JPS6315741B2 - - Google Patents

Info

Publication number
JPS6315741B2
JPS6315741B2 JP17612486A JP17612486A JPS6315741B2 JP S6315741 B2 JPS6315741 B2 JP S6315741B2 JP 17612486 A JP17612486 A JP 17612486A JP 17612486 A JP17612486 A JP 17612486A JP S6315741 B2 JPS6315741 B2 JP S6315741B2
Authority
JP
Japan
Prior art keywords
pressure
wafer
semiconductor substrate
gas
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17612486A
Other languages
Japanese (ja)
Other versions
JPS62229845A (en
Inventor
Takanori Hayafuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8320979A external-priority patent/JPS567436A/en
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17612486A priority Critical patent/JPS62229845A/en
Publication of JPS62229845A publication Critical patent/JPS62229845A/en
Publication of JPS6315741B2 publication Critical patent/JPS6315741B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は、GaAs等の−族化合物半導体基
板上に気相成長する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase growth on a − group compound semiconductor substrate such as GaAs.

従来、半導体素子の製造においては、酸化や拡
散処理等は常圧又は減圧下で行われてきた。しか
し近年では、以下に述べる目的のために、特に酸
化処理を高圧下(通常は1気圧以上、20気圧程
度)で行う試みがなされている。
Conventionally, in the manufacture of semiconductor devices, oxidation, diffusion treatments, etc. have been performed under normal pressure or reduced pressure. However, in recent years, attempts have been made to carry out the oxidation treatment under high pressure (usually 1 atm or more, about 20 atm) for the purposes described below.

(1) 半導体プロセスの低温化 高圧下における酸化の速度は圧力にほぼ比例
して大きくなるので、これ迄の酸化時間で高圧
酸化を行うと、より低い温度で同等の膜厚の酸
化膜が得られる。こうした低温化プロセスの利
点としては、炉や石英管等の設備及び備品の寿
命が延びて経済的であること、石英管(炉芯
管)を通して半導体ウエハを汚染する汚染物質
の混入が減少すること、高温下で生じるウエハ
のそりを防止できること、ウエハ内での転位や
積層欠陥の発生及びその運動を防止できること
が挙げられる。
(1) Lowering the temperature of the semiconductor process The rate of oxidation under high pressure increases almost in proportion to the pressure, so if high-pressure oxidation is performed at the conventional oxidation time, an oxide film of the same thickness can be obtained at a lower temperature. It will be done. The advantages of this low-temperature process are that it is economical by extending the lifespan of equipment and fixtures such as furnaces and quartz tubes, and that contaminants that contaminate semiconductor wafers through the quartz tubes (furnace core tubes) are reduced. , the ability to prevent wafer warping that occurs under high temperatures, and the ability to prevent the generation and movement of dislocations and stacking faults within the wafer.

(2) 半導体プロセスの短縮化 高圧下における酸化では、常圧の場合と等し
い温度で酸化すれば、短い酸化時間で同等の膜
厚の酸化膜が得られる。またLOCOS構造を有
するデバイス等では非常に厚い酸化膜が必要と
されるが、このような場合に高圧酸化を利用す
れば、短時間に所望の酸化を行える。
(2) Shortening the semiconductor process When oxidizing under high pressure, an oxide film with the same thickness can be obtained in a shorter oxidation time by oxidizing at the same temperature as under normal pressure. Furthermore, devices with a LOCOS structure require a very thick oxide film, but if high-pressure oxidation is used in such cases, desired oxidation can be achieved in a short time.

以上の利点を有する高圧酸化法において、従来
使用されてきた高圧酸化炉は第1図に示す如きも
のである。この高圧酸化炉は約1000℃以下の高温
及び高圧に耐える堅固な高圧容器1を具備し、複
雑な温度及び圧力コントロールを必要とする。即
ち、高圧容器1の内部には、半導体ウエハ2を保
持したボート3を収容した石英管4が配され、ウ
エハ2に対して所定の加熱を行うために石英管4
と高圧容器1との間にヒータ5、断熱材6、冷却
管7が夫々複雑に設けられている。また8は石英
管4内へ高純度ガスを導入するパイプ、9はガス
排出パイプ、10は炉体内ガスの導入パイプ、1
1はガス排出パイプである。このような高圧酸化
炉では、ヒータ5による熱が高圧容器1の炉壁を
高温にするためにその冷却管7が必要であり、構
造が複雑化する上に、系全体が高温下に置かれる
ために不純物の混入防止の必要からウエハ2を石
英管4内に収容した状態で処理しなければならな
い。
In the high-pressure oxidation method having the above-mentioned advantages, a high-pressure oxidation furnace conventionally used is shown in FIG. This high-pressure oxidation furnace is equipped with a robust high-pressure vessel 1 that can withstand high temperatures and pressures of about 1000° C. or less, and requires complicated temperature and pressure control. That is, a quartz tube 4 containing a boat 3 holding a semiconductor wafer 2 is disposed inside the high-pressure container 1, and the quartz tube 4 is used to heat the wafer 2 in a predetermined manner.
A heater 5, a heat insulating material 6, and a cooling pipe 7 are provided in a complicated manner between the high-pressure vessel 1 and the high-pressure vessel 1, respectively. Further, 8 is a pipe for introducing high-purity gas into the quartz tube 4, 9 is a gas discharge pipe, 10 is a pipe for introducing gas into the furnace, 1
1 is a gas exhaust pipe. In such a high-pressure oxidation furnace, the cooling pipe 7 is necessary because the heat generated by the heater 5 raises the furnace wall of the high-pressure vessel 1 to a high temperature, which not only complicates the structure but also places the entire system under high temperature. Therefore, it is necessary to process the wafer 2 while being housed in the quartz tube 4 in order to prevent the contamination of impurities.

本発明者は、こうした欠陥を是正すべく、以下
において第2図及び第3図を参照しつつ参考例と
して述べるような高圧酸化法に想到した。
In order to correct these deficiencies, the present inventors came up with a high-pressure oxidation method as described below as a reference example with reference to FIGS. 2 and 3.

即ち、まず、第1の参考例を第2図に付き述べ
ると、第2図に示す高圧酸化炉は、上面に透明な
のぞき窓20を取付けた高圧容器21内に処理す
べき半導体ウエハ22を収容するものであつて、
のぞき窓20を通じて外部からウエハ22に対し
てのみレーザービーム30を照射し得るように構
成されている。なお23は試料台又はボート、2
8は高圧・高純度ガスの導入パイプ、29はガス
排出パイプである。のぞき窓20はレーザービー
ムに対して光損失の少ない材料からなつている
が、その取付け面積は比較的小さくてよい。また
レーザービーム30は公知のNd:YAGレーザー
により得られるが、そのビーム径が小さい場合に
は、レーザービーム30にウエハ22の表面をス
キヤニングさせる装置、又はボート23を移動さ
せてレーザービーム30にウエハ22の表面を相
対的にスキヤニングさせる移動機構を組込めばよ
い。また高圧容器21内にウエハ22を順次送り
込んで連続処理を可能にする送り機構を設けると
合理的である。
That is, first, a first reference example will be described with reference to FIG. 2. The high-pressure oxidation furnace shown in FIG. It is meant to accommodate
It is configured such that a laser beam 30 can be irradiated only onto the wafer 22 from the outside through the viewing window 20. In addition, 23 is the sample stand or boat, 2
8 is a high-pressure, high-purity gas introduction pipe, and 29 is a gas discharge pipe. Although the viewing window 20 is made of a material with low optical loss to the laser beam, its installation area may be relatively small. The laser beam 30 can be obtained by a well-known Nd:YAG laser, but if the beam diameter is small, a device that scans the surface of the wafer 22 with the laser beam 30 or a device that moves the boat 23 may be used to direct the laser beam 30 onto the wafer 22. A moving mechanism for relatively scanning the surfaces of 22 may be incorporated. Further, it is reasonable to provide a feeding mechanism that sequentially feeds the wafers 22 into the high-pressure container 21 to enable continuous processing.

以上のように高圧酸化炉を構成すれば、レーザ
ービーム30によりウエハ22のみを加熱できる
から、高温になるのはウエハ22の表面の近傍だ
けである。従つて高圧容器21は圧力に耐えさえ
すればよく、従来のように熱の影響を考慮するこ
となく設計でき、炉の構造が非常に簡単となる。
また酸化処理においては、高圧容器21内の雰囲
気ガスの純度のみによつて酸化膜の膜質が決ま
り、従来のように炉内のヒータによる影響を受け
ないから、雰囲気ガスを高純度化しさえすれば高
純度の酸化膜を形成することができる。この酸化
処理に際しては、雰囲気ガスとして高圧のモノシ
ラン(SiH4)とO2との混合ガスをパイプ28か
ら容器21内に導入すると、レーザービーム30
により加熱されているウエハ22上でSiH4+2O2
→SiO2+2H2Oの化学反応が起こり、ウエハ22
の表面にCVDによる酸化膜(SiO2)が成長する。
この成長自体は高圧下であるから高速で生じる。
なお酸化膜の形成は、レーザービーム30の照射
領域の設定によつて局所的若しくは選択的に行つ
てもよい。
If the high-pressure oxidation furnace is configured as described above, only the wafer 22 can be heated by the laser beam 30, so that only the vicinity of the surface of the wafer 22 becomes high temperature. Therefore, the high-pressure vessel 21 only needs to withstand pressure, and can be designed without considering the influence of heat as in the conventional case, making the structure of the furnace very simple.
In addition, in the oxidation process, the quality of the oxide film is determined only by the purity of the atmospheric gas in the high-pressure vessel 21, and is not affected by the heater in the furnace unlike in the past, so all you need to do is make the atmospheric gas highly purified. A high purity oxide film can be formed. During this oxidation treatment, when a mixed gas of high pressure monosilane (SiH 4 ) and O 2 is introduced into the container 21 from the pipe 28 as an atmospheric gas, the laser beam 30
SiH 4 +2O 2 on the wafer 22 being heated by
→A chemical reaction of SiO 2 + 2H 2 O occurs, and the wafer 22
An oxide film (SiO 2 ) grows on the surface by CVD.
This growth itself occurs at high speed because it is under high pressure.
Note that the oxide film may be formed locally or selectively by setting the irradiation area of the laser beam 30.

次に第2の参考例を第3図に付き述べると、第
3図に示す高圧酸化炉はより高純度の雰囲気が必
要な場合に適したものであつて、高圧容器21内
に石英管24を入れ、この石英管内にウエハ22
を収容するものである。この場合も、のぞき窓2
0からのレーザービーム30は石英管24の壁部
を通じてウエハ22の表面へ効率良く到達する。
なお38は28と同様の高圧(高純度)ガス導入
パイプ、39は29と同様のガス排出パイプであ
る。
Next, a second reference example will be described with reference to FIG. 3. The high-pressure oxidation furnace shown in FIG. 3 is suitable for cases where a higher purity atmosphere is required. and place the wafer 22 in this quartz tube.
It accommodates. In this case, peephole 2
The laser beam 30 from 0 efficiently reaches the surface of the wafer 22 through the wall of the quartz tube 24.
Note that 38 is a high pressure (high purity) gas introduction pipe similar to 28, and 39 is a gas discharge pipe similar to 29.

なお上述の2つの参考例は、酸化性ガス(O2
やH2O)のみを導入してウエハ22を直接酸化
する場合にも適用できる。
The above two reference examples are based on oxidizing gas (O 2
The present invention can also be applied to the case where the wafer 22 is directly oxidized by introducing only H 2 O).

本発明者は、上述のような高圧酸化法を−
族化合物半導体基板上に気相成長を行う方法に応
用することに想到し、さらに種々の考察を加えた
結果、上記気相成長を良好に行うことができる本
発明に到達した。そしてこれによつて得られた本
発明は、GaAs等の−族化合物半導体基板上
に気相成長する方法において、GaAs等の−
族化合物半導体基板を収容する容器内に、上記
−族化合物半導体基板を構成するAs等の族
元素と同一の族元素を含むガスと、気相成長用
原料ガスとを導入すると共に、上記容器内に収容
されている上記−族化合物半導体基板にエネ
ルギービームを照射するようにしたものである。
The present inventor has developed a high-pressure oxidation method as described above.
As a result of considering applying the present invention to a method of performing vapor phase growth on a group compound semiconductor substrate and adding various considerations, the present invention was arrived at, which allows the above-mentioned vapor phase growth to be performed satisfactorily. The present invention thus obtained provides a method for vapor phase growth of - group compound semiconductors such as GaAs, etc.
A gas containing the same group element as the group element such as As constituting the -group compound semiconductor substrate and a source gas for vapor phase growth are introduced into a container that accommodates the group compound semiconductor substrate, and The energy beam is irradiated onto the - group compound semiconductor substrate housed in the chamber.

次に本発明の実施例を第2図及び第3図に付き
述べると、上述の第1及び第2の参考例におい
て、ウエハ22としてGaAs半導体基板を用い、
また高圧ガスとしてモノシラン(SiH4)とアン
モニアとの混合ガスを用いるようにしている。従
つてこの場合、3SiH4+4NH3→Si3N4+12H2
従つてCVDによる窒化膜をウエハ22に成長さ
せることができる。このようにすれば、ウエハ2
2としてAsが解離し易いGaAs半導体基板を用い
ているにもかかわらず、Asの解離を生ずること
なく良好な気相成長を行うことができる。
Next, an embodiment of the present invention will be described with reference to FIGS. 2 and 3. In the above-mentioned first and second reference examples, a GaAs semiconductor substrate is used as the wafer 22,
Furthermore, a mixed gas of monosilane (SiH 4 ) and ammonia is used as the high-pressure gas. Therefore, in this case, a nitride film can be grown on the wafer 22 by CVD according to 3SiH 4 +4NH 3 →Si 3 N 4 +12H 2 . In this way, wafer 2
2. Despite the use of a GaAs semiconductor substrate in which As easily dissociates, good vapor phase growth can be performed without dissociating As.

なお上述の実施例において、窒化性ガス、例え
ばNH3ガスのみを導入しても窒化膜を形成する
ことも可能である。
Note that in the above embodiments, it is also possible to form a nitride film by introducing only a nitriding gas, for example, NH 3 gas.

本発明は上述のような構成であるから、族元
素の解離を生ずることなく−族化合物半導体
基板の気相成長をエネルギービームの照射により
良好に行うことができる。
Since the present invention has the above-described configuration, it is possible to successfully perform vapor phase growth of a - group compound semiconductor substrate by irradiation with an energy beam without causing dissociation of group elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高圧酸化炉の断面図である。第
2図は本発明の参考例及び実施例に用いられる高
圧酸化炉の断面図、第3図は同上の別の高圧酸化
炉の断面図である。 なお図面に用いた符号において、20……のぞ
き窓、21……高圧容器、22……半導体ウエ
ハ、24……石英管、30……レーザービーム、
40……高周波発振コイル、である。
FIG. 1 is a sectional view of a conventional high pressure oxidation furnace. FIG. 2 is a cross-sectional view of a high-pressure oxidation furnace used in reference examples and examples of the present invention, and FIG. 3 is a cross-sectional view of another high-pressure oxidation furnace same as the above. In addition, in the symbols used in the drawings, 20... peephole, 21... high pressure container, 22... semiconductor wafer, 24... quartz tube, 30... laser beam,
40...High frequency oscillation coil.

Claims (1)

【特許請求の範囲】 1 −族化合物半導体基板上に気相成長する
方法において、 −族化合物半導体基板を収容する容器内
に、上記−族化合物半導体基板を構成する
族元素と同一のV族元素を含むガスと、気相成長
用原料ガスとを導入すると共に、 上記容器内に収容されている上記−族化合
物半導体基板にエネルギービームを照射するよう
にしたことを特徴とする気相成長方法。
[Claims] 1. In a method for vapor phase growth on a -group compound semiconductor substrate, a group V element that is the same as the group element constituting the -group compound semiconductor substrate is placed in a container that accommodates the -group compound semiconductor substrate. A vapor phase growth method, characterized in that a gas containing the above and a source gas for vapor phase growth are introduced, and an energy beam is irradiated onto the - group compound semiconductor substrate housed in the container.
JP17612486A 1979-06-29 1986-07-26 Vapor growth method Granted JPS62229845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17612486A JPS62229845A (en) 1979-06-29 1986-07-26 Vapor growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8320979A JPS567436A (en) 1979-06-29 1979-06-29 High pressure treating device
JP17612486A JPS62229845A (en) 1979-06-29 1986-07-26 Vapor growth method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8320979A Division JPS567436A (en) 1979-06-29 1979-06-29 High pressure treating device

Publications (2)

Publication Number Publication Date
JPS62229845A JPS62229845A (en) 1987-10-08
JPS6315741B2 true JPS6315741B2 (en) 1988-04-06

Family

ID=26424271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17612486A Granted JPS62229845A (en) 1979-06-29 1986-07-26 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS62229845A (en)

Also Published As

Publication number Publication date
JPS62229845A (en) 1987-10-08

Similar Documents

Publication Publication Date Title
EP0015694B1 (en) Method for forming an insulating film on a semiconductor substrate surface
US5246500A (en) Vapor phase epitaxial growth apparatus
KR100746120B1 (en) Method for producing semiconductor device, method for plazma processing, and method for forming gate insulating film
US7632758B2 (en) Process and apparatus for forming oxide film, and electronic device material
US20030124873A1 (en) Method of annealing an oxide film
US5155062A (en) Method for silicon carbide chemical vapor deposition using levitated wafer system
US4874464A (en) Process for epitaxial deposition of silicon
JP2009032774A (en) Heat treatment apparatus, heat treatment member, and method of manufacturing heat treatment member
JP2002500450A (en) In situ growth of oxide and silicon layers
JP2006203038A (en) Method for forming nitride film, method for manufacturing semiconductor device and capacitor, and device for forming nitride film
JPS6315741B2 (en)
JPS6224630A (en) Formation of thermal oxidation film and device therefor
US5881090A (en) Quartz used in semiconductor manufacturing device, apparatus for manufacturing the quartz, and method for manufacturing the same
KR100230429B1 (en) Method for forming silicon oxynitride in semiconductor device
JPS63283124A (en) Reaction furnace
JPH07176498A (en) Reaction furnace with reaction gas preheater
KR0146173B1 (en) Method for manufacturing oxide film of semiconductor device
JPS6015933A (en) Thin film forming process
JP2005268699A (en) Method for manufacturing semiconductor device
KR880000276B1 (en) Process for making insulating layer in mos transistor
JP2693465B2 (en) Semiconductor wafer processing equipment
KR100288988B1 (en) Process and apparatus for increasing production efficiency and improving film quality of vertical low pressure chemical vapor deposition equipment
JPH06349741A (en) Formation of thin film
JPH0845852A (en) Vapor-phase growth method and apparatus
JPS5754332A (en) Forming method for thermonitride silicon film