 true JP2687310B2 (en) | 1997-12-08 |
Family
ID=18138591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6321981A Expired - Lifetime JP2687310B2 (en) | 1994-12-26 | 1994-12-26 | Generation method of charged particles in tandem electrostatic accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2687310B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906338B2 (en) | 2000-08-09 | 2005-06-14 | The Regents Of The University Of California | Laser driven ion accelerator |
US6867419B2 (en) | 2002-03-29 | 2005-03-15 | The Regents Of The University Of California | Laser driven compact ion accelerator |
JP4821011B2 (en) * | 2007-09-27 | 2011-11-24 | 大学共同利用機関法人 高エネルギー加速器研究機構 | Charge conversion thin film and particle accelerator |
US7498588B1 (en) | 2008-05-07 | 2009-03-03 | International Business Machines Corporation | Tandem accelerator having low-energy static voltage injection and method of operation thereof |
JP4756285B2 (en) * | 2009-04-23 | 2011-08-24 | 独立行政法人産業技術総合研究所 | Charge conversion device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2738405A1 (en) * | 1977-08-25 | 1979-03-01 | Siemens Ag | TANDEMION ACCELERATOR WITH MATERIAL-FREE ION LOADING AREA |
JPH0668984A (en) * | 1992-08-21 | 1994-03-11 | Agency Of Ind Science & Technol | Tandem type electrostatic accelerator |
-
1994
- 1994-12-26 JP JP6321981A patent/JP2687310B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07169597A (en) | 1995-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3527977A (en) | Moving electrons as an aid to initiating reactions in thermonuclear devices | |
EP1082747B1 (en) | Acceleration and analysis architecture for ion implanter | |
Wang et al. | Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory | |
US20200411300A1 (en) | Accelerator mass spectrometry measuring method and system | |
JP2687310B2 (en) | Generation method of charged particles in tandem electrostatic accelerator | |
US5082685A (en) | Method of conducting plasma treatment | |
US4686022A (en) | Method and apparatus for producing a monatomic beam of ground-state atoms | |
US3030543A (en) | Method and apparatus for trapping ions in a magnetic field | |
JP3523313B2 (en) | Generation of large current beams with low energy used in ion implantation systems | |
JPH0668984A (en) | Tandem type electrostatic accelerator | |
US5089289A (en) | Method of forming thin films | |
Clausnitzer | A source of polarized protons | |
JP3272441B2 (en) | Ion accelerator | |
US3940615A (en) | Wide angle isotope separator | |
Sorokin et al. | Effect of water vapor on the ionic composition of the hydrogen beam-plasma discharge | |
US5866909A (en) | Generator of ribbon-shaped ion beam | |
US3955090A (en) | Sputtered particle flow source for isotopically selective ionization | |
EP4080547A1 (en) | Apparatus and method for ion anyalysis using mass spectrometry | |
Towle et al. | Production of a nanosecond-pulsed He++ beam from a 5.5 MV Van de Graaff | |
RU2106186C1 (en) | Isotope separation apparatus | |
Ketsdever et al. | A Facility to Produce an Energetic, Ground-State Atomic Oxygen Beam for the Simulation of the Low-Earth Orbit Environment | |
JPS62291032A (en) | Surface treatment device | |
JP2897506B2 (en) | Atomic oxygen beam generator | |
JP3543356B2 (en) | Ion beam generator | |
Leung et al. | Multicusp sources for ion beam lithography applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |