JPS6315730B2 - - Google Patents

Info

Publication number
JPS6315730B2
JPS6315730B2 JP54052130A JP5213079A JPS6315730B2 JP S6315730 B2 JPS6315730 B2 JP S6315730B2 JP 54052130 A JP54052130 A JP 54052130A JP 5213079 A JP5213079 A JP 5213079A JP S6315730 B2 JPS6315730 B2 JP S6315730B2
Authority
JP
Japan
Prior art keywords
oil
winding
cooling
case
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54052130A
Other languages
Japanese (ja)
Other versions
JPS55145315A (en
Inventor
Yoshimasa Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP5213079A priority Critical patent/JPS55145315A/en
Publication of JPS55145315A publication Critical patent/JPS55145315A/en
Publication of JPS6315730B2 publication Critical patent/JPS6315730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 本発明は、変圧器ケース内に絶縁油をユニツト
クーラ等の冷却装置で冷却してケース内の下部か
ら該ケース内に送油する送油式変圧器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil feed type transformer in which insulating oil is cooled in a transformer case by a cooling device such as a unit cooler and the oil is sent into the case from the lower part of the case. .

従来の送油式変圧器では、冷却装置で冷却した
絶縁油を送油ポンプにより下部送油管からケース
内の下部に送給し、ケース内に収納した変圧器本
体の巻線間及び鉄心中に設けた油道に流通させて
いる。そして巻線及び鉄心を冷却して温度上昇し
た絶縁油はケース内の上部に達し、ケース上部に
接続された上部送油管を通して冷却装置に導かれ
て再び冷却される。この種の変圧器で冷却効果を
高めるためには、鉄心及び巻線に接触する絶縁油
の流速を早くすればよいことが知られているが、
巻線内を流れる絶縁油の流速を早くすると巻線内
に使用されている絶縁物と絶縁油との間の摩擦に
より静電気が生じ、絶縁油が帯電するようにな
る。この現象は流動帯電現象と呼ばれ、絶縁油に
電荷が或程度以上蓄積されると放電が生じて絶縁
物を損傷させる虞れがある。この流動帯電現象が
発生する要因は、絶縁油の流速だけではなく、絶
縁油の特性、絶縁油中の水分量、油温、及び絶縁
物の表面状態等の影響をも微妙に受けるものと考
えられるが、特に大きな要因は巻線内の絶縁油の
流速である。
In conventional oil-fed transformers, insulating oil cooled by a cooling device is sent to the lower part of the case from the lower oil pipe by an oil pump, and is then sent between the windings and into the core of the transformer housed in the case. The oil is distributed through established oil channels. The insulating oil, whose temperature has risen by cooling the windings and iron core, reaches the upper part of the case, is led to a cooling device through an upper oil pipe connected to the upper part of the case, and is cooled again. It is known that in order to increase the cooling effect in this type of transformer, it is possible to increase the flow rate of the insulating oil that comes into contact with the core and windings.
When the flow rate of the insulating oil flowing inside the winding is increased, static electricity is generated due to friction between the insulating material used in the winding and the insulating oil, and the insulating oil becomes electrically charged. This phenomenon is called a flow charging phenomenon, and if a certain amount of charge is accumulated in the insulating oil, discharge may occur and damage the insulator. We believe that the cause of this flow charging phenomenon is not only the flow rate of the insulating oil, but also subtly affected by the characteristics of the insulating oil, the amount of water in the insulating oil, the oil temperature, and the surface condition of the insulating material. However, the most important factor is the flow velocity of the insulating oil within the windings.

一方、絶縁油を冷却するユニツトクーラ等の冷
却装置は冷却効率が高いため十分な冷却作用を行
なわせるには、放熱器内の流速をある程度早くす
るのが好ましく、放熱器内の流速を低下させると
冷却効果が大幅に低下する。したがつて放熱器内
の流速は可能な限り早くすることが望ましいが、
従来の変圧器では、放熱器内の流速を上昇させる
と、その流速の上昇分だけ巻線内の絶縁油の流速
も上昇するため、前記流動帯電現象の発生を避け
ることができず、またこの流動帯電現象を阻止す
るために巻線内の流速を低下させようとすると放
熱器内の流速も低下して冷却効果が阻害される欠
点があつた。
On the other hand, since cooling devices such as unit coolers that cool insulating oil have high cooling efficiency, it is preferable to increase the flow velocity within the radiator to some extent in order to achieve sufficient cooling effect; and the cooling effect will be significantly reduced. Therefore, it is desirable to make the flow velocity within the radiator as fast as possible;
In conventional transformers, when the flow velocity in the radiator is increased, the flow velocity of the insulating oil in the windings is also increased by the increase in flow velocity, making it impossible to avoid the occurrence of the fluid charging phenomenon. If an attempt was made to reduce the flow velocity within the winding in order to prevent the flow charging phenomenon, the flow velocity within the radiator would also decrease, resulting in a drawback that the cooling effect would be inhibited.

尚変圧器のケース内に巻線冷却流路と鉄心冷却
流路とをそれぞれ形成して、両冷却流路に対して
別個に冷却装置と送油手段とを設けることによ
り、巻線冷却流路内の絶縁油の流速を調整し得る
ようにした変圧器が知られているが、このように
構成した場合には変圧器の構造が著しく複雑にな
るのを避けられなかつた。
In addition, by forming a winding cooling channel and an iron core cooling channel in the case of the transformer, and separately providing a cooling device and an oil supply means for both cooling channels, the winding cooling channel A transformer is known in which the flow rate of insulating oil within the transformer can be adjusted, but when configured in this way, the structure of the transformer inevitably becomes extremely complicated.

本発明の目的は、鉄心と該鉄心に嵌装された巻
線とを有する変圧器本体と、該変圧器本体を絶縁
油とともに収納するケースと、ケース内の上部及
び下部にそれぞれ上部送油管及び下部送油管を介
して接続される冷却装置と、前記冷却装置内の絶
縁油を下部送油管からケース内に流入させケース
内の絶縁油を上部送油管から冷却装置内に流入さ
せるべく冷却装置と下部送油管と収納ケースと上
部送油管とにより形成される絶縁油の循環系に油
流を生じさせる送油手段とを備えた送油式変圧器
において、構造を複雑にすることなく、かつ冷却
装置内の絶縁油の流速を変えることなく、流動帯
電現象を防止してしかも放熱器の放熱効果を阻害
することがない最適の流速で絶縁油を循環させる
ことができるようにすることにある。
The object of the present invention is to provide a transformer main body having an iron core and a winding fitted to the iron core, a case for storing the transformer main body together with insulating oil, and an upper oil pipe and an upper oil pipe in the upper and lower parts of the case, respectively. a cooling device connected via a lower oil feeding pipe; and a cooling device for causing insulating oil in the cooling device to flow into the case from the lower oil feeding pipe and causing insulating oil in the case to flow into the cooling device from the upper oil feeding pipe. In an oil feed type transformer equipped with a lower oil feed pipe, an oil feed means for generating an oil flow in an insulating oil circulation system formed by a storage case and an upper oil feed pipe, cooling can be achieved without complicating the structure. To enable insulating oil to be circulated at an optimum flow rate without changing the flow rate of the insulating oil in a device, preventing a flow charging phenomenon and not inhibiting the heat radiation effect of a radiator.

そのため本発明の送油式変圧器は、鉄心に沿つ
て絶縁油を流すべくケース内の下部から鉄心に沿
つて該ケース内の上部に至るように設けられた鉄
心冷却流路と、巻線内を通して絶縁油を流すべく
鉄心冷却用流路からほぼ独立させてケース内の下
部から巻線内を経てケース内の上部に至るように
設けられた巻線冷却流路と、鉄心冷却流路の下部
と巻線冷却流路の下部とを連通させるように設け
られた通油路と、通油路を流れる絶縁油の流量を
調節するため該通油路の途中に挿入された流量調
節手段とを備えている。そして前記下部送油管を
巻線冷却流路の下部または鉄心冷却流路の下部に
連通させ、冷却装置から下部送油管を通して送給
される絶縁油を巻線冷却流路の下部または鉄心冷
却流路の下部に流入させる。
Therefore, the oil-fed transformer of the present invention has a core cooling flow path provided from the lower part of the case to the upper part of the case along the core to flow insulating oil along the core, and a core cooling passage provided inside the winding. A winding cooling channel is provided almost independently from the core cooling channel to flow insulating oil through it, from the lower part of the case through the winding to the upper part of the case, and the lower part of the core cooling channel. and a flow rate adjusting means inserted in the middle of the oil passage to adjust the flow rate of the insulating oil flowing through the oil passage. We are prepared. The lower oil feed pipe is communicated with the lower part of the winding cooling flow path or the lower part of the core cooling flow path, and the insulating oil sent from the cooling device through the lower oil feed pipe is communicated with the lower part of the winding cooling flow path or the core cooling flow path. Let it flow into the bottom of the.

上記の構成において下部送油管を巻線冷却流路
の下部に連通させた場合には、冷却装置→下部送
油管→巻線冷却流路の下部→巻線冷却流路→ケー
ス内の上部→上部送油管→冷却装置の循環路と、
冷却装置→下部送油管→巻線冷却流路の下部→通
油路→鉄心冷却流路の下部→鉄心冷却流路→ケー
ス内の上部→上部送油管→冷却装置の循環路とを
通して絶縁油が流れる。
In the above configuration, when the lower oil pipe is connected to the lower part of the winding cooling flow path, the cooling device → lower oil pipe → lower part of the winding cooling flow path → winding cooling flow path → upper part in the case → upper part Oil pipe → cooling device circulation path,
Insulating oil passes through the cooling device → lower oil pipe → lower part of the winding cooling flow path → oil passage → lower part of the core cooling flow path → core cooling flow path → upper part of the case → upper oil pipe → the circulation path of the cooling device. flows.

また上記の構成において下部送油管を鉄心冷却
流路の下部に連通させた場合には、冷却装置→下
部送油管→鉄心冷却流路の下部→鉄心冷却流路→
ケース内の上部→上部送油管→冷却装置の循環路
と、冷却装置→下部送油管→鉄心冷却流路の下部
→通油路→巻線冷却流路の下部→巻線冷却流路→
ケース内の上部→上部送油管→冷却装置の循環路
とを通して絶縁油が流れる。
In addition, in the above configuration, when the lower oil pipe is communicated with the lower part of the core cooling flow path, cooling device → lower oil pipe → lower part of the core cooling flow path → core cooling flow path →
Upper part inside the case → Upper oil pipe → Cooling device circulation path, Cooling device → Lower oil pipe → Lower part of core cooling flow path → Oil passage → Lower part of winding cooling flow path → Winding cooling flow path →
Insulating oil flows through the upper part of the case → the upper oil pipe → the circulation path of the cooling device.

これらいずれの場合にも、通油路の途中に挿入
された流量調節手段により通油路内を流れる絶縁
油の流量を調整することにより、冷却装置内の絶
縁油の流速を変えることなく、巻線冷却流路内で
の絶縁油の流速を流動帯電現象が発生しない程度
の流速に調整することができる。この調整によ
り、巻線冷却流路の絶縁油の流速を遅くした場
合、巻線に対する冷却作用が減退するが、このと
き鉄心冷却流路の絶縁油の流速が逆に速くなるの
で、鉄心に対する冷却作用を増進させて巻線に対
する冷却作用の減退を補うことができ、変圧器本
体の温度上昇の抑制に寄与する。
In any of these cases, by adjusting the flow rate of the insulating oil flowing in the oil passage with a flow rate adjustment means inserted in the middle of the oil passage, the flow rate of the insulating oil in the cooling device can be adjusted without changing the flow rate. The flow rate of the insulating oil in the wire cooling channel can be adjusted to a level that does not cause the flow charging phenomenon. With this adjustment, if the flow rate of the insulating oil in the winding cooling channel is slowed down, the cooling effect on the winding will be reduced, but at this time, the flow rate of the insulating oil in the core cooling channel will conversely increase, so the cooling effect on the core will be reduced. By increasing the cooling effect, it is possible to compensate for the decline in the cooling effect on the windings, contributing to suppressing the temperature rise in the transformer body.

また上記のように構成すれば、冷却装置及び送
油手段を巻線冷却流路及び鉄心冷却流路に対して
共通に設ければよいため、巻線冷却流路及び鉄心
冷却流路に対してそれぞれ別個に冷却装置と送油
手段とを設ける場合に比べて構成を簡単にするこ
とができる。
Furthermore, with the above configuration, the cooling device and the oil supply means can be provided in common for the winding cooling channel and the core cooling channel, so that The configuration can be simplified compared to the case where a cooling device and an oil feeding means are provided separately.

尚上記の構成において、巻線冷却流路を鉄心冷
却用流路から『ほぼ独立させて』設けるとした
が、これは、両冷却流路が絶縁油の流速に差をも
たせ得る程度に実質的に独立していればよいとの
趣旨であり、流量調節手段により通油路内の流量
を調節することにより巻線冷却流路内の流速を鉄
心冷却流路内の流速より低く保つことができる範
囲であれば、両冷却流路相互間に多少の連通路が
存在しても何等差支えない。
In the above configuration, the winding cooling flow path is provided "almost independently" from the core cooling flow path, but this does not mean that the winding cooling flow path is substantially independent from the core cooling flow path to the extent that the two cooling flow paths can have a difference in the flow velocity of the insulating oil. The idea is that the flow rate in the winding cooling passage can be kept lower than the flow velocity in the core cooling passage by adjusting the flow rate in the oil passage with the flow rate adjustment means. As long as it is within this range, there is no problem even if there is some communication path between the two cooling channels.

以下図示の実施例により本発明の変圧器を詳細
に説明する。
The transformer of the present invention will be explained in detail below with reference to the illustrated embodiments.

第1図及び第2図において1は変圧器ケース
で、このケースは、水平板部2aと凹陥部2bと
からなる船底形の下部ケース2と、水平板部2a
の上に伏せるようにして配置されて下端のフラン
ジ部3aが水平板部2aの周辺部に溶接等により
油密に接合された函形の上部ケース3とからなつ
ている。下部ケース2の凹陥部2bの両側には、
凹陥部2bの側壁外面及び水平板部2aの下面に
両端が接合された傾斜板4,4が設けられ、これ
らの傾斜板4,4と水平板部2aと凹陥部2bの
側壁とにより、凹陥部2bの両外側を平行に延び
る共通油道5,5が形成されている。これらの共
通油道5,5の両端(第1図の紙面と直角な方向
の両端)は図示しない端板により閉塞されてい
る。共通油道5,5は、ケース1内に収納される
後述の変圧器本体の巻線の下部に位置するように
して水平板部2aに設けられた複数(図示の例で
は4個)の貫通孔6によりケース1内に連通して
いる。ケース1内には、絶縁油7とともに変圧器
本体8が収納されている。変圧器本体8の鉄心9
は、その下部継鉄部9aを凹陥部2b内に落し込
むようにして配置され、この鉄心9の下端面と凹
陥部2bの底面との間には帯板状の支持板10,
10…が凹陥部2bの長手方向(第1図の紙面と
直角な方向)に所定の間隔をあけて配置されてい
る。凹陥部2b内に挿入された下部継鉄部9a
は、凹陥部2bの側壁と下部継鉄部9aとの間に
配設された鉄心締付ジヤツキ11,11により鋼
板の積層方向に締付けられている。また鉄心9の
上部継鉄部9bは、断面矩形状の鉄心締付部材1
2,12とこれらの鉄心締付部材を鉄心の積層方
向に互いに引き寄せるように付勢して連結する連
結部材13とからなる鉄心締付装置14により締
付けられている。
In FIGS. 1 and 2, 1 is a transformer case, which includes a bottom-shaped lower case 2 consisting of a horizontal plate part 2a and a recessed part 2b, and a horizontal plate part 2a.
It consists of a box-shaped upper case 3 which is disposed face down and whose lower end flange part 3a is oil-tightly joined to the peripheral part of the horizontal plate part 2a by welding or the like. On both sides of the recessed part 2b of the lower case 2,
Inclined plates 4, 4 whose ends are joined to the outer surface of the side wall of the concave portion 2b and the lower surface of the horizontal plate portion 2a are provided, and these inclined plates 4, 4, the horizontal plate portion 2a, and the side wall of the concave portion 2b form the concave portion. Common oil passages 5, 5 are formed extending in parallel on both outer sides of the portion 2b. Both ends of these common oil passages 5, 5 (both ends in a direction perpendicular to the paper plane of FIG. 1) are closed off by end plates (not shown). The common oil passages 5, 5 are formed by a plurality of (four in the illustrated example) through holes provided in the horizontal plate portion 2a so as to be located below the windings of a transformer body, which will be described later, housed in the case 1. The hole 6 communicates with the inside of the case 1 . A transformer main body 8 is housed in the case 1 along with an insulating oil 7. Iron core 9 of transformer body 8
is arranged so that its lower yoke portion 9a falls into the recessed portion 2b, and between the lower end surface of the iron core 9 and the bottom surface of the recessed portion 2b is a band-shaped support plate 10,
10 are arranged at predetermined intervals in the longitudinal direction of the concave portion 2b (direction perpendicular to the plane of the paper in FIG. 1). Lower yoke portion 9a inserted into concave portion 2b
is tightened in the lamination direction of the steel plates by core tightening jacks 11, 11 disposed between the side wall of the recessed portion 2b and the lower yoke portion 9a. Further, the upper yoke part 9b of the iron core 9 is connected to the iron core tightening member 1 having a rectangular cross section.
2 and 12, and a connecting member 13 that connects these core tightening members by urging them toward each other in the stacking direction of the cores.

鉄心9に嵌装された巻線15は、鉄心9の脚部
9cに絶縁筒16を介して外嵌された低圧巻線1
7と、低圧巻線17に絶縁筒18を介して外嵌さ
れた高圧巻線19とからなり、高圧巻線19の外
側には更に絶縁筒20が嵌挿されている。巻線1
5の下端は、鉄心9の脚部9cに外嵌されて下部
ケースの水平板部2aの上に載置されたリング状
の絶縁物からなる巻線支持板21の上に載置さ
れ、巻線15の上端には、鉄心9の脚部9cに外
嵌されたリング状の絶縁物からなる巻線押え板2
2が載置されている。そして鉄心締付装置14に
取付けられた巻線締付ジヤツキ23により巻線押
え板22を介して巻線15が下方に押圧され、こ
れにより巻線15が軸線方向に締付けられてい
る。
The winding 15 fitted to the iron core 9 is a low voltage winding 1 fitted externally to the leg 9c of the iron core 9 via an insulating cylinder 16.
7 and a high-voltage winding 19 that is externally fitted onto the low-voltage winding 17 via an insulating tube 18 , and an insulating tube 20 is further fitted and inserted on the outside of the high-voltage winding 19 . Winding 1
The lower end of 5 is placed on a winding support plate 21 made of a ring-shaped insulator that is fitted onto the leg part 9c of the iron core 9 and placed on the horizontal plate part 2a of the lower case. At the upper end of the wire 15, a winding holding plate 2 made of a ring-shaped insulator is fitted around the legs 9c of the iron core 9.
2 is placed. A winding tightening jack 23 attached to the core tightening device 14 presses the winding 15 downward via the winding press plate 22, thereby tightening the winding 15 in the axial direction.

上記絶縁筒のうち、内側に配置された絶縁筒1
6は、その下端面及び上端面がそれぞれ巻線支持
板21の上面及び巻線押え板22の下面に密接す
るように形成され、中間に位置する絶縁筒18
は、その上端と巻線支持板21の間及び下端と巻
線押え板22との間にそれぞれ、周方向に所定の
間隔で多数の図示しないスペーサが設けられて油
道間隙を形成している。また最外側の絶縁筒20
は、下端面が巻線支持板21の上面に密接するよ
うに形成され、この絶縁筒20の上端と巻線押え
板22との間にも周方向に所定の間隔をあけて多
数の図示していないスペーサが設けられていて油
道間隙が形成されている。低圧巻線17の上端及
び下端と巻線押え板22及び巻線支持板21との
間には、それぞれ周方向に間隔をあけて図示しな
いスペーサが配置され、該スペーサにより低圧巻
線17の上下に所定の油道間隙が形成されてい
る。同様に高圧巻線19の上端及び下端と巻線押
え板22及び巻線支持板21との間にもそれぞれ
図示しないスペーサにより所定の油道間隙が形成
されている。そして高、低圧巻線内にも径方向の
油道間隙が形成されていることは勿論である。ま
た低圧巻線17と絶縁筒16,18の間及び高圧
巻線19と絶縁筒18,20の間にもそれぞれ巻
線の軸方向と平行し周方向に所定の間隔をあけて
図示しないスペーサが設けられ所定の油道間隙が
形成されている。そして巻線支持板21には、水
平板部2aに設けられた貫通孔6に整合する貫通
孔24が形成され、共通油道5,5が、貫通孔6
及び24を通して巻線15内の前記した油道間隙
に連通されている。本実施例では、巻線支持板2
1の貫通孔24が中央の絶縁筒18の下端と巻線
支持板21との間の油道間隙に開口するように設
けられており、後記する送油ポンプにより共通油
道5内に送給された絶縁油は、貫通孔6及び24
を通して絶縁筒18の内側及び外側に分流して低
圧巻線17及び高圧巻線19の内外周の油道間隙
を通つて上昇し、巻線押え板22に衝き当つた後
合流して絶縁筒20の上端と巻線押え板22との
間の油道間隙を通して巻線15内から外部に流出
するようになつている。
Insulating tube 1 placed inside of the above insulating tube
6 is formed so that its lower end surface and upper end surface are in close contact with the upper surface of the winding support plate 21 and the lower surface of the winding press plate 22, respectively, and the insulating cylinder 18 located in the middle
A large number of spacers (not shown) are provided at predetermined intervals in the circumferential direction between the upper end and the winding support plate 21 and between the lower end and the winding holding plate 22, respectively, to form oil channel gaps. . Also, the outermost insulating tube 20
is formed so that its lower end surface is in close contact with the upper surface of the winding support plate 21, and there are also a number of illustrated holes spaced at predetermined intervals in the circumferential direction between the upper end of the insulating cylinder 20 and the winding holding plate 22. A spacer is provided to form an oil passage gap. Spacers (not shown) are arranged at intervals in the circumferential direction between the upper and lower ends of the low voltage winding 17 and the winding press plate 22 and the winding support plate 21, respectively. A predetermined oil passage gap is formed in the oil passage. Similarly, predetermined oil passage gaps are formed between the upper and lower ends of the high-voltage winding 19 and the winding presser plate 22 and the winding support plate 21 by spacers (not shown), respectively. Of course, radial oil passage gaps are also formed within the high and low voltage windings. Furthermore, spacers (not shown) are provided between the low voltage winding 17 and the insulating cylinders 16, 18 and between the high voltage winding 19 and the insulating cylinders 18, 20, parallel to the axial direction of the windings and spaced at predetermined intervals in the circumferential direction. A predetermined oil passage gap is formed. The winding support plate 21 is formed with a through hole 24 that matches the through hole 6 provided in the horizontal plate portion 2a, and the common oil passages 5, 5 are connected to the through hole 6.
and 24 to communicate with the oil passage gap in the winding 15. In this embodiment, the winding support plate 2
1 through hole 24 is provided so as to open into the oil passage gap between the lower end of the central insulating cylinder 18 and the winding support plate 21, and oil is fed into the common oil passage 5 by an oil feed pump to be described later. The insulating oil is poured into the through holes 6 and 24.
The flow is divided into the inside and outside of the insulating cylinder 18 through the passageway, rises through the oil passage gap between the inner and outer peripheries of the low-voltage winding 17 and the high-voltage winding 19, collides with the winding press plate 22, and then merges with the insulating cylinder 20. The oil flows out from inside the winding 15 through the oil passage gap between the upper end and the winding holding plate 22.

また巻線支持板21及び巻線押え板22の内周
面と鉄心9の脚部9cの外面との間及び絶縁筒1
6と脚部9cの外面との間にもそれぞれ油道間隙
が形成され、これらの油道間隙により、凹陥部2
b内から鉄心9の脚部外面に沿つて上部に抜ける
鉄心表面冷却ダクト25が形成されている。更に
鉄心9の内部には上下方向に延びる冷却ダクト2
6,26,…が所定の間隔をおいて設けられ、鉄
心9に対しては、凹陥部2b内から鉄心表面冷却
ダクト25を経て上部に至る鉄心冷却流路と、所
定の間隔をあけて設けた支持板10,10間から
冷却ダクト26の下端部に接つている冷却ダクト
26,26,…を経て上部に至る鉄心冷却流路と
が形成されている。そしてこれらの鉄心冷却流路
は、共通油道5から巻線15内の油道間隙を経て
上部に至る巻線冷却流路に対して独立しており、
鉄心冷却流路及び巻線冷却流路を通つた絶縁油は
ケース内の上部で合流するようになつている。
Also, between the inner circumferential surfaces of the winding support plate 21 and the winding presser plate 22 and the outer surface of the leg portions 9c of the iron core 9 and the insulating tube 1
6 and the outer surface of the leg portion 9c, oil passage gaps are formed between the oil passage gaps 6 and the outer surface of the leg portion 9c.
A core surface cooling duct 25 is formed that extends from inside b to the top along the outer surface of the leg portion of the core 9. Furthermore, inside the iron core 9, there is a cooling duct 2 extending vertically.
6, 26, . A core cooling flow path is formed from between the supporting plates 10, 10 to the upper part through the cooling ducts 26, 26, . . . that are in contact with the lower end of the cooling duct 26. These core cooling channels are independent from the winding cooling channel that extends from the common oil pipe 5 through the oil pipe gap in the winding 15 to the upper part,
The insulating oil that has passed through the core cooling channel and the winding cooling channel merges at the upper part of the case.

第2図に示したように、凹陥部2b内と、その
両側の共通油道5,5とは、凹陥部2b内に連通
する第1の通油管27Aとこの第1の通油管27
Aから分岐して共通油道5,5に連通する第2の
通油管27B,27Bとにより接続され、第1の
通油管27Aの途中には油量調節バルブVaが設
けられている。
As shown in FIG. 2, the inside of the concave part 2b and the common oil passages 5, 5 on both sides thereof are connected to a first oil passage pipe 27A communicating with the inside of the concave part 2b and this first oil passage pipe 27.
It is connected by second oil passage pipes 27B, 27B branching from A and communicating with the common oil passages 5, 5, and an oil amount regulating valve Va is provided in the middle of the first oil passage pipe 27A.

変圧器ケース1の両側方には絶縁油の冷却装置
28,28が配設される。これらの冷却装置は、
放熱器29,29と、複数個の送風フアンFから
なつている。冷却装置28の油出口側には送油ポ
ンプ30,30が設けられており、冷却装置28
の油入口側は、上部送油管31,31により上部
ケース3の上端隅部に設けられた傾斜板部3b,
3bにおいてケース内に連通されている。また送
油ポンプ30,30の送出口側は下部送油管3
2,32を介して共通油道5,5内に連通されて
いる。
Insulating oil cooling devices 28, 28 are provided on both sides of the transformer case 1. These cooling devices are
It consists of radiators 29, 29 and a plurality of blower fans F. Oil feed pumps 30, 30 are provided on the oil outlet side of the cooling device 28.
The oil inlet side of the slanted plate part 3b provided at the upper end corner of the upper case 3 by the upper oil feed pipes 31, 31,
It communicates with the inside of the case at 3b. In addition, the lower oil feed pipe 3 is connected to the outlet side of the oil feed pumps 30, 30.
2 and 32 into the common oil pipes 5 and 5.

上部ケース3の傾斜板部3b,3bの一方及び
他方にはそれぞれ低圧ブツシング33及び高圧ブ
ツシング34が取付けられ、これらのブツシング
は図示しない口出線により低圧巻線17及び高圧
巻線19にそれぞれ接続されている。更に上部ケ
ースの上部壁には、連通管35を介してコンサベ
ータ36が取付けられている。
A low-voltage bushing 33 and a high-voltage bushing 34 are attached to one and the other of the inclined plate parts 3b, 3b of the upper case 3, respectively, and these bushings are connected to the low-voltage winding 17 and the high-voltage winding 19, respectively, by lead wires (not shown). has been done. Further, a conservator 36 is attached to the upper wall of the upper case via a communication pipe 35.

上記の変圧器においては、第3図に示したよう
に、ケース下部の共通油道5,5から巻線15内
の油道間隙を通つてケース1内の上部に至る巻線
冷却流路Aと、凹陥部2b内から鉄心の表面及び
内部を通つてケース内の上部に至る鉄心冷却流路
Bとが直列に接続された冷却装置28及び送油ポ
ンプ30に対して並列に接続された形になり、送
油ポンプ30により下部送油管32を通して送給
される絶縁油は巻線冷却流路Aと鉄心冷却流路B
とに分流してケース内の上部に達した後合流して
上部送油管31から冷却装置28に戻る。そして
両冷却流路A,B内の絶縁油の流速は、油量調節
バルブVaにより鉄心冷却流路B内に流入する絶
縁油量を調節することによつて任意に調整するこ
とができる。即ち油量調節バルブVaを絞つた場
合には、巻線冷却流路A内に流入する絶縁油の流
速が早くなり、鉄心冷却流路B内の流速は遅くな
る。逆に油量調節バルブVaを開いた場合には巻
線冷却流路A内の流速が遅くなり、鉄心冷却流路
B内の流速が早くなる。したがつて油量調節バル
ブVaを調節することにより、巻線冷却流路A内
の流速を流動帯電現象が生じない速度に容易に調
節することができる。しかもこの場合冷却装置2
8内の流速は何ら低下することがない。
In the above transformer, as shown in FIG. 3, the winding cooling flow path A runs from the common oil passages 5, 5 at the lower part of the case, through the oil passage gap in the winding 15, to the upper part in the case 1. and a core cooling channel B extending from the inside of the concave portion 2b through the surface and inside of the core to the upper part of the case are connected in parallel to the cooling device 28 and the oil pump 30, which are connected in series. The insulating oil sent by the oil pump 30 through the lower oil pipe 32 is distributed between the winding cooling channel A and the core cooling channel B.
The oil flows into two parts, reaches the upper part of the case, joins together, and returns to the cooling device 28 from the upper oil pipe 31. The flow velocity of the insulating oil in both the cooling channels A and B can be arbitrarily adjusted by adjusting the amount of insulating oil flowing into the core cooling channel B using the oil amount regulating valve Va. That is, when the oil amount control valve Va is throttled, the flow velocity of the insulating oil flowing into the winding cooling channel A increases, and the flow velocity within the core cooling channel B decreases. Conversely, when the oil amount control valve Va is opened, the flow velocity in the winding cooling channel A becomes slower and the flow velocity in the core cooling channel B becomes faster. Therefore, by adjusting the oil amount control valve Va, the flow velocity in the winding cooling channel A can be easily adjusted to a velocity at which no flow charging phenomenon occurs. Moreover, in this case, the cooling device 2
The flow rate within 8 does not decrease at all.

巻線冷却流路A内の流速を遅くした場合には巻
線15に対する冷却作用がやや減退するが、鉄心
冷却流路B内の流速が速くなるので、鉄心9に対
する冷却作用が逆に増進されて変圧器本体の温度
上昇が極力抑制される作用が行われる。鉄心冷却
流路B内の流速が速くなると、絶縁筒16及び巻
線支持板21、巻線押え板22の内周面で流動帯
電現象が生じる虞れが生じるが、その電荷のいく
らかは鉄心を通して大地に逃すことができるので
実害はない。尚絶縁筒16及び巻線支持板21、
巻線押え板22での流動帯電現象に対する保護を
より完全にするため、第4図に示すように、絶縁
筒16の内周面に導電塗料や導電箔等の導電層3
7を形成し、この導電層を接地するようにしても
よい。また第5図に示すように絶縁筒16内に導
電層37を埋設して、この導電層を接地するよう
にしてもよい。
When the flow velocity in the winding cooling channel A is slowed down, the cooling effect on the winding 15 is slightly reduced, but since the flow velocity in the core cooling channel B becomes faster, the cooling effect on the core 9 is increased. Thus, the temperature rise in the transformer body is suppressed as much as possible. When the flow velocity in the core cooling channel B becomes faster, there is a possibility that a fluid charging phenomenon will occur on the inner peripheral surfaces of the insulating tube 16, the winding support plate 21, and the winding press plate 22, but some of the electric charge will pass through the core. There is no real harm as it can be released into the ground. In addition, the insulating cylinder 16 and the winding support plate 21,
In order to more completely protect the winding holding plate 22 from the flow charging phenomenon, as shown in FIG.
7 may be formed and this conductive layer may be grounded. Further, as shown in FIG. 5, a conductive layer 37 may be buried within the insulating cylinder 16 and this conductive layer may be grounded.

第4図または第5図に示すように、絶縁筒16
に導電層37を設ける外、巻線支持板21及び巻
線押え板22の内周面にも第6図に示すように導
電層38を形成すればより望ましいのは勿論であ
る。
As shown in FIG. 4 or 5, the insulation cylinder 16
Of course, it is more desirable to form a conductive layer 38 on the inner peripheral surfaces of the winding support plate 21 and the winding press plate 22 as shown in FIG. 6, in addition to providing the conductive layer 37 thereon.

上記の実施例では、送油ポンプの送出口側を巻
線冷却流路の下部に接続したが、送油ポンプの送
出口側を鉄心冷却流路の下部に接続するようにし
てもよい。
In the above embodiment, the outlet side of the oil pump is connected to the lower part of the winding cooling channel, but the outlet side of the oil pump may be connected to the lower part of the core cooling channel.

また上記の例では、変圧器ケースが舟底型(バ
ツクタイプ)が形成されているが、通常の箱形の
変圧器ケースが用いられる場合にも、例えば下部
継鉄締付金具内に共通油道を形成するようにして
巻線冷却流路と鉄心冷却流路とを独立させること
により、本発明を実施することができる。
In addition, in the above example, the transformer case has a boat-bottom shape (back type), but even when a normal box-shaped transformer case is used, for example, a common oil pipe can be installed in the lower yoke clamping fitting. The present invention can be carried out by making the winding cooling flow path and the core cooling flow path independent of each other so as to form a winding cooling flow path and a core cooling flow path.

以上のように、本発明によれば、鉄心冷却流路
と巻線冷却流路とを互いにほぼ独立させて形成
し、両冷却流路を下部で通油路を介して連通させ
るとともに該通油路の途中に流量調節手段を設
け、冷却装置から絶縁油を供給する下部送油管を
巻線冷却流路の下部または鉄心冷却流路の下部に
連通させたので、両冷却流路に対して個別に冷却
装置を設けずに且つ冷却装置内を流れる絶縁油の
流速を変えることなく、流量調節手段によつて巻
線冷却流路を通る絶縁油の流速を流動帯電現象が
発生しない流速に調整できる。したがつて、簡単
な構成で冷却装置の冷却効率を低下させることな
く、流動帯電現象を防止できる。
As described above, according to the present invention, the core cooling channel and the winding cooling channel are formed almost independently from each other, and both the cooling channels are communicated through the oil passage at the lower part, and the oil passage is A flow rate adjustment means is provided in the middle of the passage, and the lower oil pipe that supplies insulating oil from the cooling device is communicated with the lower part of the winding cooling passage or the lower part of the core cooling passage, so that the flow rate adjustment means can be adjusted separately for both cooling passages. The flow rate of the insulating oil passing through the winding cooling channel can be adjusted to a flow rate at which no flow charging phenomenon occurs using the flow rate adjusting means without installing a cooling device in the cooling device and without changing the flow rate of the insulating oil flowing inside the cooling device. . Therefore, the flow charging phenomenon can be prevented with a simple configuration without reducing the cooling efficiency of the cooling device.

また、本発明によれば、巻線冷却流路の絶縁油
の流速を遅くした場合、巻線に対する冷却作用が
減退するが、このとき鉄心冷却流路の絶縁油の流
速が逆に速くなるので、鉄心に対する冷却作用を
増進させて巻線に対する冷却作用の減退を補うこ
とができ、変圧器本体の温度上昇を抑制できる。
Furthermore, according to the present invention, when the flow velocity of the insulating oil in the winding cooling channel is slowed down, the cooling effect on the winding decreases, but at this time, the flow velocity of the insulating oil in the core cooling channel conversely increases. , the cooling effect on the iron core can be enhanced to compensate for the decline in the cooling effect on the windings, and the temperature rise in the transformer body can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第
2図は第1図の−線に沿つて断面した要部拡
大断面図、第3図は第1図の実施例における絶縁
油の流れを示す説明図、第4図及び第5図はそれ
ぞれ本発明で用いることができる絶縁筒の異なる
例を示す断面図、第6図は本発明で用いることが
できる巻線支持板及び巻線押え板を示す斜視図で
ある。 1……変圧器ケース、5……共通油道、9……
鉄心、15……巻線、16,18,20……絶縁
筒、17……低圧巻線、19……高圧巻線、21
……巻線支持板、22……巻線押え板、27A,
27B……通油管、28……冷却装置、29……
放熱器、30……送油ポンプ、Va……油量調節
バルブ、31……上部送油管、32……下部送油
管。
Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the main part taken along the - line in Fig. 1, and Fig. 3 is an insulating oil in the embodiment of Fig. 1. FIGS. 4 and 5 are cross-sectional views showing different examples of insulating tubes that can be used in the present invention, and FIG. 6 is a diagram showing a winding support plate and a winding that can be used in the present invention. It is a perspective view showing a wire holding plate. 1...Transformer case, 5...Common oil pipe, 9...
Iron core, 15... Winding wire, 16, 18, 20... Insulating tube, 17... Low voltage winding, 19... High voltage winding, 21
... Winding support plate, 22 ... Winding holding plate, 27A,
27B...Oil pipe, 28...Cooling device, 29...
Heat radiator, 30...Oil pump, Va...Oil volume adjustment valve, 31...Upper oil feed pipe, 32...Lower oil feed pipe.

Claims (1)

【特許請求の範囲】 1 鉄心と該鉄心に嵌装された巻線とを有する変
圧器本体と、前記変圧器本体を絶縁油とともに収
納するケースと、前記ケース内の上部に上部送油
管を介して接続され下部送油管を介して前記ケー
ス内の下部に接続される冷却装置と、前記冷却装
置内の絶縁油を前記下部送油管から前記ケース内
に流入させ前記ケース内の絶縁油を前記上部送油
管から前記冷却装置内に流入させるべく前記冷却
装置と下部送油管とケースと上部送油管とにより
形成される絶縁油の循環系に油流を生じさせる送
油手段とを備えてなる送油式変圧器において、 前記鉄心に沿つて絶縁油を流すべく前記ケース
内の下部から前記鉄心に沿つて該ケース内の上部
に至るように設けられた鉄心冷却流路と、 前記巻線内を通して絶縁油を流すべく前記鉄心
冷却用流路からほぼ独立させて前記ケース内の下
部から前記巻線内を経て前記ケース内の上部に至
るように設けられた巻線冷却流路と、 前記鉄心冷却流路の下部と巻線冷却流路の下部
とを連通させるように設けられた通油路と、 前記通油路を流れる絶縁油の流量を調節するた
め該通油路の途中に挿入された流量調節手段とを
具備し、 前記下部送油管は前記巻線冷却流路の下部また
は鉄心冷却流路の下部に連通させたことを特徴と
する送油式変圧器。
[Claims] 1. A transformer body having an iron core and a winding fitted to the iron core, a case housing the transformer body together with insulating oil, and an upper oil pipe connected to the upper part of the case. a cooling device connected to the lower part of the case via a lower oil pipe, and an insulating oil in the cooling device flowing into the case from the lower oil pipe to cause the insulating oil in the case to flow into the upper part of the case. Oil feeding means for generating an oil flow in an insulating oil circulation system formed by the cooling device, a lower oil feeding pipe, a case, and an upper oil feeding pipe so as to flow into the cooling device from the oil feeding pipe. In the type transformer, a core cooling channel is provided to flow insulating oil along the core from a lower part of the case to an upper part of the case along the core, and an insulating oil is provided through the winding. a winding cooling flow path provided almost independently from the core cooling flow path to flow oil from a lower part of the case through the winding to an upper part of the case; and the core cooling flow path. An oil passage provided to communicate the lower part of the oil passage with the lower part of the winding cooling passage, and a flow rate inserted in the middle of the oil passage to adjust the flow rate of the insulating oil flowing through the oil passage. An oil feed type transformer, comprising: an adjusting means, wherein the lower oil feed pipe communicates with a lower part of the winding cooling channel or a lower part of the core cooling channel.
JP5213079A 1979-04-27 1979-04-27 Forced oil type transformer Granted JPS55145315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213079A JPS55145315A (en) 1979-04-27 1979-04-27 Forced oil type transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213079A JPS55145315A (en) 1979-04-27 1979-04-27 Forced oil type transformer

Publications (2)

Publication Number Publication Date
JPS55145315A JPS55145315A (en) 1980-11-12
JPS6315730B2 true JPS6315730B2 (en) 1988-04-06

Family

ID=12906279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213079A Granted JPS55145315A (en) 1979-04-27 1979-04-27 Forced oil type transformer

Country Status (1)

Country Link
JP (1) JPS55145315A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219406A1 (en) 2016-10-06 2018-04-12 Siemens Aktiengesellschaft Electrical device with several cooling units
CN112970078B (en) 2018-11-19 2024-07-19 三菱电机株式会社 Static inductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970135A (en) * 1972-11-10 1974-07-06
JPS548829A (en) * 1977-06-22 1979-01-23 Hitachi Ltd Cooler for oil-filled equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970135A (en) * 1972-11-10 1974-07-06
JPS548829A (en) * 1977-06-22 1979-01-23 Hitachi Ltd Cooler for oil-filled equipment

Also Published As

Publication number Publication date
JPS55145315A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
JP2853505B2 (en) Stationary guidance equipment
JPS6315730B2 (en)
US20110217209A1 (en) Iron Core Reactor
CN111341539A (en) Transformer and transformer winding thereof
KR102323608B1 (en) Oil immersed transformer
US5374866A (en) Active cooling system for generator terminal box
KR102607695B1 (en) A high efficiency transformer with plate type heat pipe
JP2000068127A (en) Oil-immersed electric apparatus
JPS5917842B2 (en) Cooling method for oil-immersed transformer
JP3516412B2 (en) Gas insulated stationary induction device
JP2021158293A (en) Static induction electric device
JPH10116737A (en) Gas insulated transformer
JP3148044B2 (en) Gas cooled stationary electrical equipment
Paluev et al. Cooling power transformers by forced circulation of cooling medium
JPS59123210A (en) Winding for natural cooling induction apparatus
JPH0629130A (en) Transformer
CN117976369A (en) Oil immersed transformer
JPS59121906A (en) Winding of naturally cooling induction electric apparatus
JPS593545Y2 (en) Forced cooling windings for stationary equipment
JP3321588B2 (en) Gas insulated transformer
CA1056024A (en) Transformer with improved natural circulation for cooling disc coils
JPH0974020A (en) Stationary induction apparatus
JPS5875816A (en) Leaf winding transformer
JPH04127509A (en) Winding structure for transformer
JPH11126718A (en) Transformer