JPS63156632A - Tool axial machining system in numerically controlled machine tool - Google Patents

Tool axial machining system in numerically controlled machine tool

Info

Publication number
JPS63156632A
JPS63156632A JP30324486A JP30324486A JPS63156632A JP S63156632 A JPS63156632 A JP S63156632A JP 30324486 A JP30324486 A JP 30324486A JP 30324486 A JP30324486 A JP 30324486A JP S63156632 A JPS63156632 A JP S63156632A
Authority
JP
Japan
Prior art keywords
tool
axis
axial
feed
tool axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30324486A
Other languages
Japanese (ja)
Inventor
Koji Saruwatari
猿渡 鉱司
Hiroyuki Nishikawa
宏之 西川
Takao Hasebe
孝男 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP30324486A priority Critical patent/JPS63156632A/en
Publication of JPS63156632A publication Critical patent/JPS63156632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path

Abstract

PURPOSE:To aim at a sharp manhour reduction, by finding a tool axial feeding unit quantity, while reading directional unit quantity in X, Y and Z axes from these factors aforesaid, and operating a tool in the tool axial direction. CONSTITUTION:A tool axial feeding command is inputted into a command input part 1 from a part program. A feed rate per directional unit time is calculated at a tool axial feeding unit quantity calculating part 3 by the feed command SA, and it is outputted to a directional feeding unit quantity calculating part 6 for these X, Y and Z axes. On the other hand, a tool axial tilt is calculated at a tool axial tilt calculating part 4, and it is outputted to an each axial distribution factor calculating part 6, then a vector distribution factor is calculated and outputted to an each axial feeding unit quantity calculating part 6. The feeding unit quantity of each axis is calculated by these signals and outputted to respective axial driving control parts 7, 8 and 9, thus respective axial motors 12 and 13 are controlled and driven. Therefore, diagonal machining also comes easy, thus a manhour reduction is promotable.

Description

【発明の詳細な説明】 (発明の技術分1) 本発明は、数値制御(NC)工作機械により工具軸方向
の加工を行なう場合の加工方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Part 1 of the Invention) The present invention relates to a machining method when machining is performed in the tool axis direction using a numerically controlled (NC) machine tool.

(発明の技術的背景とその問題点) NC工作機械であるNC自由曲面加工機の概略構造の正
面図を第6図(Δ)に、右側面図を同図    ′(n
)に示す。この装置100は、コラムlot、101の
間の下方に前後方向(以下、X軸方向という)に摺動可
能なテーブル+02 と、コラム101゜101に設け
である摺動案内面103.103にそって上下方向(以
下Z iM方向という)に摺動可能なりロスレール10
4と、このクロスレール104に設けである摺動案内面
105に沿って左右方向・(以下、Y軸方向という)に
摺動可能な主軸頭106と、この主軸頭106を貫装し
上下方向(Z軸方向)に摺動可能な主軸クイル107と
で構成されている。第7図(八)及び(B)は主−軸タ
イル107の先端部ioaの斜視構造を示し、この主軸
タイル107の先端部108は、主軸クイル107のi
M Cを中心に回転自在な先端回転部109及びこの先
端回転部109の軸B(主軸クイル107の軸Cに直角
な釉)を中心に約180°回転自在な工具取付部110
で構成され、同図(B)は同図(八)で示した先端回転
部109及び工具取付部110のそれぞれの位置から約
90°回転したときの状態を示す。
(Technical background of the invention and its problems) The front view of the schematic structure of the NC free-form surface machining machine, which is an NC machine tool, is shown in Figure 6 (Δ), and the right side view is shown in the same figure '(n).
). This device 100 consists of a table +02 that is slidable in the front-rear direction (hereinafter referred to as the The Rossrail 10 can be slid in the vertical direction (hereinafter referred to as the Z iM direction).
4, a spindle head 106 that can slide in the left-right direction (hereinafter referred to as the Y-axis direction) along a sliding guide surface 105 provided on this cross rail 104, and a spindle head 106 that penetrates this spindle head 106 and is slidable in the vertical direction. The main shaft quill 107 is slidable in the Z-axis direction. FIGS. 7(8) and 7(B) show the perspective structure of the tip ioa of the main axis tile 107, and the tip 108 of the main axis tile 107 is
A rotating tip part 109 that can freely rotate around M C and a tool mounting part 110 that can rotate about 180 degrees around an axis B of this rotating tip part 109 (glaze perpendicular to the axis C of the main shaft quill 107).
The figure (B) shows the state when the tip rotating part 109 and the tool mounting part 110 are rotated approximately 90 degrees from their respective positions shown in figure (8).

上述した様な工具軸の方向を任意に変更できる2つの’
hb 13 、 c及び工具軸を任意に穆勤できる3つ
の軸X、Y、2を有すNC自由曲面加工機において、先
端回転部109及び工具取付部110を回転させて工具
軸の方向を任意に変更して斜め加工を行う場合、工具軸
方向へ移動させるには3つのNI X 、 Y 、 l
にデータを同時に指令する必要がある。このためオペレ
ータ及びプログラマは、工具軸の方向よりX、Y、Z 
g軸の送り単位量に分配してデータを指令しなければな
らず、多大の工数を要していた。また、手動で工具軸を
移動させるにしても非常に困難であるなどの種々の問題
があった。
There are two tools that can change the direction of the tool axis as described above.
In an NC free-form surface machining machine that has three axes X, Y, and 2 that allow the tool axis to be rotated arbitrarily, the tool axis direction can be adjusted arbitrarily by rotating the tip rotating part 109 and the tool mounting part 110. When performing diagonal machining by changing to
It is necessary to command data at the same time. Therefore, the operator and programmer must
Data had to be commanded by distributing it to the feed unit amount of the g-axis, which required a large amount of man-hours. Furthermore, there have been various problems such as the fact that it is extremely difficult to move the tool axis manually.

(発明の目的) 本発明は上述のような事情からなされたものであり、本
発明の目的は、工具軸の方向の送りjiLを指令すれば
自動的にX、Y、X各軸の送り単位量に分配して、工具
を自動あるいは手動で動作させることができるNG工作
機械における工具軸方向の加工方式を提供することにあ
る。
(Object of the Invention) The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to automatically change the feed unit of each of the X, Y, and X axes by commanding the feed jiL in the direction of the tool axis. The object of the present invention is to provide a machining method in the tool axis direction in an NG machine tool that can automatically or manually operate the tool by distributing the amount of the tool.

(発明の概要) 本発明は、工具軸の方向を任意に変更できるNG工作機
械の工具軸方向加工方式に関するもので、前記工具軸の
方向の送り指令を読取り、当該工具’Mの方向の単位時
間当りの送り単位量を求めると共に、前記工具軸の位置
を読取り、当該工具軸の方向を求め、前記送りAt位量
及び前 ゛記工具釉の方向からX、Y、X各軸方向単位
量を計算して前記工具軸方向へ工具を動作させるように
したものである。
(Summary of the Invention) The present invention relates to a tool axis direction machining method for an NG machine tool that can arbitrarily change the direction of the tool axis. In addition to finding the feed unit amount per time, read the position of the tool axis, find the direction of the tool axis, and calculate the feed At position and the unit amount in each of the X, Y, and X axis directions from the direction of the tool glaze. is calculated to move the tool in the direction of the tool axis.

(発明の実施例) 以下、本発明の実施例を添付図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明方式を実現する装置の主要部の概略を
示すブロック構成図であり、パートプログラムより工具
軸の方向の送り指令が工具軸方向送り指令入力部1に入
力される。また手動操作時には、工具軸の方向の送り信
号が手動工具軸方向送り人力部2に人力される。工具軸
方向送り指令入力部1からの工具軸の方向の送り指令S
A、あるいは手動工具軸方向送り入力部2からの工具軸
の方向の送り指令Snにより、工具軸方向送り単位量計
算部3で工具軸の方向の11、位時間当りの送り量が算
出され、X、Y、Z各軸方向送り単位量計算部6へ出力
される。
FIG. 1 is a block diagram schematically showing the main parts of an apparatus that implements the method of the present invention, and a feed command in the direction of the tool axis is input to a tool axis direction feed command input section 1 from a part program. Further, during manual operation, a feed signal in the direction of the tool axis is manually inputted to the manual tool axis direction feed unit 2 . Feed command S in the direction of the tool axis from the tool axis direction feed command input section 1
A or the feed command Sn in the tool axis direction from the manual tool axis direction feed input unit 2, the tool axis direction feed unit amount calculation unit 3 calculates the feed amount per 11 hours in the tool axis direction, It is output to the feed unit amount calculation unit 6 in each of the X, Y, and Z axial directions.

一方、B軸回りの現在値10及びC軸回りの現在値11
により工具軸傾き計算部4で工具軸の傾きon及びθC
が算出され、X、Y、X各軸の分配係数計算部5へ出力
される。工具軸の方向のベクトルを分配する係数がX、
Y、X各軸の分配係数計算部5で算出され、X、Y、Z
各軸方向送り単位量計算部6へ出力される。工具軸方向
送り単位量計算部3からの工具軸の方向の送り単位量の
信号SCと、X、Y、:X各軸の分配係数計算部5から
ハハV江外ハl言ユcnしt雫1−hV V ?  ダ
晶11十向二Yリーqt位量計算部6でX、Y、X各軸
の送り単位量が算出され、X軸駆動制御部7.Y@b駆
動制御部8及びZ軸駆動制御部9へ出力される。x!F
lll駆動制御部7でX袖モータ(MX)12が、Y軸
型動制御NS8でY!1111モータ(MY)13が、
ZINI駆動制御部9でZ軸モータ(MZH4が制御駆
動される。
On the other hand, the current value around the B axis is 10 and the current value around the C axis is 11.
The tool axis inclination calculation unit 4 calculates the inclination of the tool axis on and θC.
is calculated and output to the distribution coefficient calculating section 5 for each of the X, Y, and X axes. The coefficient that distributes the vector in the direction of the tool axis is
Calculated by the distribution coefficient calculation unit 5 for each axis of Y and X,
It is output to each axial direction feed unit amount calculation section 6. The signal SC of the feed unit amount in the tool axis direction from the tool axis direction feed unit amount calculation section 3 and the distribution coefficient calculation section 5 for each of the X, Y, :X axes are sent. Drop 1-hV V? The feed unit amount for each of the X, Y, and X axes is calculated by the X, Y, and X axis quantity calculation unit 6, and the X axis drive control unit 7. It is output to the Y@b drive control section 8 and the Z-axis drive control section 9. x! F
The X-sleeve motor (MX) 12 is controlled by the Ill drive control unit 7, and the Y! 1111 motor (MY) 13 is
The Z-axis motor (MZH4) is controlled and driven by the ZINI drive control unit 9.

このような構成の本発明方式の動作について、第2図に
示すフローヂャートを参照して以下に説明する。
The operation of the system of the present invention having such a configuration will be explained below with reference to the flowchart shown in FIG.

先ず、パートプログラムより工具軸の方向の指令の有無
を工具軸方向送り指令人力部1が確認しくステップS1
)、無い場合には手動による工具軸送りか否かを手動工
具軸方向送り入力部2が確認しくステップS2)、手動
による工具送りでない場合には処理を終了する。一方、
前記判断ステップS1において工具ITlhの方向の指
令が有る場合、あるいは前記判断ステップS2において
手動による工具軸送りの場合には、工具軸の方向の単位
時間当りの送り単位量Δ■を工具中1h方向送り単位量
計算部3が算出しくステップ53) 、B軸回りの現在
値及びC軸回りの現在値により工具軸の方向θ。及びθ
。を工具軸方向計算部4が算出する(ステップ54)。
First, in step S1, the tool axis direction feed command human power unit 1 checks whether there is a command for the direction of the tool axis from the part program.
), if not, the manual tool axial direction feed input unit 2 checks whether or not the tool axis is being fed manually (step S2), and if the tool is not being fed manually, the process is terminated. on the other hand,
If there is a command in the direction of the tool ITlh in the judgment step S1, or if the tool axis is manually fed in the judgment step S2, the feed unit amount Δ■ per unit time in the direction of the tool axis is set in the 1h direction during the tool. The feed unit amount calculation section 3 calculates the direction θ of the tool axis based on the current value around the B-axis and the current value around the C-axis (step 53). and θ
. The tool axis direction calculation unit 4 calculates (step 54).

X、Y、Z各軸方向送り単位量計算部6は、工具軸の方
向の単位時間当りの送り単位量Δ■及び工具軸の方向θ
、からZiThb方向単位量ΔZ位置D方向単位量ΔD
を算出しくステップS5)、ざらにD方向送り単位量Δ
D及び工具軸の方向θ。からX軸方向単位量ΔX及びY
軸方向単位量ΔYを算出する(ステップ5B)。そして
、X’1Mh方向単位量ΔX位置軸方向単位量ΔY及び
Z軸方向単位量ΔZを出力して、X軸モータ(MXH2
,Y軸モータ(MY)1:l及びZIIilhモータ(
MZ)14を駆動しくステップS7)、工具軸の送りが
終了したか否かを確認しくステップS8)、送りが終了
していない場合にはステップS7ヘリターンし、終了し
た場合にはすべての処理を終了する。
The feed unit amount calculation unit 6 in each of the X, Y, and Z axis directions calculates the feed unit amount Δ■ per unit time in the direction of the tool axis and the direction θ of the tool axis.
, from ZiThb direction unit amount ΔZ position D direction unit amount ΔD
Calculate step S5), roughly D direction feed unit amount Δ
D and the direction θ of the tool axis. From X-axis direction unit amount ΔX and Y
An axial unit amount ΔY is calculated (step 5B). Then, the unit amount in the X'1Mh direction ΔX position, the unit amount in the axial direction ΔY and the unit amount in the Z-axis direction ΔZ are output, and the X-axis motor (MXH2
, Y-axis motor (MY) 1:l and ZIIilh motor (
MZ) 14 (step S7), check whether the tool axis has finished feeding or not (step S8); if the feeding has not finished, return to step S7; if finished, complete the process. finish.

次に、前記送り単位量の計算方法の実施例を、添付図面
を参照して説明する。
Next, an embodiment of the method for calculating the feed unit amount will be described with reference to the accompanying drawings.

第3図は主軸クイル107の先端部108における各I
r1i1方向を示し、第4図は第3図の関係をベクトル
表示したものであり、第5図(A)はZ−D平面を第4
図中のaの矢印方向へ見たものを示し、第5図(ロ)は
X−Y平面を第4図中のbの矢印方向へ見たものを示す
。第5図(八)に示すように工具軸の方向θ。は、ZI
IIlkの負方向から工具軸の正方向へ(Y軸止方向に
対する右ネジの法則)の回転角度を示し、工具軸の方向
θ。はxllIllIの正方向からDIlilbの正方
向へ(Z軸止方向に対する右ネジの法則)の回転角度を
示している。そして、工具軸の方向の単位時間当りの送
り単位R1Δ■は、工具’ll1l+の傾き0口を用い
て次式によりZ !1111方向単位蚕ΔZ及び水平方
向A1位量ΔDに分配される。
FIG. 3 shows each I at the tip 108 of the main shaft quill 107.
Figure 4 shows the relationship in Figure 3 as a vector, and Figure 5 (A) shows the Z-D plane in the 4th direction.
The figure shows what is seen in the direction of the arrow a in the figure, and FIG. 5(b) shows what is seen in the X-Y plane in the direction of the arrow b in FIG. The direction θ of the tool axis as shown in FIG. 5 (8). Ha, ZI
Indicates the rotation angle from the negative direction of IIlk to the positive direction of the tool axis (right-handed screw rule with respect to the Y-axis stop direction), and the direction θ of the tool axis. indicates the rotation angle from the positive direction of xllIllI to the positive direction of DIlilb (right-handed screw rule with respect to the Z-axis stop direction). Then, the feed unit R1Δ■ per unit time in the direction of the tool axis is determined by Z! using the following formula using the inclination of the tool 'll1l+ is 0. It is distributed into 1111 direction unit silkworm ΔZ and horizontal direction A1 position amount ΔD.

ΔZ −−ΔV−cos  θn  −−(+)ΔD 
−−Δ■・ sin  θ。 ・・・・・・(2)さら
に、上記(2)式で求められた水平方向単位量ΔDは、
工具軸の方向θ。を用いて次式にJ:すX軸方向単位量
ΔX及びY軸方向単位量ΔYに分配される。
ΔZ −−ΔV−cos θn −−(+)ΔD
−−Δ■・sin θ. ......(2) Furthermore, the horizontal direction unit amount ΔD obtained by the above equation (2) is
Tool axis direction θ. Using the following equation, J: is distributed into a unit amount ΔX in the X-axis direction and a unit amount ΔY in the Y-axis direction.

ΔX−ΔD−cos  θ。・・・・・・ (3)ΔY
 −ΔD−sin  θc ・・・・=  (4)以上
のようにして、上記式(1) 、 (3)及び(4)式
から各1tlb単位量を求めることかできる。
ΔX−ΔD−cos θ. ...... (3) ΔY
-ΔD-sin θc . . . = (4) As described above, each 1 tlb unit amount can be determined from the above equations (1), (3), and (4).

(発明の効果) 以上のように本発明方式によれば、工具軸の方向の送り
量を指令するだけで自動的にX、Y、Z各軸の送りg位
置に分配して、工具を自動あるいは手動で動作させるこ
とができるので斜め加工も容易になり、大幅な工数削減
を図れると共に、異常時に手動操作で工具を退避できる
ので安全面にも優れている。
(Effects of the Invention) As described above, according to the method of the present invention, simply by commanding the feed amount in the direction of the tool axis, the feed amount is automatically distributed to the feed g position of each of the X, Y, and Z axes, and the tool is automatically moved. Alternatively, since it can be operated manually, diagonal machining becomes easier and the number of man-hours can be significantly reduced.In addition, the tool can be manually evacuated in the event of an abnormality, which is excellent in terms of safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式を実現する装面の主要部の概略を示
すブロック構成図、第2図は本発明方式の動作を説明す
るフローチャート、第3図は工具部分の各軸の位置関係
を示す図、第4図及び第5図(A) 、 ([1)は各
軸の送り単位量の計算方法を説明する図、第6図(A)
及び(ロ)は本発明方式に係わるNG自由曲面加工機の
正面図及び右側面図、第7図(八) 、 ([l)は本
発明方式に係わるNG自由曲面加工機の主軸タイル先端
部の斜視図を示す。 l・・・工具軸方向送り指令入力部、2・・・手動工具
軸方向送り人力部、3・・・工具軸方向送り単位4Hi
計算部、4・・・工具軸方向計算部、5・・・X、Y、
Z各軸の分配係数計算部、6・・・X、Y、Z各軸方向
送り中位量81算部、7・・・x!ll1lI駆動制御
部、8・・・YIl’+l+駆動制御部、9・・・Z軸
駆動制御部、10・・・B ’hl+回りの現在値、1
1・・・C軸回りの現在値、12・・・X’ht+ −
1−−タ(MX)、13−Y軸モータ(MY)、l 4
−Z 軸モータ(MZ)。 某 2 日 f−3図 Z+ (,4) 藁 7 区
Fig. 1 is a block configuration diagram showing the outline of the main parts of the mounting system that realizes the method of the present invention, Fig. 2 is a flowchart explaining the operation of the method of the present invention, and Fig. 3 shows the positional relationship of each axis of the tool part. Figures 4 and 5 (A), ([1) are diagrams explaining how to calculate the feed unit amount of each axis, Figure 6 (A)
and (b) are the front view and right side view of the NG free-form surface machining machine according to the present invention method, FIG. A perspective view of the figure is shown. l...Tool axial direction feed command input section, 2...Manual tool axial direction feed manual section, 3...Tool axial direction feed unit 4Hi
Calculation unit, 4... Tool axis direction calculation unit, 5... X, Y,
Distribution coefficient calculation unit for each Z axis, 6... Median feed amount 81 calculation unit for each of the X, Y, and Z axes, 7...x! ll1lI drive control unit, 8...YIl'+l+ drive control unit, 9...Z-axis drive control unit, 10...Current value around B 'hl+, 1
1...Current value around the C axis, 12...X'ht+ -
1 - motor (MX), 13 - Y-axis motor (MY), l 4
-Z axis motor (MZ). Certain 2 days f-3 map Z+ (,4) Straw 7 wards

Claims (1)

【特許請求の範囲】[Claims] 工具軸の方向を任意に変更できるNC工作機械の工具軸
方向加工方式において、前記工具軸の方向の送り指令を
読取り、当該工具軸の方向の単位時間当りの送り単位量
を求めると共に、前記工具軸の位置を読取り、当該工具
軸の方向を求め、前記送り単位量及び前記工具軸の方向
からX、Y、Z各軸方向単位量を計算して前記工具軸方
向へ工具を動作させるようにしたことを特徴とするNC
工作機械における工具軸方向加工方式。
In a tool axis direction machining method of an NC machine tool in which the direction of the tool axis can be arbitrarily changed, the feed command in the direction of the tool axis is read, the feed unit amount per unit time in the direction of the tool axis is determined, and the feed command in the direction of the tool axis is determined. The position of the axis is read, the direction of the tool axis is determined, and the unit amount in each of the X, Y, and Z axes is calculated from the feed unit amount and the direction of the tool axis, and the tool is moved in the direction of the tool axis. NC characterized by having done
Tool axial machining method for machine tools.
JP30324486A 1986-12-19 1986-12-19 Tool axial machining system in numerically controlled machine tool Pending JPS63156632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30324486A JPS63156632A (en) 1986-12-19 1986-12-19 Tool axial machining system in numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30324486A JPS63156632A (en) 1986-12-19 1986-12-19 Tool axial machining system in numerically controlled machine tool

Publications (1)

Publication Number Publication Date
JPS63156632A true JPS63156632A (en) 1988-06-29

Family

ID=17918609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30324486A Pending JPS63156632A (en) 1986-12-19 1986-12-19 Tool axial machining system in numerically controlled machine tool

Country Status (1)

Country Link
JP (1) JPS63156632A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277860A (en) * 1992-03-31 1993-10-26 Makino Milling Mach Co Ltd Six shaft control machine tool
JP2008529808A (en) * 2005-02-09 2008-08-07 シーメンス アクチエンゲゼルシヤフト Tool head for moving the tool on multiple axes
WO2009098957A1 (en) * 2008-02-08 2009-08-13 Tsudakoma Kogyo Kabushikikaisha Spindle head for machine tool
JP2010094800A (en) * 2008-10-16 2010-04-30 Nasada:Kk Method and apparatus for processing end face of carbon fiber reinforced plastic laminated plate or the like
JP2011016226A (en) * 2010-10-21 2011-01-27 Mitsubishi Heavy Ind Ltd Method for correcting cutting edge position

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277860A (en) * 1992-03-31 1993-10-26 Makino Milling Mach Co Ltd Six shaft control machine tool
JP2008529808A (en) * 2005-02-09 2008-08-07 シーメンス アクチエンゲゼルシヤフト Tool head for moving the tool on multiple axes
WO2009098957A1 (en) * 2008-02-08 2009-08-13 Tsudakoma Kogyo Kabushikikaisha Spindle head for machine tool
US7938603B2 (en) 2008-02-08 2011-05-10 Tsudakoma Kogyo Kabushiki Kaisha Spindle head for machine tool
JP2010094800A (en) * 2008-10-16 2010-04-30 Nasada:Kk Method and apparatus for processing end face of carbon fiber reinforced plastic laminated plate or the like
JP2011016226A (en) * 2010-10-21 2011-01-27 Mitsubishi Heavy Ind Ltd Method for correcting cutting edge position

Similar Documents

Publication Publication Date Title
EP1982793A1 (en) Universal head and machine tool with universal head
EP2045677A2 (en) Numerical controller having workpiece setting error compensation means
KR20140119241A (en) Laser-assisted Turn-Mill System of 5-axis Machining center
JPS61274801A (en) Numerical control lathe
US20120076598A1 (en) Milling machine for producing toothed wheels
US4404507A (en) Forming contours
JPH08118205A (en) Main spindle normal direction control method of numerically controlled machine tool
JPS62237504A (en) Numerical controller
EP0407589B1 (en) Nc instruction system
JPS63156632A (en) Tool axial machining system in numerically controlled machine tool
JPH0715724Y2 (en) Grinding wheel reconditioning device
JPH089124B2 (en) Free curved surface processing method
JPS62163109A (en) Numerical controller
JPH03251301A (en) Composite lathe
JPH10143213A (en) Multi-surface working machine and multi-surface working method
JPS6094255A (en) Working by machine tool
JP2019177469A (en) Machine tool and smoothing method
JPH11179628A (en) Nc machine tool
JP2845711B2 (en) Machining method of work with character line
JPH07185901A (en) Method for controlling superposed machining and its device numerical control
CN216178383U (en) CNC multi-axis intelligent adjusting mechanism for jewelry pattern-cutting machining
JP2898162B2 (en) Character line processing method
KR100738395B1 (en) Ultra narrow vertical machining center with c-axis table substituted for x-axis
KR930001016B1 (en) Machine control apparatus
JPH01159156A (en) Program preparation method for five-axis control type nc machine tool