JPS63157467A - Hetero junction bipolar transistor - Google Patents
Hetero junction bipolar transistorInfo
- Publication number
- JPS63157467A JPS63157467A JP30366886A JP30366886A JPS63157467A JP S63157467 A JPS63157467 A JP S63157467A JP 30366886 A JP30366886 A JP 30366886A JP 30366886 A JP30366886 A JP 30366886A JP S63157467 A JPS63157467 A JP S63157467A
- Authority
- JP
- Japan
- Prior art keywords
- emitter
- layer
- base
- electrodes
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 125000005842 heteroatom Chemical group 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 14
- 230000003071 parasitic effect Effects 0.000 abstract description 9
- 238000005530 etching Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 61
- 239000012535 impurity Substances 0.000 description 16
- 239000011229 interlayer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
〈産業上の利用分野)
本発明は、エミッタ領域にベース領域よりバンドギャッ
プの大きい半導体材料を用いたヘテロ接合バイポーラト
ランジスタに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] <Industrial Application Field> The present invention relates to a heterojunction bipolar transistor using a semiconductor material having a larger bandgap in the emitter region than in the base region.
(従来の技術)
エミッタ領域をベース領域よりバンドギャップの大きい
半導体材料で構成するヘテロ接合バイポーラトランジス
タは、ホモ接合バイポーラトランジスタに比べて多くの
利点を有することが知られている。これらの利点を要約
すると次の通りである。(Prior Art) It is known that a heterojunction bipolar transistor in which the emitter region is made of a semiconductor material with a larger bandgap than the base region has many advantages over a homojunction bipolar transistor. These advantages are summarized as follows.
■ ベースからエミッタへのキャリア注入を抑制できる
ため、エミッタ領域の不純物濃度とベース領域の不純物
濃度を独立に設定しても、高いエミッタ注入効率が得ら
れる。(2) Since carrier injection from the base to the emitter can be suppressed, high emitter injection efficiency can be obtained even if the impurity concentration in the emitter region and the impurity concentration in the base region are set independently.
■ ■の結果、ベース領域の不純物濃度を高くすること
ができ、従ってベース層厚を薄クシつつベース抵抗を下
げることができる。(2) As a result of (2), the impurity concentration in the base region can be increased, and the base resistance can therefore be lowered while reducing the base layer thickness.
■ エミッタ領域の不純物濃度を下げることができるた
め、エミッタ接合容邑を小さくすることができる。■ Since the impurity concentration in the emitter region can be lowered, the emitter junction volume can be made smaller.
これらの利点のために、ヘテロ接合バイボーラトランジ
スタは高周波特性、スイッチング特性に優れており、マ
イクロ波用トランジスタや高速論理用トランジスタとし
て有望視されている。マイクロ波用素子としてのへテロ
接合バイポーラトランジスタのより一層の高性能化を図
るためには、素子を半絶縁性基板上に形成することが望
ましい。Because of these advantages, heterojunction bibolar transistors have excellent high frequency characteristics and switching characteristics, and are considered promising as microwave transistors and high-speed logic transistors. In order to further improve the performance of a heterojunction bipolar transistor as a microwave device, it is desirable to form the device on a semi-insulating substrate.
これにより素子の各領域および電極パッドと基板との間
の容量を低減することができるからである。This is because the capacitance between each region of the element and between the electrode pad and the substrate can be reduced.
しかしながら、半絶縁性基板を用いてマイクロ波用へテ
ロ接合バイポーラトランジスタを構成した場合、コレク
タ、ベースおよびエミッタの3端子電橿を全て基板表面
に形成しなければならないため、電極配線構造が複雑に
なる。即ち通常、マイクロ波トランジスタでは、エミッ
タ電極とベース電極は複数個に分割しての歯状に組合わ
せることが行なわれる。例えばn+型半導体基板を用い
てこの基板裏面にコレクタ電極を設ける従来の構造では
、基板表面に配設するのはエミッタ電極とベース電極の
2種であるから、これらが複数本ずつに分割されていて
も、それぞれを共通接続して、エミッタ電極パッドおよ
びベース電極パッドを1個ずつ設けることは容易である
。しかし、コレクタ、ベースおよびエミッタの3つの電
極が全て基板表面に配設されると、エミッタ電極とベー
ス電極をそれぞれ複数本に分割して組合わせた場合に、
分割された電極を共通接続する配線は従来のように一層
のみで形成しようとすると、配線長が非常に長いものと
なり、寄生容聞、寄生インダクタンスおよび抵抗が大き
くなる。これは、トランジスタの高周波特性を損う。長
い配線長を避けようとすると、エミッタやベースの電極
パッドを複数個に分割配置しなければならない。このこ
とも寄生容量の増大につながり、素子の高性能化を妨げ
る。However, when constructing a microwave heterojunction bipolar transistor using a semi-insulating substrate, the three-terminal wires of the collector, base, and emitter must all be formed on the substrate surface, making the electrode wiring structure complicated. Become. That is, in a microwave transistor, the emitter electrode and the base electrode are usually divided into a plurality of parts and combined into a tooth shape. For example, in the conventional structure where an n+ type semiconductor substrate is used and a collector electrode is provided on the back surface of the substrate, there are two types of electrodes, an emitter electrode and a base electrode, arranged on the surface of the substrate, so these are divided into multiple electrodes. However, it is easy to connect them in common and provide one emitter electrode pad and one base electrode pad. However, when all three electrodes, the collector, base, and emitter, are arranged on the substrate surface, when the emitter electrode and the base electrode are each divided into multiple pieces and combined,
If the wiring that commonly connects the divided electrodes is formed using only one layer as in the conventional method, the wiring length will be extremely long, and the parasitic capacity, parasitic inductance, and resistance will increase. This impairs the high frequency characteristics of the transistor. In order to avoid long wiring lengths, the emitter and base electrode pads must be divided into multiple parts. This also leads to an increase in parasitic capacitance, which impedes improvement in the performance of the element.
(発明が解決しようとする問題点)
以上のようにマイクロ波用素子としてのへテロ接合トラ
ンジスタは、高性能化のためには半絶縁性基板を用いる
ことが望ましいが、半絶縁性基板を用いると電極配線が
複雑になり、これが高性能化を妨げるという問題があっ
た。(Problems to be Solved by the Invention) As described above, it is desirable to use a semi-insulating substrate in a heterojunction transistor as a microwave device in order to improve performance; There was a problem in that the electrode wiring became complicated, which hindered high performance.
本発明は上記の点の鑑み、半絶縁性基板を用いて高性能
化を図ったヘテロ接合トランジスタを提供することを目
的とする。In view of the above points, an object of the present invention is to provide a heterojunction transistor with improved performance using a semi-insulating substrate.
[発明の構成]
(問題点を解決するための手段)
本発明にかがるへテロ接合トランジスタは、半絶縁性基
板上に複数個に分割形成された第1導電型の第1半導体
層と、各第1半導体層上に形成されたベース層となる第
2導電型の第2半導体層と、各第2半導体層上に分割形
成された第1導電型の第3半導体層とを備え、第1半導
体層をコレクタまたはエミッタとし、エミッタ電極とベ
ース電極とがそれぞれ複数本ずつ櫛歯状に組合わせて構
成され、且つ複数本ずつのエミッタ電極を共通接続する
配線とベース電極を共通接続する配線とを交差配線構造
としたことを特徴とする。[Structure of the Invention] (Means for Solving the Problems) A heterojunction transistor according to the present invention includes a first semiconductor layer of a first conductivity type that is divided into a plurality of pieces and formed on a semi-insulating substrate. , comprising a second conductivity type second semiconductor layer serving as a base layer formed on each first semiconductor layer, and a first conductivity type third semiconductor layer dividedly formed on each second semiconductor layer, The first semiconductor layer is used as a collector or an emitter, a plurality of emitter electrodes and a base electrode are each combined in a comb-like shape, and the base electrode is commonly connected to a wiring that commonly connects each of the plurality of emitter electrodes. It is characterized by having a cross-wiring structure with the wiring.
く作用)
この様な構成とすれば、複数個に分割されたエミッタ、
コレクタおよびベースの各電極を長い配線を引回すこと
なくそれぞれ一つのパッドに共通に引出すことができる
。従って奇生言回や寄生インダクタンスの増大、配線抵
抗の増大が防止され、優れたマイクロ波特性を示すペテ
ロ接合バイポーラトランジスタを実現することができる
。With this kind of configuration, the emitter divided into multiple parts,
Each of the collector and base electrodes can be commonly drawn out to one pad without running long wiring. Therefore, an increase in parasitic inductance and wiring resistance is prevented, and a Peter junction bipolar transistor exhibiting excellent microwave characteristics can be realized.
(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
第1図(a)(b)は、AffiGaAs/GaAS系
を用いた本発明の一実施例のへテロ接合トランジスタを
示す平面図とそのA−A’断面図である。このトランジ
スタを製造するには、半絶縁性GaAS基板1上に先ず
、順次半導体層をエピタキシャル成長させることが必要
である。このエピタキシャル成長法としては、例えば分
子線エピタキシャル法(MBE法)または有機金波気相
成長法(MOCVD法)等を用いるとよい。具体的な製
造条件を工程順に説明すると、先ず基板1上に、Slを
高濃度に含む第1コレクタ層となるn9型GaASII
2.次いで第2コレクタ饗となるn型GaAs層3(第
1半導体層)をエピタキシャル成長させる。次に、不純
物として例えばBeを含むベース領域となるp+型Ga
As層4(第2半導体層)をエピタキシャル成長させ、
続いて不純物として$1を含む広バンドギャップのエミ
ッタ領域となるn型AcGaAS層5(第3半導体層)
、更にn+型のエミッタ・キャップ層となるn1型Ga
AS層6を順次成長させる。例えば、n+型GaASI
!2は不純物濃度2×1018 /、、t3.厚さLc
zmとし、n型GaAs層3は不純物濃度1X10”
/cm3.厚さ1μmとする。ベース領域のp+型Ga
AS層4は不純物濃度lXl0” /as3.厚さ20
00人とする。エミッタとなるAgGaASI5は不純
物濃度3X 10’ ” /ctn3.厚さ1500人
とし、キャップ層となるn1型GaAS層6は不純物濃
度5x 10” /ax3.厚さ1000人としている
。AnGaAsWI5はこの実施例ではへ2組成比0.
3としている。FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along line AA' of a heterojunction transistor according to an embodiment of the present invention using an AffiGaAs/GaAS system. To manufacture this transistor, it is first necessary to sequentially epitaxially grow semiconductor layers on the semi-insulating GaAS substrate 1. As this epitaxial growth method, for example, a molecular beam epitaxial method (MBE method) or an organic gold wave vapor phase epitaxy method (MOCVD method) may be used. To explain the specific manufacturing conditions in the order of steps, first, an n9 type GaASII layer is formed on the substrate 1, which will become the first collector layer containing a high concentration of Sl.
2. Next, an n-type GaAs layer 3 (first semiconductor layer) which will become a second collector layer is epitaxially grown. Next, p+ type Ga is used as the base region containing, for example, Be as an impurity.
Epitaxially growing an As layer 4 (second semiconductor layer),
Next, there is an n-type AcGaAS layer 5 (third semiconductor layer) which becomes a wide bandgap emitter region containing $1 as an impurity.
, and further n1 type Ga which becomes an n+ type emitter/cap layer.
The AS layer 6 is grown sequentially. For example, n+ type GaASI
! 2 is the impurity concentration 2×1018/, t3. Thickness Lc
zm, and the n-type GaAs layer 3 has an impurity concentration of 1×10”
/cm3. The thickness is 1 μm. p+ type Ga in the base region
The AS layer 4 has an impurity concentration lXl0”/as3.Thickness 20
00 people. The AgGaASI layer 5 serving as the emitter has an impurity concentration of 3x 10''/ctn3.thickness of 1500 layers, and the n1 type GaAS layer 6 serving as the cap layer has an impurity concentration of 5x 10''/ax3. The thickness is assumed to be 1000 people. In this example, AnGaAsWI5 has a he2 composition ratio of 0.
It is set at 3.
この様に形成されたエピタキシャル・ウェーハを先ずエ
ミッタ領域を残しベースおよびコレクタのコンタクト形
成のためメサエッチングする。更に素子分離のため基板
1に達するまでメサ・エツチングする。コレクタ領域と
なるn型GaAS層3はこの実施例では2つに分割され
、それぞれに形成されたベース領域となるp型GaAS
ff4上に2個ずつのエミッタ領域となるn型
AnGaAS層6とn+型GaAs17が分割形成され
る。この後コレクタ電極8.エミツタ電准7およびベー
ス電極9を形成する。この実施例では、エミッタ電極7
を合計4本、こへとIiIm状に噛合うようにベース電
極9を6本配設し、コレクタ電極8を3本配設している
。そしてエミッタ電極7を共通接続するエミッタ配線1
0、コレクタ電極8を共通接続するコレクタ配線11お
よびベース電極9を共通接続するベース配[1i12を
配設している。これらの配線は例えば、Ti/Pt/A
uの3層構造を用いた2層配線として、ベース配線12
とエミッタ配J110を交差させている。The epitaxial wafer thus formed is first subjected to mesa etching to form base and collector contacts, leaving an emitter region. Further, mesa etching is performed until reaching the substrate 1 for element isolation. In this embodiment, the n-type GaAS layer 3 which becomes the collector region is divided into two parts, and the p-type GaAS layer 3 which becomes the base region is formed in each part.
Two n-type AnGaAS layers 6 and two n+-type GaAs layers 17, each serving as two emitter regions, are formed on ff4. After this, collector electrode 8. An emitter terminal 7 and a base electrode 9 are formed. In this embodiment, emitter electrode 7
A total of four base electrodes 9 and three collector electrodes 8 are disposed so as to mesh with each other in a shape of IiIm. And emitter wiring 1 that commonly connects emitter electrodes 7
0, a collector wiring 11 that commonly connects the collector electrodes 8 and a base wiring [1i12 that commonly connects the base electrodes 9] are provided. These wirings are made of, for example, Ti/Pt/A
The base wiring 12 is a two-layer wiring using the three-layer structure of u.
and the emitter arrangement J110 intersect.
具体的には例えば、電極が形成された後、5iOzll
1等の層間絶縁膜を形成し、これにコンタクト孔を開け
て第111配線によりベース配線12とコレクタ配線1
1を形成し、この後層間絶縁膜を形成してこれにコンタ
クト孔を開けてベース配線12と交差する第2層配線に
よりエミッタ配線10を形成する。Specifically, for example, after the electrode is formed, 5iOzll
A first grade interlayer insulating film is formed, a contact hole is formed in this, and the base wiring 12 and the collector wiring 1 are connected by the 111th wiring.
After that, an interlayer insulating film is formed, a contact hole is formed therein, and an emitter wiring 10 is formed by a second layer wiring that intersects with the base wiring 12.
この実施例では、エミッタ配mioとベース配線12の
交差部の面積は小さく、この配線交差に伴う奇生容量の
増大は小さい。従来のように1層配線のみで3端子の電
極を共通接続する配線を形成する場合に比べると、寄生
容量、奇生インダクタンスは十分小ざく、また抵抗も小
さい。実際この実施例の構造でマイクロ波へテロ接合バ
イポーラトランジスタを試作した結果、遮断周波数fT
= 20 G Hz、最大周波数fvAx−400)t
zが得られた。またこの素子を用いてC級増幅器を構成
したところ、15GHzで出力1W、利得5dBという
優れた特性が得られた。In this embodiment, the area of the intersection between the emitter interconnection Mio and the base interconnection 12 is small, and the increase in parasitic capacitance caused by this interconnection intersection is small. The parasitic capacitance and parasitic inductance are sufficiently small, and the resistance is also small, compared to the conventional case of forming a wiring that commonly connects the electrodes of three terminals using only one layer of wiring. In fact, as a result of prototyping a microwave heterojunction bipolar transistor with the structure of this example, the cutoff frequency fT
= 20 GHz, maximum frequency fvAx - 400)t
z was obtained. When a class C amplifier was constructed using this element, excellent characteristics such as an output of 1 W and a gain of 5 dB at 15 GHz were obtained.
第2図(a)(b)は本発明の他の実施例のへテロ接合
バイポーラトランジスタを示す平面図とそのA−A’断
面図である。先の実施例はエミッタを上部に設けたもの
であるが、この実施例ではコレクタを上部に設けた所謂
コレクタ・トップ構造としている。半絶縁性GaAs基
板1上に高濃度エミツタ層となるn“型GaAS層2を
成長させ、この上に広バンドギャップのエミツタ層とな
るn型AnGaAs層(第1半導体H)13、次いでベ
ース層となるρ1型GaAsff (第2半導体層)1
4、コレクタ層となるn型GaAsl1I(第3半、導
体層)15、更にコレクタ・キャップ層となるn+型G
aAs層16を順次成長させている。n+型GaAS層
12は不純物濃度3×10” /an” 、厚さ1μm
、n!MAff’GaAs1113は不純物濃度lXl
0” /as3.厚さ5000人、p+型GaAS層1
4は不純物濃度1X1019/cttr3.nざ100
0人、n型GaAS1115は不純物濃度1X10”/
Cr113゜厚さ5000人、n” GaAs層16は
不純物濃度5X101a/α3.厚さ1000人である
。FIGS. 2(a) and 2(b) are a plan view and a sectional view taken along line AA' of a heterojunction bipolar transistor according to another embodiment of the present invention. In the previous embodiment, the emitter was provided on the top, but in this embodiment, the collector is provided on the top, so-called a collector top structure. On a semi-insulating GaAs substrate 1, an n" type GaAs layer 2 which will become a high concentration emitter layer is grown, and on top of this an n type AnGaAs layer (first semiconductor H) 13 which will become a wide bandgap emitter layer, and then a base layer. ρ1 type GaAsff (second semiconductor layer) 1
4. N-type GaAsl1I (third half, conductor layer) 15 which becomes the collector layer, and n+-type G which becomes the collector/cap layer
The aAs layer 16 is grown sequentially. The n+ type GaAS layer 12 has an impurity concentration of 3×10"/an" and a thickness of 1 μm.
, n! MAff'GaAs1113 has an impurity concentration lXl
0"/as3. Thickness 5000, p+ type GaAS layer 1
4 is an impurity concentration of 1×1019/cttr3. nza100
0 people, n-type GaAS1115 has an impurity concentration of 1×10”/
The n'' GaAs layer 16 has an impurity concentration of 5×101a/α3 and a thickness of 1000 μm.
この様なエピタキシャル・ウェーハを形成した後、先ず
コレクタ領域を残してエツチングを行って複数に分割さ
れたコレクタa域を形成し、次いでベースコンタクトの
ためイオン注入を行なって外部ベース層17を形成する
。この後、n型AJ2GaAS層13を分割するn+型
GaAs層2に達するメサ・エツチングと素子分離のた
めの基板1に達するメサ・エツチングの2段階のメサ・
エツチングを行なう。そしてコレクタ電極18゜ベース
電極19およびエミッタ電極20をそれぞれ複数本ずつ
図示のように形成する。この実施例ではベース電極19
は基板に埋め込まれた状態としている。そして層間絶縁
膜を形成した後、第1層配線層によりエミッタ配線21
とコレクタ配線22を形成し、再度層間絶縁膜を形成し
て第2層配線層によりベース配線23を形成する。先の
実施例と同様にこの実施例においてもベース配線23と
エミッタ配線21とは交差配線となっている。After forming such an epitaxial wafer, etching is first performed leaving the collector region to form a plurality of divided collector regions a, and then ion implantation is performed for base contact to form the external base layer 17. . After this, two steps of mesa etching are performed: mesa etching to reach the n+ type GaAs layer 2 to divide the n type AJ2 GaAS layer 13, and mesa etching to reach the substrate 1 for element isolation.
Perform etching. Then, a plurality of collector electrodes, a plurality of base electrodes 19, and a plurality of emitter electrodes 20 are formed as shown in the figure. In this embodiment, the base electrode 19
is embedded in the substrate. After forming the interlayer insulating film, the emitter wiring 21 is formed using the first wiring layer.
Then, a collector wiring 22 is formed, an interlayer insulating film is formed again, and a base wiring 23 is formed using a second wiring layer. Similarly to the previous embodiment, in this embodiment as well, the base wiring 23 and the emitter wiring 21 are intersecting wirings.
この実施例の素子においても先の実施例の素子とほぼ同
程度の優れた性能を示した。The device of this example also exhibited excellent performance almost on the same level as the device of the previous example.
本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.
例えばヘテロ接合を構成する半導体材料としてGaAS
とAffGaAsを用い、AffiGaAsはA2組成
比0.3としたが、必要に応じて他の組成比を用いても
よい。またへテロ接合を構成する半導体材料の組合わせ
として、GaASとI nGaAs、AffiGaAs
とI nGaAS、InPとInGaAs、lnPとI
nGaAsP、GaAsとGeなどを用いた場合にも、
本発明は有効である。For example, GaAS is used as a semiconductor material constituting a heterojunction.
Although the A2 composition ratio of AffiGaAs was set to 0.3, other composition ratios may be used as necessary. In addition, as a combination of semiconductor materials constituting a heterojunction, GaAS, InGaAs, AffiGaAs
and I nGaAS, InP and InGaAs, lnP and I
Even when using nGaAsP, GaAs and Ge, etc.
The present invention is effective.
[発明の効果]
以上述べたように本発明によれば、エミッタ電極とベー
ス電極をそれぞれ複数本ずつ組合わせて配設する構造の
へテロ接合バイポーラトランジスタにおいて、エミッタ
配線とベース配線を交差配線構造とすることにより、マ
イクロ波用素子として優れたヘテロ接合トランジスタが
得られる。[Effects of the Invention] As described above, according to the present invention, in a heterojunction bipolar transistor having a structure in which a plurality of emitter electrodes and a plurality of base electrodes are arranged in combination, the emitter wiring and the base wiring are arranged in a cross wiring structure. By doing so, a heterojunction transistor excellent as a microwave device can be obtained.
第1図(a)(b)は本発明の一実施例のへテロ接合ト
ランジスタを示す平面図とそのA−A’断面図、第2図
(a)(b)は他の実施例のへテロ接合バイポーラトラ
ンジスタを示す平面図とそのA−A’断面図である。
1・・・半絶縁性GaAS基板、2・・・n+型GaA
S層、3−n型GaAS層(コレクタ領域)、4−o+
型GaAS層(ベース領域)、5・・・n型AffiG
aAs層(エミッタ領域)、6・・・エミ・キャップ層
、7・・・エミッタ電極、8・・・コレクタ電極、9・
・・ベース電極、10・・・エミッタ配線、11・・・
コレクタ配線、12・・・ベース配線、13・・・n型
AnGaAs層(エミッタ領域) 、14−・・p+型
GaAs1 (ベース領域)、15・n型GaA9m
(:lレクタ領域)、16−n+型GaAS層(コレク
タ・キャップ層)、17・・・外部ベース領域、18・
・・コレクタ電極、19・・・ベース電極、20・・・
エミッタ電極、21・・・エミッタ配線、22・・・コ
レクタ配線、23・・・ベース配線。
出願人代理人 弁理士 鈴江武彦
第 1 口FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along line AA' of a heterojunction transistor according to one embodiment of the present invention, and FIGS. FIG. 1 is a plan view and a cross-sectional view taken along line AA' of a telojunction bipolar transistor. 1... Semi-insulating GaAS substrate, 2... n+ type GaA
S layer, 3-n-type GaAS layer (collector region), 4-o+
type GaAS layer (base region), 5...n type AffiG
aAs layer (emitter region), 6... emitter cap layer, 7... emitter electrode, 8... collector electrode, 9...
...Base electrode, 10...Emitter wiring, 11...
Collector interconnection, 12...Base interconnection, 13...n-type AnGaAs layer (emitter region), 14-...p+ type GaAs1 (base region), 15.n-type GaA9m
(:l collector region), 16-n+ type GaAS layer (collector/cap layer), 17... external base region, 18...
...Collector electrode, 19...Base electrode, 20...
Emitter electrode, 21... Emitter wiring, 22... Collector wiring, 23... Base wiring. Applicant's agent Patent attorney Takehiko Suzue No. 1
Claims (1)
導電型の第1半導体層と、各第1半導体層上に形成され
た第2導電型の第2半導体層と、各第2半導体層上に複
数個に分割されて形成された第1導電型の第3半導体層
とを備え、第1半導体層をコレクタまたはエミッタとし
、且つエミッタ・ベース間接合にヘテロ接合を用いたヘ
テロ接合バイポーラトランジスタにおいて、それぞれ複
数のエミッタ電極とベース電極が交互に配列形成され、
これらエミッタ電極を共通接続する配線とベース電極を
共通接続する配線を交差させたことを特徴とするヘテロ
接合バイポーラトランジスタ。A first plate formed on a semi-insulating substrate by being divided into a plurality of pieces.
A first semiconductor layer of a conductivity type, a second semiconductor layer of a second conductivity type formed on each first semiconductor layer, and a first conductivity type divided into a plurality of pieces formed on each second semiconductor layer. In a heterojunction bipolar transistor comprising a third semiconductor layer, the first semiconductor layer is the collector or emitter, and a heterojunction is used as the emitter-base junction, a plurality of emitter electrodes and base electrodes are alternately arranged. is,
A heterojunction bipolar transistor characterized in that the wiring that commonly connects these emitter electrodes and the wiring that commonly connects the base electrodes intersect.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30366886A JPS63157467A (en) | 1986-12-22 | 1986-12-22 | Hetero junction bipolar transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30366886A JPS63157467A (en) | 1986-12-22 | 1986-12-22 | Hetero junction bipolar transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63157467A true JPS63157467A (en) | 1988-06-30 |
Family
ID=17923787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30366886A Pending JPS63157467A (en) | 1986-12-22 | 1986-12-22 | Hetero junction bipolar transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63157467A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0391244A (en) * | 1989-09-02 | 1991-04-16 | Fuji Electric Co Ltd | Vertical bipolar transistor for integrated circuit |
JPH03133140A (en) * | 1989-10-19 | 1991-06-06 | Nec Corp | Manufacture of heterojunction bipolar transistor and circuit thereof |
JP2004260364A (en) * | 2003-02-25 | 2004-09-16 | Renesas Technology Corp | Semiconductor device, high output electric power amplifying device and personal computer card |
-
1986
- 1986-12-22 JP JP30366886A patent/JPS63157467A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0391244A (en) * | 1989-09-02 | 1991-04-16 | Fuji Electric Co Ltd | Vertical bipolar transistor for integrated circuit |
JPH03133140A (en) * | 1989-10-19 | 1991-06-06 | Nec Corp | Manufacture of heterojunction bipolar transistor and circuit thereof |
JP2004260364A (en) * | 2003-02-25 | 2004-09-16 | Renesas Technology Corp | Semiconductor device, high output electric power amplifying device and personal computer card |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030081094A (en) | A semiconductor device and a method of manufacturing the same, and power amplifier module | |
US5329145A (en) | Heterojunction bipolar transistor and its integration method | |
KR950014277B1 (en) | Hetero junction bipolar transistor | |
JP3078420B2 (en) | Semiconductor device | |
JPS607771A (en) | Semiconductor device | |
JPH0650764B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS63157467A (en) | Hetero junction bipolar transistor | |
US4807008A (en) | Static memory cell using a heterostructure complementary transistor switch | |
EP0197424A2 (en) | Process of fabricating a heterojunction bipolar transistor | |
JPS59103389A (en) | Superconductive element and manufacture thereof | |
JPS60175450A (en) | Hetero junction bipolar semiconductor element | |
Gruhle et al. | Collector-up SiGe heterojunction bipolar transistors | |
JPH11251328A (en) | Compound semiconductor device | |
JPS59181060A (en) | Semiconductor device | |
JP2623655B2 (en) | Bipolar transistor and method of manufacturing the same | |
JPS63272076A (en) | Heterojunction type bipolar transistor and its manufacture | |
JP2976664B2 (en) | Manufacturing method of bipolar transistor | |
JPS63160377A (en) | Heterojunction bipolar transistor | |
JPS62104168A (en) | Heterojunction bipolar transistor | |
JPH04130733A (en) | Semiconductor device | |
JPS63245958A (en) | Hetero junction bipolar transistor | |
JPS61110467A (en) | Semiconductor device | |
JPS62159464A (en) | Manufacture of compound semiconductor device | |
JPH0575169B2 (en) | ||
JPS62185370A (en) | Hetero junction bipolar transistor |