JPS63157852A - Method for carburizing ti-6al-4v alloy - Google Patents

Method for carburizing ti-6al-4v alloy

Info

Publication number
JPS63157852A
JPS63157852A JP30376386A JP30376386A JPS63157852A JP S63157852 A JPS63157852 A JP S63157852A JP 30376386 A JP30376386 A JP 30376386A JP 30376386 A JP30376386 A JP 30376386A JP S63157852 A JPS63157852 A JP S63157852A
Authority
JP
Japan
Prior art keywords
temperature
alloy
carburizing
vacuum
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30376386A
Other languages
Japanese (ja)
Other versions
JPH0723527B2 (en
Inventor
Shigeyuki Toda
戸田 重行
Hajime Yoshioka
肇 吉岡
Toshio Shirai
白井 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30376386A priority Critical patent/JPH0723527B2/en
Publication of JPS63157852A publication Critical patent/JPS63157852A/en
Publication of JPH0723527B2 publication Critical patent/JPH0723527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To carburize a Ti-6Al-4V alloy up to a larger depth than the conventional limit depth, by subjecting the alloy to heating from room temp. to a high temp. at a high degree of vacuum, carburization at the high temp. with a carburizing gas, reheating to a higher temp. at the high degree of vacuum and cooling with a rare gas. CONSTITUTION:A Ti-6Al-4V alloy is heated from room temp. to about 1,050 deg.C at such as a high degree of vacuum as >=2X10<-4>Torr. During the heating, the formation of a titanium oxide film is prevented by the vacuum. The alloy is carburized at the high temp. by blowing a carburizing gas such as CH4, the gas is exhausted to the above-mentioned high degree of vacuum and the alloy is heated to >=1,100 deg.C. The heated alloy is held at the temp. for a certain time and cooled by blowing a rare gas such as Ar. This method is applicable to vacuum carburization and hardening for the surface hardening of ordinary Ti-6Al-4V alloy parts such as engine valves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ti−6AL−4V合金の浸炭処理法に関し
、例えばTi−6Al−4V合金製一般部品(エンジン
パμブや特車等)の表面硬化のだめの真空浸炭焼入れ法
等として適用される上記浸炭処理法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a carburizing treatment method for Ti-6AL-4V alloy, for example, general parts made of Ti-6Al-4V alloy (engine pubs, special vehicles, etc.). The present invention relates to the above-mentioned carburizing treatment method, which is applied as a vacuum carburizing and quenching method for surface hardening.

〔従来の技術〕[Conventional technology]

チタン合金に対し、工業的に走った浸炭処理法はなく、
強いて言えば鋼材の場合と同様にRXガス浸次続入れ又
は真空浸炭焼入れが一般的であろう。
There is no industrially successful carburizing method for titanium alloys.
If I had to force it, RX gas immersion followed by subsequent hardening or vacuum carburizing and quenching would be common, as in the case of steel materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来法では浸炭工程に移る前の昇温過程でチタン酸
化膜が生じ、浸炭が著しく妨害され、浸炭深さは200
μm程度が限度である。浸炭鋼製部品で要求される上記
の5〜10倍の浸次深さを得ることはTi−,6Al−
4V合金に関しては従来の浸炭処理技術では殆んど不可
能である。
In the above conventional method, a titanium oxide film is formed during the temperature raising process before proceeding to the carburizing process, which significantly impedes carburizing, and the carburizing depth is 200 mm.
The limit is approximately μm. Ti-, 6Al-
Conventional carburizing techniques are almost impossible for 4V alloys.

そこで本発明では、Ti−6Al−4V合金に関し、上
記限度以上の浸炭深さを得ることのできる浸炭処理法を
提案するものである。
Therefore, the present invention proposes a carburizing treatment method for Ti-6Al-4V alloy that can obtain a carburizing depth exceeding the above limit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決するために鋭意研究を
重ねた結果、■チタンは一度酸化膜を生成すると、鉄の
場合と異なシ、高温水素中にさらされても還元されない
から、浸炭雰囲気に入る前の昇温を従来の真空浸炭炉の
限界である10−2オーダトーμよシも高い真空度によ
シ無酸素状態として昇温中の酸化を防止しく従来の10
−2オ一ダトール程度では酸化は避けられない)、また
■チタンと炭素の二元系状態図では炭素の固溶度は高温
域にあるβ相よシも低温側のα相領域において大きい反
面、拡散は高温の方が容易であることから、高温でもα
相が安定に存在し得る組成にしておくことができれば炭
素の固溶及び内部への拡散を促進することができ、この
高温での安定なα相は2相安定化元素の一つである窒素
を予め表面部に添加しておくことにより発現し、更に■
チタンはメタン等の浸炭性ガスの分解で生じた水素を吸
収し、室温で脆くなるので、浸炭工程後に再度高真空加
熱を施して脱水素化処理を行い、最後に■高温状態から
アルゴンガス等の希ガス元素により急冷(すなわち焼入
れ)を行えばよいとの知見を得、本発明を開発するに至
った。
As a result of extensive research to solve the above problems, the inventors of the present invention found that: 1) Once an oxide film is formed on titanium, unlike iron, it is not reduced even when exposed to high-temperature hydrogen; Before entering the carburizing atmosphere, the temperature is raised to a higher degree of vacuum than the limit of conventional vacuum carburizing furnaces, which is on the order of 10-2μ, and in order to create an oxygen-free state and prevent oxidation during temperature rise.
oxidation is unavoidable at the level of -2-odatol), and in the binary phase diagram of titanium and carbon, the solid solubility of carbon is greater in the alpha phase region at low temperatures than in the beta phase region at high temperatures. , since diffusion is easier at high temperatures, α
If the composition can be maintained so that the phase can exist stably, solid solution of carbon and diffusion into the interior can be promoted. It is expressed by adding to the surface area in advance, and also ■
Titanium absorbs hydrogen generated by the decomposition of carburizing gases such as methane, and becomes brittle at room temperature. Therefore, after the carburizing process, high vacuum heating is performed again to dehydrogenate the titanium, and finally ■ argon gas etc. The present invention was developed based on the finding that quenching (that is, quenching) can be performed using a rare gas element.

すなわち本発明は、 (1)  Ti−6Al−4V合金を2X10−’)−
/L’以上の高真空度下で室温から1050℃前後まで
昇温し、次いで当該温度を維持しながら浸炭性ガス注入
下で浸炭を行い、しかる後再度上記高真空度を復帰して
1100℃以上に昇温し、当該温度に一定時間保持した
後、希ガス元素を注入して冷却することを特徴とするT
i−6Al−4V合金の浸炭処理法 (2)  ’ri−6Al−4V合金を2X10−’)
−ル以上の高真空度下で室温から850℃前後まで昇温
し、次いで窒素注入下において当該温度から1050℃
前後まで昇温し、当該温度に到達した後再度上記真空度
にし、当該温度を維持しながら浸炭性ガス注入下で浸炭
を行い、しかる後もう一度上記高真空度を復帰して11
00℃以上に昇温し、当該温度に一定時間保持した後、
希ガス元素を注入して冷却することを特徴とするTi−
6Al−4V合金の浸炭処理法 に関するものである。
That is, the present invention provides: (1) Ti-6Al-4V alloy 2X10-')-
The temperature was raised from room temperature to around 1050°C under a high vacuum of /L' or more, then carburization was performed while injecting a carburizing gas while maintaining the temperature, and then the high vacuum was returned to 1100°C. T characterized by raising the temperature to a temperature above and maintaining the temperature for a certain period of time, and then cooling by injecting a rare gas element.
Carburizing treatment method for i-6Al-4V alloy (2) 'ri-6Al-4V alloy 2X10-')
- Raise the temperature from room temperature to around 850℃ under a high degree of vacuum of 100℃ or higher, and then raise the temperature from that temperature to around 850℃ under nitrogen injection.
After reaching the temperature, the vacuum level is increased again, carburizing is carried out while maintaining the temperature while carburizing gas is injected, and then the high vacuum level is returned to 11.
After raising the temperature to 00°C or higher and maintaining it at that temperature for a certain period of time,
Ti- characterized by cooling by injecting a rare gas element
The present invention relates to a carburizing method for 6Al-4V alloy.

本発明において、真空度を2X10−4)−ル以上とす
るのは、これ以下であると酸化チタン被膜が生成し、浸
炭を妨害するからである。
In the present invention, the reason why the degree of vacuum is set to 2 x 10-4) or more is because if it is less than this, a titanium oxide film will be formed and interfere with carburization.

また、本発明において、1050℃前後まで先ず昇温す
るのは、当該温度で浸炭が開始するからである。
Further, in the present invention, the reason why the temperature is first raised to around 1050°C is that carburization starts at this temperature.

本発明において、上記昇温途上の850℃前後から窒素
注入を行うのは、余シ低温であると窒素注入の効果が得
られないからである。
In the present invention, the reason why nitrogen is implanted from around 850° C. during the temperature rise is that the effect of nitrogen implantation cannot be obtained if the temperature is too low.

更に本発明において、メタン、エタン、プロパン等の浸
炭性ガス注入による浸炭処理後に、再度上記の高真空度
に復帰させ1100℃以上に昇温するのは、真空度や温
度が充分でないと前記した脱水素を充分に行うことがで
きないからである。
Furthermore, in the present invention, after carburizing treatment by injecting a carburizing gas such as methane, ethane, propane, etc., returning to the above-mentioned high vacuum degree and raising the temperature to 1100 ° C. or higher is not possible due to the insufficient vacuum degree and temperature. This is because sufficient dehydrogenation cannot be performed.

〔作用〕[Effect]

本発明では、2X10−’)−1/以上の高真空度下で
加熱し、直接浸炭(T i +CH4* C2Hs又は
C3H8→Ti[C)+2H2)  開始までの炉気、
すなわち浸炭温度到達までの昇温過程で酸化チタン被膜
の生成を防止し、当該被膜による浸炭の妨害を避ける。
In the present invention, heating is performed under a high vacuum degree of 2X10-')-1/ or more, and the furnace air until the start of direct carburization (T i + CH4 * C2Hs or C3H8 → Ti[C) + 2H2),
That is, it prevents the formation of a titanium oxide film during the temperature raising process until the carburizing temperature is reached, and prevents the film from interfering with carburizing.

また本発明では、上記昇温過程の途上でα相安定元素の
一つである窒素を注入して初期窯化を行わせ、表面部に
おけるα相の安定化を図ると共に、α相温度域を高温側
に移行させ、浸炭し難いβ相での浸炭を回避する。
In addition, in the present invention, nitrogen, which is one of the α-phase stabilizing elements, is injected during the temperature raising process to perform initial kilnization, thereby stabilizing the α-phase at the surface and widening the α-phase temperature range. By shifting to the high temperature side, carburization in the β phase, which is difficult to carburize, is avoided.

更に本発明では2X10−’  トール以上という高真
空度で熱処理するために、無酸素状態で長時間に亘シ浸
次処理を行うことができ、しかも高温化により拡散を速
めることができる。
Further, in the present invention, since the heat treatment is carried out at a high degree of vacuum of 2×10 −' Torr or more, the subsequent immersion treatment can be carried out for a long time in an oxygen-free condition, and diffusion can be accelerated by raising the temperature.

〔実施例〕〔Example〕

(1)直径a4日、長さ160■のTi−6Al−4V
合金焼鈍材を約2X10””)−μ以上の真空度に保た
れた真空炉で室温から1050℃に加熱・昇温しだ後、
メタンを注入しTi+CH4→Ti[C)+2H2の水
素還元雰囲気(200〜400トールうで炭素を直接に
チタンと16時間(H)反応させて浸炭処理した。次い
で、メタンの注入を止め、約2X10−’  ト−IV
まで真空度を上げ、1100℃まで昇温し、2H保持後
、アルゴンガスを注入し、アルゴンガス冷却によシ焼入
れを施した。以下、これを処理材A(本発明例)と称す
る。
(1) Ti-6Al-4V with diameter a4 days and length 160 cm
After heating and raising the temperature of the alloy annealed material from room temperature to 1050°C in a vacuum furnace maintained at a vacuum level of approximately 2 x 10'')-μ or higher,
Methane was injected and carbon was directly reacted with titanium for 16 hours (H) in a hydrogen reducing atmosphere (200 to 400 torr) of Ti + CH4 → Ti[C) + 2H2. Then, the injection of methane was stopped, and about 2 -' To-IV
The degree of vacuum was raised to 1,100° C., and after holding for 2 hours, argon gas was injected, and quenching was performed by cooling with argon gas. Hereinafter, this will be referred to as treated material A (example of the present invention).

(2)上記(1)と同じTi−6AL−4V合金焼鈍材
を、上記(1)と同じ真空炉で室温から850℃に加熱
、昇温し、850℃から1050℃までの約1Hの昇温
中は窒素を注入し、1050℃に到達後は再度2X10
”ト−fL/まで真空度を上げ、メタンを注入しT i
 +CI(4→TiCC]+2H217)水素還元雰囲
気(200〜400 ) −/I/)で炭素を直接にチ
タンと16H反応させて浸炭処理した。そのあとは上記
(1)と同じ処理を施した。以下、これを処理材B(本
発明例)と称する。
(2) The same Ti-6AL-4V alloy annealed material as in (1) above was heated from room temperature to 850°C in the same vacuum furnace as in (1) above, and the temperature was increased from 850°C to 1050°C for about 1 H. Nitrogen is injected during heating, and after reaching 1050℃, 2X10
Raise the vacuum to -fL/, inject methane, and
+CI(4→TiCC]+2H217) Carbon was directly reacted with titanium by 16H in a hydrogen reducing atmosphere (200 to 400 ) -/I/) to carry out carburizing treatment. After that, the same treatment as in (1) above was performed. Hereinafter, this will be referred to as treated material B (example of the present invention).

(3)上記(1)と同じTi−6Al−4V合金焼鈍材
を、約2X10−2 トールの真空度に保たれた真空浸
炭炉で、室温から960℃に加熱、昇温した後、メタン
を注入しT1+cH4→T1〔c〕+2H2の水素還元
雰囲気(400〜600 ) −1v)で炭素を直接に
チタンと16H反応させて浸炭処理した。次いで、メタ
ンの注入を止め、再度約2X10−2 )−/L/まで
真空度を上げ、990℃まで昇温し、2H保持後、油中
冷却を施した。これは鋼の真空浸炭焼入れで適用されて
いる一般の真空浸炭焼入れ条件とはソ同じ処理条件であ
る。以下、これを処理材C(比較例)と称する。
(3) The same Ti-6Al-4V alloy annealed material as in (1) above was heated from room temperature to 960°C in a vacuum carburizing furnace maintained at a vacuum level of approximately 2X10-2 Torr, and then methane was heated. The titanium was injected and carbon was directly reacted with titanium by 16H in a hydrogen reducing atmosphere (400 to 600) -1v) of T1+cH4→T1[c]+2H2 to carry out carburizing treatment. Next, the injection of methane was stopped, the degree of vacuum was raised again to about 2×10 −2 )−/L/, the temperature was raised to 990° C., and after being maintained for 2 hours, cooling was performed in oil. These processing conditions are the same as the general vacuum carburizing and quenching conditions used in vacuum carburizing and quenching of steel. Hereinafter, this will be referred to as treated material C (comparative example).

以上3種の真空浸炭処理材について、浸炭深さの比較を
行うため、断面の1イクロビッヵース硬さを測定した。
For the above three types of vacuum carburized materials, in order to compare the carburization depth, the 1-iclovickers hardness of the cross section was measured.

第1図にその結果を示す。Figure 1 shows the results.

参考のために従来のRXガス浸炭炉焼入れによる場合を
合せて示す。
For reference, the case of quenching in a conventional RX gas carburizing furnace is also shown.

第1図によると、Hv550の有効硬化深さは処理材B
が[180mで最も深く、処理材Aではα6 m 、処
理材Cは0.29mを示し浅い。RXガス浸炭炉焼入れ
ではさらに浅い。
According to Figure 1, the effective hardening depth of Hv550 is
is the deepest at 180 m, α6 m for treated material A, and 0.29 m for treated material C, which is shallow. In RX gas carburizing furnace quenching, it is even shallower.

処理打入が処理材Cに比べて深いことについては、処理
初期の昇温過程での真空度が処理材Cでは2X10−2
)−1であるのに対し処理材Aでは2X10−’)−μ
と高く、材料表面の酸化膜生成がほぼ完全に阻止される
ことにより、浸炭が比較的容易に行われたものと考えら
れる。
Regarding the depth of the treatment injection compared to treated material C, the degree of vacuum during the temperature rising process at the beginning of treatment was 2X10-2 for treated material C.
)-1, whereas in treated material A it is 2X10-')-μ
It is thought that carburization was performed relatively easily because the formation of an oxide film on the material surface was almost completely inhibited.

処理材Bが処理材Aに比べて深いのは、初期窒化によυ
β相に変態することなく、α相のま一高温側において安
定し、炭素の拡散が加速されるためと考えられる。
The reason why treated material B is deeper than treated material A is due to initial nitriding.
This is thought to be because the carbon is stabilized on the high temperature side of the α phase without being transformed into the β phase, and carbon diffusion is accelerated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、浸炭開始温度までの昇温を高真空度下
で行うため、浸炭を著しく妨害する酸化チタン被膜の生
成を防止でき、浸炭を良好に行うことができる。
According to the present invention, since the temperature is raised to the carburization start temperature under a high degree of vacuum, it is possible to prevent the formation of a titanium oxide film that significantly impedes carburization, and it is possible to perform carburization satisfactorily.

また、本発明において、上記の昇温途上で窒素ガス注入
を行うため、被処理材の表面部に高温でも安定してα相
を存在させることができ、これによシ高温域で炭素固溶
度を上げることができると共に、高温であるために炭素
の内部拡散を促進することができる。
In addition, in the present invention, since nitrogen gas is injected during the above-mentioned heating process, the α phase can be stably present on the surface of the material to be treated even at high temperatures. The temperature can be increased, and the internal diffusion of carbon can be promoted due to the high temperature.

これらの点よシ、本発明ではTi−6Al−4V合金の
浸炭深さに関し従来の限界以上に深くすることができる
In addition to these points, in the present invention, the carburization depth of the Ti-6Al-4V alloy can be made deeper than the conventional limit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による浸炭深さを従来技術によるそれと
比較して示した図表である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a chart showing the carburizing depth according to the present invention in comparison with that according to the prior art. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (2)

【特許請求の範囲】[Claims] (1)Ti−6Al−4V合金を2×10^−^4トー
ル以上の高真空度下で室温から1050℃前後まで昇温
し、次いで当該温度を維持しながら浸炭性ガス注入下で
浸炭を行い、しかる後再度上記高真空度を復帰して11
00℃以上に昇温し、当該温度に一定時間保持した後、
希ガス元素を注入して冷却することを特徴とする Ti−6Al−4V合金の浸炭処理法。
(1) Ti-6Al-4V alloy was heated from room temperature to around 1050°C under a high vacuum of 2 x 10^-^4 Torr or higher, and then carburized while maintaining the temperature while injecting carburizing gas. After that, restore the high vacuum level again to 11
After raising the temperature to 00°C or higher and maintaining it at that temperature for a certain period of time,
A method for carburizing a Ti-6Al-4V alloy, characterized by injecting a rare gas element and cooling.
(2)Ti−6Al−4V合金を2×10^−^4トー
ル以上の高真空度下で室温から850℃前後まで昇温し
、次いで窒素注入下において当該温度から1050℃前
後まで昇温し、当該温度に到達した後再度上記真空度に
し、当該温度を維持しながら浸炭性ガス注入下で浸炭を
行い、しかる後もう一度上記高真空度を復帰して 1100℃以上に昇温し、当該温度に一定時間保持した
後、希ガス元素を注入して冷却することを特徴とするT
i−6Al−4V合金の浸炭処理法。
(2) Ti-6Al-4V alloy was heated from room temperature to around 850°C under a high vacuum of 2×10^-^4 Torr or higher, and then heated from that temperature to around 1050°C under nitrogen injection. After reaching the temperature, the vacuum level is set to the above level again, carburizing is carried out under injection of carburizing gas while maintaining the temperature level, and then the high vacuum level is returned to the above level and the temperature is raised to 1100°C or higher, and the temperature is increased to 1100°C or higher. After holding the temperature for a certain period of time, a rare gas element is injected and cooled.
Carburizing treatment method for i-6Al-4V alloy.
JP30376386A 1986-12-22 1986-12-22 Carburizing method for Ti-6Al-4V alloy Expired - Lifetime JPH0723527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30376386A JPH0723527B2 (en) 1986-12-22 1986-12-22 Carburizing method for Ti-6Al-4V alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30376386A JPH0723527B2 (en) 1986-12-22 1986-12-22 Carburizing method for Ti-6Al-4V alloy

Publications (2)

Publication Number Publication Date
JPS63157852A true JPS63157852A (en) 1988-06-30
JPH0723527B2 JPH0723527B2 (en) 1995-03-15

Family

ID=17924980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30376386A Expired - Lifetime JPH0723527B2 (en) 1986-12-22 1986-12-22 Carburizing method for Ti-6Al-4V alloy

Country Status (1)

Country Link
JP (1) JPH0723527B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267032A (en) * 1988-04-19 1989-10-24 Mitsubishi Monsanto Chem Co Transparent plastic film excellent in gas barrier property
FR2763604A1 (en) * 1997-05-23 1998-11-27 Innovatique Sa PROCESS FOR THE FORMATION, BY A THERMOCHEMICAL TREATMENT WITHOUT PLASMA, OF A SURFACE LAYER HAVING A HIGH HARDNESS
EP0987347A1 (en) * 1997-01-16 2000-03-22 General Electric Company Thermal barrier coating system and method therefor
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
EP1980640A2 (en) 2007-04-10 2008-10-15 China University of Mining and Technology Surface carburization technique of medical titanium alloy femoral head in total hip arthroplasty

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267032A (en) * 1988-04-19 1989-10-24 Mitsubishi Monsanto Chem Co Transparent plastic film excellent in gas barrier property
EP0987347A1 (en) * 1997-01-16 2000-03-22 General Electric Company Thermal barrier coating system and method therefor
FR2763604A1 (en) * 1997-05-23 1998-11-27 Innovatique Sa PROCESS FOR THE FORMATION, BY A THERMOCHEMICAL TREATMENT WITHOUT PLASMA, OF A SURFACE LAYER HAVING A HIGH HARDNESS
EP0885980A2 (en) * 1997-05-23 1998-12-23 Innovatique S.A. Process for forming a superficial layer having a high hardness by plasma-free thermochemical treatment
EP0885980A3 (en) * 1997-05-23 2000-10-11 Innovatique S.A. Process for forming a superficial layer having a high hardness by plasma-free thermochemical treatment
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
JP4641091B2 (en) * 2000-09-11 2011-03-02 清隆 松浦 Method of forming carbonitride layer on metal material surface and titanium-based metal material having carbonitride layer on surface
EP1980640A2 (en) 2007-04-10 2008-10-15 China University of Mining and Technology Surface carburization technique of medical titanium alloy femoral head in total hip arthroplasty
EP1980640A3 (en) * 2007-04-10 2010-06-16 China University of Mining and Technology Surface carburization technique of medical titanium alloy femoral head in total hip arthroplasty

Also Published As

Publication number Publication date
JPH0723527B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US8696830B2 (en) Stainless steel carburization process
EP0242089B1 (en) Method of improving surface wear resistance of a metal component
US4881983A (en) Manufacture of corrosion resistant components
US20100116377A1 (en) Hybrid carburization with intermediate rapid quench
JPS63157852A (en) Method for carburizing ti-6al-4v alloy
JP2584551B2 (en) Surface hardening method for titanium material
JPS60165370A (en) Nitriding treatment of stainless steel
JPH08104970A (en) Method of surface hardening treatment for titanium material
JPH10259421A (en) Method for heat-treating machine parts
JP2971456B1 (en) Surface hardening method for steel
JP2001049347A (en) Production of endless metallic belt and heat treating device
JPH0545665B2 (en)
KR100522919B1 (en) Low distortion treatment method of high speed tool steel with corrosion-resistance and abrasion-resistance
JPH03260048A (en) Rapid gas nitriding method
RU2134726C1 (en) Method of hardening of steel parts
JPH10280031A (en) Method for hardening carburized surface of carbon steel
JP2018028113A (en) Method for manufacturing steel material
JP2803108B2 (en) Heat treatment method for steel
JP3448608B2 (en) Nitriding method
JP3429870B2 (en) Surface hardening method for sintered parts
KR890001031B1 (en) Metal surface treatment method by glow discharge
JP2983793B2 (en) Gas high carbon carburizing method for steel parts
Grube et al. Carbonitriding at 1050° C in a Glow-discharge Plasma
SU630297A1 (en) Method of heat treatment of nitrided stainless steel
JPH10195612A (en) Method for hardening metallic ornamental member