JPS5917842B2 - Cooling method for oil-immersed transformer - Google Patents

Cooling method for oil-immersed transformer

Info

Publication number
JPS5917842B2
JPS5917842B2 JP5311677A JP5311677A JPS5917842B2 JP S5917842 B2 JPS5917842 B2 JP S5917842B2 JP 5311677 A JP5311677 A JP 5311677A JP 5311677 A JP5311677 A JP 5311677A JP S5917842 B2 JPS5917842 B2 JP S5917842B2
Authority
JP
Japan
Prior art keywords
oil
winding
cooling
horizontal
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5311677A
Other languages
Japanese (ja)
Other versions
JPS53139128A (en
Inventor
雅教 山口
隆夫 熊坂
芳彰 乾
泰彦 加子
茂夫 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5311677A priority Critical patent/JPS5917842B2/en
Publication of JPS53139128A publication Critical patent/JPS53139128A/en
Publication of JPS5917842B2 publication Critical patent/JPS5917842B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 5 本発明は油入変圧器の冷却方法に係り、特に使用定
格に応じて送油ポンプを運転する強制循環冷却および送
油ポンプを停止する自然循環冷却を併用する油入変圧器
の冷却方法に関するものである。
Detailed Description of the Invention 5 The present invention relates to a method for cooling an oil-immersed transformer, and in particular to an oil-immersed transformer cooling method that uses both forced circulation cooling to operate an oil feed pump and natural circulation cooling to stop the oil feed pump depending on the usage rating. The present invention relates to a method for cooling an input transformer.

一般に、強制および自然循環冷却を併用する油o 入変
圧器は第1図に示すように、油槽1内に中身すなわち鉄
心2と、これに他巻線(図示せず)共に同心的に装着す
るため、内絶縁筒5と外絶縁筒6との間に導体の円板状
或いは螺旋状に巻回形成するコイル3Aの複数個をその
軸方向に積重ねて5 なる巻線3とを配置すると共に、
絶縁油10を封入している。この油槽1には、冷却器9
を上部配管8および下部配管7によつて連結し、冷却器
9で熱交換した絶縁油10を油槽1内に設ける共通油道
4に送るようになされている。下部配管7(または上部
配管8)には送油ポンプPが設けられ、この送油ポンプ
Pに並列に側路配管11が設けられている。側路配管3
は送油ポンプPの運転時には絶縁油10の流さないよう
に閉鎖する例えば逆止弁(図示せず)を介して連結され
る。この購成によつて油入変圧器の全負荷時は送油ポン
プPを運転する強制循環冷却、半負荷時には送油ポンプ
を停止する自然循環冷却を行なわせている。すなわち、
強制循環冷却時には冷却器9にて冷却された絶縁油10
は、実線矢印で示すように送油ポンプPによつて下部配
管7から共通油道4内に送られ、巻線3の下方より上方
へ更に油槽1上部より上記配管に戻るように循環し、ま
た送油ポンプPの停止する自然循環冷却時には、絶縁油
10は破線矢印で示すように側路配管11を経由して共
通油送4内に入り、これ以後は前者と同様に循環する。
一方、複数個のコイル3Aから成る巻線3は、第2図に
示すように各コイル3A間に水平油道14を介在させて
形成しており、これを内絶縁筒5と外絶縁筒6間に配置
して絶縁油10の通路である所定寸法の内側および外側
垂直油道12および15を形成ず、巻線3の冷却を良好
にするために複数個のコイル3A毎に内側または外側垂
直油道12,15を交互に閉鎖する折流板13を配置し
、これによつて強制および自然循環冷却時ともに実線お
よび破線矢印の如く、垂直油道12または15を上昇し
て来る絶縁油を各水平油道14を流通させて反対側の垂
直油道に流れるようにし、内側および外側垂直油道12
,15を閉鎖する上下2枚の折流板13の間に挟まれる
或る折流区間の水平油道14を絶縁油が流れる方向が、
これに6隣接する折流板間のそれと逆となり、これが順
次交互に繰返すように構成されている。
In general, an oil-filled transformer that uses both forced and natural circulation cooling is installed concentrically with the core 2 and other windings (not shown) in an oil tank 1, as shown in Figure 1. Therefore, between the inner insulating cylinder 5 and the outer insulating cylinder 6, a plurality of coils 3A formed by winding a conductor in a disk shape or a spiral shape are stacked in the axial direction, and a winding 3 is arranged. ,
Insulating oil 10 is sealed. This oil tank 1 has a cooler 9.
are connected by an upper pipe 8 and a lower pipe 7, and the insulating oil 10, which has undergone heat exchange with a cooler 9, is sent to a common oil pipe 4 provided in the oil tank 1. The lower pipe 7 (or the upper pipe 8) is provided with an oil pump P, and a side pipe 11 is provided in parallel with the oil pump P. Side passage piping 3
are connected via, for example, a check valve (not shown) that is closed to prevent the insulating oil 10 from flowing when the oil pump P is in operation. With this purchase, forced circulation cooling is performed by operating the oil feed pump P when the oil-immersed transformer is at full load, and natural circulation cooling is performed by stopping the oil feed pump when it is half loaded. That is,
Insulating oil 10 cooled by cooler 9 during forced circulation cooling
is sent from the lower pipe 7 into the common oil pipe 4 by the oil pump P as shown by the solid line arrow, and circulates from below the winding 3 to above and then back to the above pipe from the upper part of the oil tank 1, Further, during natural circulation cooling when the oil feed pump P is stopped, the insulating oil 10 enters the common oil feed 4 via the side pipe 11 as shown by the broken line arrow, and thereafter circulates in the same manner as the former.
On the other hand, the winding 3 consisting of a plurality of coils 3A is formed with a horizontal oil pipe 14 interposed between each coil 3A, as shown in FIG. Instead of forming inner and outer vertical oil passages 12 and 15 of predetermined dimensions, which are the passages for the insulating oil 10, by placing the inner and outer vertical oil passages 12 and 15 between each of the plurality of coils 3A for good cooling of the winding 3. Flow plates 13 are arranged to alternately close the oil passages 12 and 15, thereby preventing the insulating oil rising up the vertical oil passage 12 or 15 as shown by the solid and broken line arrows during both forced and natural circulation cooling. Each horizontal oilway 14 is made to flow to the opposite vertical oilway, and the inner and outer vertical oilways 12
.
This is the opposite of that between six adjacent folding plates, and this is configured to be repeated alternately in sequence.

各折流区間内の複数個のコイル3A間の各水平油道14
における絶縁油10の流速分布は、第3図に示すように
なる。
Each horizontal oilway 14 between the plurality of coils 3A in each flow section
The flow velocity distribution of the insulating oil 10 in is as shown in FIG.

すなわち、送油ポンプPを運転する強制循環冷却の際に
は実線で示す如く、垂直油道12または15を閉鎖する
折流板13の下部付近に位置する水平軸道14の流速が
最も大きく、これより離れるに従がい順に遅くなり、絶
縁油の入口側に近い水平油道では流速が極めて遅くなる
。これに対して送油ポンプPを停止する自然循環冷却の
際には破線で示すように、強制循環冷却とは逆に垂直油
道12または15閉鎖する折流板13の下部付近に位置
する水平油道14の流速が最も遅く、これより離れるに
従がつて順に早くなり、絶縁油の入口側で最大の流速と
なる。従がつて、強制循環冷却時には各折流区間内の上
方の位置するコイルが下方に位置するものに比べて良好
に冷却されるようになり、またこれとは逆に自然循環冷
却時には各折流区間内の下方のコイルが上方のものに比
べて良好に冷却されるようになるので、いずれの場合で
も不均一な冷却となつてしまい巻線の冷却効率が低下す
る問題がある。このため、巻線の構造改良により強制お
よび自然循環冷却のいずれでも、各コイルを均一に冷却
し冷却効率を向上させようとすることが試みられている
が十分な効果を達成し得ないでいる。例えば、強制循環
冷却の流速分布を改良するように、各折流区間において
各コイル3A間の水平油道の寸法を、巻線3の下方より
上方に行くに従がつて狭めて管路抵抗を調節するように
構成すると、第4図の実線で示すように強制循環冷却の
流速分布は改善されほぼ均一な冷却が行えるが、自然循
環冷却では流速分布の偏りが一層助長されることになる
。逆に自然循環冷却の流速分布を主体に改善を図ると、
強制循環冷却の際には一層不均一な流速分布となる。す
なわち、強制および自然循環冷却のいずれの方式でも十
分に満足するように巻線を購成することは極めて困難で
あつた。本発明の油入変圧器の冷却方式の目的は、強制
および自然循環冷却のいずれの場合であつても、円板状
或いは螺線状の複数個のコイルから成る巻線を良好に冷
却し、冷却効率を向上させることにある。
That is, when forced circulation cooling is used to operate the oil pump P, as shown by the solid line, the flow velocity in the horizontal axis 14 located near the bottom of the folding plate 13 that closes the vertical oil passage 12 or 15 is the highest. The further away from this point, the slower the flow rate becomes, and in the horizontal oil channel near the inlet of the insulating oil, the flow rate becomes extremely slow. On the other hand, in the case of natural circulation cooling in which the oil feed pump P is stopped, as shown by the broken line, a horizontal The flow velocity in the oil pipe 14 is the slowest, becomes faster as you move further away from this, and reaches the maximum flow velocity on the insulating oil inlet side. Therefore, during forced circulation cooling, the coils located above each folded flow section are cooled better than those located below, and conversely, during natural circulation cooling, the coils located above each folded flow section are cooled better than those located below. Since the lower coils in the section are cooled better than the upper ones, in either case there is a problem in that the cooling becomes uneven and the cooling efficiency of the windings decreases. For this reason, attempts have been made to uniformly cool each coil and improve cooling efficiency by both forced and natural circulation cooling by improving the structure of the windings, but they have not been able to achieve sufficient effects. . For example, in order to improve the flow velocity distribution of forced circulation cooling, the dimensions of the horizontal oil passage between each coil 3A in each folded flow section are narrowed from below the winding 3 to above to reduce the pipe resistance. When configured to adjust, as shown by the solid line in FIG. 4, the flow velocity distribution in forced circulation cooling is improved and almost uniform cooling can be achieved, but in natural circulation cooling, the unevenness of the flow velocity distribution is further exacerbated. On the other hand, if we mainly improve the flow velocity distribution of natural circulation cooling,
Forced circulation cooling results in a more non-uniform flow velocity distribution. That is, it has been extremely difficult to purchase windings that are sufficiently satisfactory for both forced and natural circulation cooling methods. The purpose of the oil-immersed transformer cooling method of the present invention is to effectively cool a winding made up of a plurality of disc-shaped or spiral-shaped coils in both forced and natural circulation cooling cases. The purpose is to improve cooling efficiency.

上記の目的を達成するため、本発明の冷却方法では複数
個のコイルをそれぞれ水平油道を介して積重ねて内およ
び外絶縁筒間に内側および外側垂直油道を設けて配置し
、複数個のコイル毎に内側および外側垂直油道を折流部
材にて交互に閉鎖して複数の折流区間を形成する巻線を
強制或いは自然循環冷却にて冷却する際、折流区間にお
ける内側および外側垂直油道を含めた各管路抵抗を巻線
下方より上方に行くに従がい順に小さくなるように形成
し、送油ポンプを用いる強制循環冷却時には絶縁油を冷
却器から油槽上部、巻線内、油槽下部の順に循環させる
と共に、送油ポンプを用いぬ自然循環冷却時にはこれと
並列の側路配管を利用して絶縁油を冷却器から油槽下部
、巻線内、油槽上部の順に循環させることを特徴とする
ものである。
In order to achieve the above object, in the cooling method of the present invention, a plurality of coils are stacked via horizontal oil passages, and inner and outer vertical oil passages are provided between the inner and outer insulating cylinders. The inner and outer vertical oil passages of each coil are alternately closed with folding members to form multiple folded sections. When cooling the winding by forced or natural circulation cooling, the inner and outer vertical oil passages in the folded sections are The resistance of each conduit, including the oil pipe, is formed so that it decreases from the bottom of the winding to the top, and during forced circulation cooling using an oil pump, the insulating oil is routed from the cooler to the top of the oil tank, inside the winding, and into the winding. In addition to circulating insulating oil from the cooler to the lower part of the oil tank, inside the windings, and then to the upper part of the oil tank using the parallel side piping when cooling by natural circulation without using an oil pump, it is recommended to This is a characteristic feature.

以下本発明の実施例を、従来と同一部分を同符号で示す
第5図から第10図を用いて順次説明する。
Embodiments of the present invention will be sequentially described below with reference to FIGS. 5 to 10, in which portions that are the same as those of the prior art are denoted by the same reference numerals.

本発明の冷却方法では、第5図に示す如く従来と同様に
油槽1内に鉄心と巻線からなる変圧器中身を収納して絶
縁油を封入し、油槽1に下部および上部配管7,8にて
冷却器9を連結し、例えば下部配管7に送油ポンプPを
介在させると共に、これと並列に側路配管11を設ける
構成である。
In the cooling method of the present invention, as shown in FIG. 5, the contents of a transformer consisting of an iron core and windings are housed in an oil tank 1 and insulating oil is sealed in the oil tank 1 as in the conventional case. For example, a cooler 9 is connected to the lower pipe 7, and an oil feed pump P is interposed in the lower pipe 7, and a side pipe 11 is provided in parallel thereto.

このとき本発明では巻線3を後述の如く購成すると同時
に、送油ポンプPを運転する強制循環冷却時には絶縁油
を実線矢印の如く冷却器9から油槽1上部、巻線3内、
油槽1下部の共通油道4の順に循環させ、しかも送油ポ
ンプPを停止させる自然循環冷却の際には側路配管11
を用いて絶縁油を破線矢印の如く冷却器9から油槽1下
部、巻線3内、油槽1上部の順に循環させるようにして
いる。本発明の冷却方法に用いる巻線3は例えば第6図
に示すように、導体を円板状或いは螺旋状に巻回する複
数個のコイル3Aから成るもので、これらをそれぞれ水
平油道14を介して軸方向に積重ね、しかも内および外
絶縁筒5,6間に内側および外側垂直油道12,15を
形成するように配置している。
At this time, in the present invention, the winding 3 is purchased as described later, and at the same time, when the oil pump P is operated for forced circulation cooling, the insulating oil is transferred from the cooler 9 to the upper part of the oil tank 1, inside the winding 3, as shown by the solid line arrow.
In the case of natural circulation cooling in which the oil is circulated in the order of the common oil pipe 4 at the bottom of the oil tank 1 and the oil feed pump P is stopped, the side pipe 11 is used.
The insulating oil is circulated from the cooler 9 to the lower part of the oil tank 1, inside the winding 3, and to the upper part of the oil tank 1 in this order as indicated by the broken line arrow. The winding 3 used in the cooling method of the present invention is, for example, as shown in FIG. The cylinders are stacked in the axial direction through the cylinders 5 and 6, and are arranged so as to form internal and external vertical oil passages 12 and 15 between the internal and external insulating cylinders 5 and 6.

この巻線3は複数個のコイル3A毎に内側および外側垂
直油道12,14を交互に閉鎖する絶縁物などから成る
折流部材13を設けて複数の折流区間を作るようになさ
れ、この各折流区間内における各水平油道の例えば高さ
寸法tを巻線下方より上方に行くに従がい大きくなされ
、これによつて内側および外側垂直油道12,15を含
めた各水平油道14の管路抵抗、すなわち折流区間の絶
縁油入口側の一方の垂直油道から水平油道を経て他方の
垂直油道の出印こ至る管路抵抗を順に小さくなるように
構成している。この結果、送油ポンプを運転し絶縁油を
巻線上方より下方に実線矢印で示す如く巻線上方より下
方に強制循環させたり、送油ポンプを停止して破線矢印
の如く巻線下方より上方に向つて自然循環させると、折
流区間内の下方に位置する水平油道を含む管路抵抗は上
方のものに比べて大きいから、この部分を通る絶縁油は
制限されるため、第7図に実線および破線で示している
ように各水平油道における絶縁油の流速は、それぞれ強
制および自然循環冷却のいずれの場合でもほぼ同じにな
るように調節できる。
This winding 3 is constructed by providing folding members 13 made of an insulator or the like for alternately closing the inner and outer vertical oil passages 12, 14 for each of the plurality of coils 3A to create a plurality of folding sections. For example, the height dimension t of each horizontal oilway in each turning section is made larger from the lower part of the winding to the upper part, so that each horizontal oilway including the inner and outer vertical oilways 12 and 15 14 conduit resistance, that is, the conduit resistance from one vertical oil pipe on the insulating oil inlet side of the flow section to the horizontal oil pipe to the outgoing mark of the other vertical oil pipe is configured to decrease in order. . As a result, the oil pump can be operated to forcefully circulate the insulating oil from the upper part of the winding to the lower part as shown by the solid arrow, or the oil pump can be stopped and the oil can be circulated from the lower part of the winding to the upper part as shown by the dashed arrow. When natural circulation is carried out toward the diversion section, the resistance of the pipes including the horizontal oil pipe located at the lower part of the diversion section is greater than that of the upper part, so the insulating oil passing through this part is restricted. As shown by the solid line and the broken line in , the flow velocity of the insulating oil in each horizontal oilway can be adjusted to be approximately the same in both cases of forced and natural circulation cooling, respectively.

したがつて、折流区間内の各コイル3Aはほぼ均一に冷
却されるので巻線3の冷却効率を大幅に改善することが
可能になる。第8図に示す本発明の実帷例は、送油ポン
プPを第5図の例とは逆に上方に介在させ、側路配管1
1を並列に設ける点のみが異なつており、巻線3を上記
のように成すと共に強制および自然循環冷却の際に前記
したように絶縁油を循環させて同様な効果を達成できる
ようにしたものである。このような送油ポンプPの配置
では、絶縁油10の膨張収縮を補償するコンサベータと
して大気と連通される形式を用いる変圧器に適用すると
、送油ポンプPの吸込側がほぼ大気圧になる条件が満た
されるため、強制循環冷却の際に巻線3内が全域にわた
り大気圧よりも大きくなるので、静圧の減少により絶縁
油10からガスが分離して絶縁破壊事故を引き起す恐れ
もなくなる利点がある。巻線3の各折流区間において、
内側および外側垂直油道12,15を含めた各水平油道
14の管路抵抗を調節するには、第9図に示すように折
流区間内の円板状或いは螺旋状の各コイル3Aに対向す
るように、自然循環冷却時に絶縁油10の出口側(強制
循環冷却時は入口側)となる内側或いは外側垂直油道1
2,15内へ、巻線3下方より上方に行くに従がい厚さ
寸法を小さくして垂直油道を順に広げる如く絶縁物製の
制御部材16を配置することによつても行なうことがで
きる。この例では制御部材16はコイル3Aに対向する
ように小片に分割して配置した例を示しているが、これ
を垂直油道の下方より上方まで連続するように形成した
ものを設けるようにすることもできるし、この制御部材
16を折流部材13に兼用させることもできる。巻線3
を第9図のように形成した場合でも、折流圧間内の各水
平油道14における流速は、第10図に示すように強制
および自然循環冷却のいずれであつてもほぼ均一に分布
させることができるので、各コイル3A(7)冷却は良
好に行なえる。本発明の油入変圧器の冷却方法を適用す
れば、円板状或いは螺線状の複数個のコイルから成る巻
線を、強制或いは自然循環冷却のいずれの場合であつて
も良好に冷却でき、冷却効率を著しく向上させる効果を
達成することができる。
Therefore, since each coil 3A within the folded flow section is cooled almost uniformly, it is possible to significantly improve the cooling efficiency of the winding 3. In the practical example of the present invention shown in FIG. 8, the oil pump P is interposed upwardly, contrary to the example shown in FIG.
The only difference is that the windings 1 and 3 are arranged in parallel, and the same effect can be achieved by forming the winding 3 as described above and circulating insulating oil as described above during forced and natural circulation cooling. It is. With this arrangement of the oil pump P, when applied to a transformer that uses a type that communicates with the atmosphere as a conservator that compensates for the expansion and contraction of the insulating oil 10, the condition that the suction side of the oil pump P becomes almost atmospheric pressure is created. is satisfied, the pressure inside the winding 3 becomes higher than the atmospheric pressure throughout the entire area during forced circulation cooling, so there is no risk of gas separating from the insulating oil 10 due to a decrease in static pressure and causing an insulation breakdown accident. There is. In each fold section of winding 3,
In order to adjust the pipe resistance of each horizontal oil pipe 14 including the inner and outer vertical oil pipes 12 and 15, as shown in FIG. An inner or outer vertical oil pipe 1 facing the outlet side of the insulating oil 10 during natural circulation cooling (inlet side during forced circulation cooling)
This can also be done by arranging the control member 16 made of an insulating material within the windings 2 and 15 such that the thickness decreases from below the windings 3 to the top, and the vertical oil passage gradually widens. . In this example, the control member 16 is divided into small pieces and arranged so as to face the coil 3A, but it is preferable to provide one in which the control member 16 is formed so as to be continuous from the bottom to the top of the vertical oil passage. Alternatively, the control member 16 can also be used as the folding member 13. Winding 3
Even when formed as shown in Fig. 9, the flow velocity in each horizontal oil pipe 14 within the flow pressure gap is distributed almost uniformly in both forced and natural circulation cooling as shown in Fig. 10. Therefore, each coil 3A (7) can be cooled well. By applying the method of cooling an oil-immersed transformer of the present invention, windings consisting of a plurality of disc-shaped or spiral-shaped coils can be cooled well whether by forced or natural circulation cooling. , can achieve the effect of significantly improving cooling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の油入変圧器の冷却方法を示す概略図、第
2図は従来の油入変圧器の巻線内における絶縁油の流れ
を示す部分縦断面図、第3図は第2図の巻線における折
流区間内の各水平油道と絶−禄油の流速との関係図、第
4図は従来の改善された巻線における折流区間内の各水
平油道の位置と絶縁流の流速との関係図、第5図は本発
明の油入変圧器の冷却方法の一例を示す概略図、第6図
は本発明を適用した油入変圧器の巻線内における絶縁油
の流れを示す部分縦断面図、第7図は第6図の巻線にお
ける折流区間内の各水平油道の位置と絶縁油の流速との
関係図、第8図は本発明の油入変圧器の冷却方法の他の
例を示す概略図、第9図は本発明を適用した油入変圧器
の別の例の巻線内における絶縁油の流れを示す部分縦断
面図、第10図は第9図の巻線における折流区間内の各
水平油道の位置と絶縁油の流速との関係図である。 1・・・・・・油槽、2−・・・・・鉄心、3−・・・
・・巻線、3A・・・・・・コイル、5,6・・・・・
・内および外絶縁筒、7,8・・・・・・下部および上
部配管、9・・・・・・冷却器、10・・・・・一絶縁
油、11・・・−・准1j路配管、12,15・・・・
・・内側および外側垂直油道、13・・・・・・折流部
材、14・・−・・・水平油道、16・・・・・・制御
部材、P・・・・・・送油ポンプ。
Fig. 1 is a schematic diagram showing a conventional oil-immersed transformer cooling method, Fig. 2 is a partial longitudinal sectional view showing the flow of insulating oil within the windings of a conventional oil-immersed transformer, and Fig. 3 is a schematic diagram showing a cooling method for a conventional oil-immersed transformer. Figure 4 is a diagram showing the relationship between each horizontal oil passage in the diversion section of the winding and the flow velocity of the oil. Figure 5 is a schematic diagram showing an example of the cooling method for an oil-immersed transformer according to the present invention, and Figure 6 is a diagram showing the relationship between the flow velocity of the insulating flow and the flow rate of the oil-immersed transformer according to the present invention. FIG. 7 is a diagram showing the relationship between the position of each horizontal oil pipe in the folded flow section of the winding shown in FIG. 6 and the flow velocity of insulating oil, and FIG. FIG. 9 is a schematic diagram showing another example of a method for cooling a transformer; FIG. 9 is a partial vertical sectional view showing the flow of insulating oil in the winding of another example of an oil-immersed transformer to which the present invention is applied; FIG. 10 9 is a diagram showing the relationship between the position of each horizontal oilway in the folded section of the winding shown in FIG. 9 and the flow velocity of insulating oil. 1...Oil tank, 2-...Iron core, 3-...
...Winding, 3A...Coil, 5,6...
・Inner and outer insulation tubes, 7, 8...Lower and upper piping, 9...Cooler, 10...-Insulating oil, 11...--Semi-1j path Piping, 12, 15...
...Inner and outer vertical oil pipes, 13...Folding member, 14...Horizontal oil pipe, 16...Control member, P...Oil sending pump.

Claims (1)

【特許請求の範囲】 1 油槽内へ、変圧器中身となる鉄心と巻線とを収納す
ると共に絶縁油を封入せしめ、前記巻線は複数個のコイ
ルをそれぞれ水平油道を介して種重ねて内および外絶縁
筒間に内側および外側垂直油道を設けるように配置され
、且つ複数個のコイル毎に前記内側および外側垂直油道
を交互に閉鎖する折流部材を設けて複数の折流区間を形
成し、前記油槽に上部および下部配管により冷却器を連
結させ、前記上部および下部の配管のいずれか一方には
送油ポンプが設けられ、前記送ポンプに並列でこの運転
停止時に開路する側路配管を設け、前記巻線を強制或い
は自然循環冷却により冷却するものにおいて、前記巻線
は各折流区間における内側および外側垂直油道を含めた
各水平油道の管路抵抗を巻線下方より上方に行くに従い
順に小さくなるように形成し、前記送油ポンプを運転す
る強制循環冷却時には絶縁油を冷却器から油槽上部、巻
線内、油槽下部の順に循環させると共に、送油ポンプの
停止する自然循環冷却時には前記側路配管が用いられ、
絶縁油を冷却器から油槽下部、巻線内、油槽上部の順に
循環させることを特徴とする油入変圧器の冷却方法。 2 前記折流区間の内側および外側垂直油道を含めた各
水平油道の管路抵抗は、前記各水平油道の寸法を巻線下
方より上方に行くに従い順に大きくして調節したことを
特徴とする特許請求の範囲第1項記載の油入変圧器の冷
却方法。 3 前記折流区間の内側および外側垂直油道を含めた各
水平油道の管路抵抗は、巻線下方より上方に行くに従い
厚さ寸法の小さくなる制御部材を自然循環冷却時に出口
側となる内側或いは外側垂直油道内に配置して調節した
ことを特徴とする特許請求の範囲第1項記載の油入変圧
器の冷却方法。
[Claims] 1. An iron core and a winding, which are the contents of a transformer, are housed in an oil tank, and insulating oil is sealed therein, and the winding is formed by stacking a plurality of coils through horizontal oil pipes. A plurality of folded flow sections are provided by providing folding members arranged to provide inner and outer vertical oil passages between inner and outer insulating cylinders and alternately closing the inner and outer vertical oil passages for each of the plurality of coils. A cooler is connected to the oil tank by upper and lower piping, and an oil feed pump is provided in either one of the upper and lower piping, and a side that is parallel to the feed pump and opens when the operation is stopped. In the case where the winding is cooled by forced or natural circulation cooling, the winding is configured to reduce the pipe resistance of each horizontal oil pipe including the inner and outer vertical oil pipes in each turning section below the winding. When the oil pump is operated for forced circulation cooling, the insulating oil is circulated from the cooler to the upper part of the oil tank, inside the winding, and to the lower part of the oil tank, and the oil pump is stopped. The above-mentioned side pipe is used for natural circulation cooling,
A method for cooling an oil-immersed transformer, characterized by circulating insulating oil from a cooler to the lower part of the oil tank, inside the windings, and then to the upper part of the oil tank. 2. The pipe resistance of each horizontal oilway including the inner and outer vertical oilways of the diversion section is adjusted by increasing the dimensions of each horizontal oilway from the bottom of the winding to the top. A method for cooling an oil-immersed transformer according to claim 1. 3 The pipe resistance of each horizontal oil pipe including the inner and outer vertical oil pipes in the folded flow section is such that the thickness of the control member decreases from the bottom of the winding to the top when it is cooled by natural circulation. 2. A method for cooling an oil-immersed transformer according to claim 1, wherein the cooling method is carried out by disposing it in an inner or outer vertical oil passage.
JP5311677A 1977-05-11 1977-05-11 Cooling method for oil-immersed transformer Expired JPS5917842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311677A JPS5917842B2 (en) 1977-05-11 1977-05-11 Cooling method for oil-immersed transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311677A JPS5917842B2 (en) 1977-05-11 1977-05-11 Cooling method for oil-immersed transformer

Publications (2)

Publication Number Publication Date
JPS53139128A JPS53139128A (en) 1978-12-05
JPS5917842B2 true JPS5917842B2 (en) 1984-04-24

Family

ID=12933820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311677A Expired JPS5917842B2 (en) 1977-05-11 1977-05-11 Cooling method for oil-immersed transformer

Country Status (1)

Country Link
JP (1) JPS5917842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200637B2 (en) * 2012-08-28 2017-09-20 株式会社日立産機システム Oil-filled transformer

Also Published As

Publication number Publication date
JPS53139128A (en) 1978-12-05

Similar Documents

Publication Publication Date Title
JP2853505B2 (en) Stationary guidance equipment
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US3548354A (en) Transformer having ventilating passages
US2547065A (en) Fluid cooled core for electromagnetic apparatus
US3663910A (en) Shunt reactor having improved insulating fluid circulating means
US2388566A (en) Electric apparatus
US2339625A (en) Electric apparatus
JPS5917842B2 (en) Cooling method for oil-immersed transformer
TWI675384B (en) Static sensor
US20220285070A1 (en) Static electric induction system and method
KR102704522B1 (en) Electrostatic induction device and method of operation
WO2023110300A1 (en) Static electric induction device and operating method
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPH08236359A (en) Gas-insulated stationary electric equipment
JP3254914B2 (en) Transformer winding
JPH05275246A (en) Cooling structure of electromagnetic induction disc winding
JPS60246608A (en) Cooling method for winding of oil-immersed apparatus
JPS6113365B2 (en)
JPS60227407A (en) Winding of stationary induction apparatus
JPS6315730B2 (en)
JPH03112109A (en) Gas-filled transformer
JPH1116742A (en) Static induction equipment
JPH09320856A (en) Cooling system for stationary induction apparatus
Paluev et al. Cooling power transformers by forced circulation of cooling medium
JP2002083715A (en) Induction machine