JPS63154202A - Reducing method for residual stress in h-shape steel - Google Patents

Reducing method for residual stress in h-shape steel

Info

Publication number
JPS63154202A
JPS63154202A JP29754186A JP29754186A JPS63154202A JP S63154202 A JPS63154202 A JP S63154202A JP 29754186 A JP29754186 A JP 29754186A JP 29754186 A JP29754186 A JP 29754186A JP S63154202 A JPS63154202 A JP S63154202A
Authority
JP
Japan
Prior art keywords
web
flange
residual stress
steel
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29754186A
Other languages
Japanese (ja)
Inventor
Susumu Katayama
進 片山
Yoshio Yoshimura
芳村 嘉夫
Teruyuki Nakanishi
輝行 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29754186A priority Critical patent/JPS63154202A/en
Publication of JPS63154202A publication Critical patent/JPS63154202A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To reduce residual stresses, to increase a web height, and to reduce a web thickness by elongating the web in its height direction when a temp. of a part of flanges is not higher than the Ar1 transformation point. CONSTITUTION:A shape steel 1 is held by a web elongation device 3 installed in the downstream of a finishing rolling mill; a web 2 is elongated in its height direction when the temp. of at least one part of flanges is not higher than the Ar1 transformation point. A desirable working ratio for the web 2 is 0.5-2%. A web shape of the H shape steel is improved because residual stresses in the steel is remarkably reduced by this method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、H形鋼に内在する残留応力を著しく軽減する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for significantly reducing the residual stress inherent in H-section steel.

〈従来の技術〉 H形鋼の断面形状は、第3図に示す如く通常フランジ1
の厚さがウェブ2の厚さよりも厚くなっており、またこ
の形状の状態で圧延されるから、フランジ部の冷却水は
落下するがウェブ部の冷却水はそのまま残留するので、
熱延過程でウェブ2での冷却速度がフランジ1に比較し
て速くなる傾向があり、フランジに比ベラニブの温度は
約150℃くらい低く、これが冷却後に大きな残留応力
を発生させる原因となる(例えば、鉄と鋼、69.m3
 (+983)、 412参照)。iIH形鋼おける残
留応力は、一般的には第4図に示すような分布傾向にな
り、例えば、矢印で示すa方向を引張応力、b方向を圧
縮方向とすると、フランジ1の中央部は引張応力となり
、フランジlの幅両端やウェブ2には圧縮応力が生ずる
。また、場合によっては、フランジlの幅側側も引朱応
力になることがある。
<Prior art> The cross-sectional shape of H-beam steel is usually flange 1 as shown in Fig. 3.
is thicker than the thickness of the web 2, and since it is rolled in this shape, the cooling water in the flange part falls, but the cooling water in the web part remains as it is.
During the hot rolling process, the cooling rate of web 2 tends to be faster than that of flange 1, and the temperature of veranib is about 150°C lower than that of the flange, which causes large residual stress to occur after cooling (e.g. , iron and steel, 69.m3
(+983), see 412). Residual stress in iIH section steel generally tends to be distributed as shown in Figure 4. For example, if the a direction indicated by the arrow is tensile stress and the b direction is compressive direction, then the central part of flange 1 is under tensile stress. This causes stress, and compressive stress occurs at both ends of the width of the flange l and at the web 2. Further, depending on the case, the width side of the flange l may also become tensile stress.

圧延H形鋼では、−最にフランジIg−/ウェブ厚、ウ
ェブ高さ77572幅が大きくなるほどウェブの圧縮応
力の最大値は大きくなる傾向にある。そこで、Hli”
ilに残留応力が存在すると、材料の変形を起し、耐力
の低下、形状不良あるいは切断加工時の割れなどの重大
な欠陥を生ずる原因となる。
In rolled H-section steel, the maximum value of the compressive stress of the web tends to increase as the width of the flange Ig/web thickness and web height 77572 increases. Therefore, Hli”
The presence of residual stress in il causes deformation of the material, causing serious defects such as a decrease in yield strength, poor shape, and cracks during cutting.

上記のようなことから、H形鋼の残留応力の軽減方法と
しては、種々の方法が提案されており、例えば、前記温
度差を縮める方法としては、特公昭41−20336号
公報や特開昭47−33012号公報などには圧延中も
しくは冷却中におけるフランジ部を冷却する方法が、特
開昭48−4458号公報においては逆ウェブを保温す
る方法が、また、残留応力を減少さ・Uる方法としては
、特開昭56−83+、7号公報においてフランジ部を
延伸圧延する方法が開示されている。
For the above reasons, various methods have been proposed to reduce the residual stress of H-shaped steel. No. 47-33012 discloses a method of cooling the flange portion during rolling or cooling, and JP-A No. 48-4458 discloses a method of insulating the reverse web to reduce residual stress. As a method, JP-A-56-83+, No. 7 discloses a method in which the flange portion is stretched and rolled.

〈発明が解決しようとする問題点〉 しかしながら、フランジ水冷法では、ウェブへの冷却水
の飛散が避は難く、それにより温度差が一層助長する恐
れがあり、またウェブ保温法では、保温材をかぶせるの
に長時間を要し、圧延サイクルタイムが長くなるとか、
保温材の処理作業が難かしいなどの欠点があり、一方、
フランジ延伸圧延法による場合は、微小な圧下を上下左
右のフランジ4面に作用させねばならず、厚板圧延など
と比較して、厚みバラツキの大きいユニバーサル圧延法
で製造されるH形鋼圧延では、複雑な制御を必要とし、
必らずしも満足すべきものが得られない問題がある。
<Problems to be Solved by the Invention> However, in the flange water cooling method, it is difficult to avoid the splashing of cooling water onto the web, which may further increase the temperature difference, and in the web heat insulation method, it is difficult to avoid the splashing of cooling water onto the web. It takes a long time to cover, which increases the rolling cycle time.
There are disadvantages such as the difficulty of processing the insulation material, but on the other hand,
When using the flange stretch rolling method, a small reduction must be applied to the four surfaces of the upper, lower, left, and right flanges, and compared to thick plate rolling, H-beam steel manufactured using the universal rolling method has a large thickness variation. , requires complex control,
There is a problem that it is not always possible to obtain something satisfactory.

また、ウェブ厚が薄り、ウェブ高さの高いH形鋼の場合
においては、上記いずれの方法によってもウェブ波打ち
現象が発生ずるため、製造が不可能である。
Furthermore, in the case of an H-beam steel with a thin web and a high web height, it is impossible to manufacture the steel by any of the above methods because the web waving phenomenon occurs.

本発明は、上記のような事情にjPみなされたものであ
って、加工作業が容易でしかも効果のすぐれたH形鋼の
残留応力軽減方法を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a method for reducing residual stress in H-beam steel that is easy to work with and is highly effective.

〈問題点を解決するための手段〉 本発明は、少なくともフランジの一部がAr+変態点以
下の温度状態にあるとき、ウェブをH形鋼のウェブの高
さ方向に伸張加工することを特徴とするH形鋼の残留応
力軽減方法である。
<Means for Solving the Problems> The present invention is characterized in that the web is stretched in the height direction of the web of the H-section steel when at least a part of the flange is at a temperature below the Ar + transformation point. This is a method for reducing residual stress in H-beam steel.

く作 用〉 本発明者らは、H形鋼の残留応力の軽減について種々検
討した結果、残留応力発生の主な原因は、ウェブがフラ
ンジに比べ仕上温度が低く、冷却にともないフランジが
ウェブに比べ相対的に短かくなって、フランジに引張応
力が、ウェブに圧縮応力が生じることにあるのに着目し
て、冷却中にこれらを塑性変形によって是正することが
有効であることを見出した。すなわち、フランジがウェ
ブに比べ相対的に短かくなる量に相当する分だけウェブ
を圧延方向の長手方向(以下り方向という)に収縮せし
めるためにポアソン比の効果で知られるように、ウェブ
を圧延方向と直角なウェブ高さ方向(以下C方向という
)に伸張すればよい。
As a result of various studies on reducing residual stress in H-beam steel, the present inventors found that the main cause of residual stress is that the finish temperature of the web is lower than that of the flange, and as the flange cools, the flange becomes closer to the web. They focused on the fact that tensile stress is generated in the flange and compressive stress is generated in the web due to the relatively short length, and found that it is effective to correct these by plastic deformation during cooling. In other words, in order to shrink the web in the longitudinal direction of the rolling direction (hereinafter referred to as the "downward direction") by an amount corresponding to the amount by which the flange becomes relatively shorter than the web, the web is rolled as known from the effect of Poisson's ratio. What is necessary is just to extend in the web height direction (hereinafter referred to as the C direction) perpendicular to the direction.

なお、フランジがAr、変態点以上のときは、材料の降
伏点が低く、残留応力の生じることは少ないため、ウェ
ブC方向伸張によるウェブし方向収縮を行ってもその実
施効果が低い。
Note that when the temperature of the flange is Ar, the temperature is higher than the transformation point, the yield point of the material is low and residual stress is less likely to occur, so even if the web direction shrinkage is performed by stretching the web in the C direction, the implementation effect is low.

以下、図に従って詳細に説明する。A detailed explanation will be given below according to the drawings.

第1図は、横軸に時間、縦軸に材料温度および熱応力を
とり、時間にともなう材料温度および熱応力の変化を1
例として表わしたものである。
Figure 1 shows time on the horizontal axis and material temperature and thermal stress on the vertical axis, and shows changes in material temperature and thermal stress over time.
This is shown as an example.

図において、Ia 、 lbは、それぞれ通常冷却時に
おける仕上圧延終了後から室温までのフランジ中央およ
びウェブ中央の冷却曲線を示し、lb 、 2bは、そ
れぞれ通常冷却時におけるフランジ中央およびウェブ中
央の熱応力線、または、D、Hは、それぞれ本発明性実
施によるフランジ中央およびウェブ中央の熱応力線を示
す。
In the figure, Ia and lb indicate the cooling curves of the flange center and web center, respectively, from the end of finish rolling to room temperature during normal cooling, and lb and 2b indicate the thermal stress at the flange center and web center, respectively, during normal cooling. The lines D, H indicate the mid-flange and mid-web thermal stress lines, respectively, according to the inventive implementation.

通常冷却時においては、時間経過に応じて、フ。During normal cooling, the temperature changes over time.

ランジ°中夫には熱応力線!1+−が0−A−1の変遷
によって、引張−・圧縮−・引張と熱応力が作用し、一
方、ウェブ中央には熱応力綿2bが〇−・E−1Jと変
化して、逆に圧縮−引張−圧11hの熱応力が作用して
、結果的には室温においてフランジには引張残留応力1
が、ウェブには圧縮残留応力jが生成するのである。
Lunge ° Heat stress line in middle husband! Due to the transition of 1+- to 0-A-1, tension-, compression-, tensile and thermal stress act, and on the other hand, the thermal stress cotton 2b changes to 〇-・E-1J in the center of the web, and vice versa. A compressive-tension-pressure thermal stress of 11 h acts on the flange, resulting in a tensile residual stress of 1 h at room temperature.
However, compressive residual stress j is generated in the web.

それ故、少なくともフランジの一部がAr(変態点以下
の温度において、ウェブの圧延力向と直角のC方向の伸
張加工を施す本発明を適用Vることにより、ウェブはL
方向に収縮され、残留応力が減少することになる。すな
わち、第1図に示すように、うニブC方向伸張加工によ
り、フランジ中央の熱応力はA点からB点に(多行し、
ウェブ中央の熱応力はE点からF点に移行する。そして
、冷却完了後即ち室温においては、それぞS、C,Cの
残留応力を示すことになる。この残留応力は、通常の冷
却によって生じた残留応力1.Jよりはるかに小さく、
ウェブ伸張加工の効果は明らかである。
Therefore, by applying the present invention in which at least a part of the flange is subjected to Ar (at a temperature below the transformation point, stretching processing is performed in the C direction perpendicular to the direction of rolling force of the web, the web can be
direction, resulting in a reduction in residual stress. In other words, as shown in Fig. 1, due to the stretching process in the C direction of the nib, the thermal stress at the center of the flange is transferred from point A to point B (in multiple lines,
The thermal stress at the center of the web moves from point E to point F. After cooling is completed, that is, at room temperature, residual stress of S, C, and C will be exhibited, respectively. This residual stress is the residual stress 1. caused by normal cooling. Much smaller than J
The effect of web stretching is obvious.

なお、ウェブC方向伸張量は、小さすぎると、残留応力
の減少にならず効果かうすいか、一方大きすぎても製品
寸法の変動や材質の変化が生して好ましくない。本発明
者らの経験によれば、0゜5〜2!1石の伸びを与える
のが適当であった。すなわち、0.5%以下では、残留
応力は減少せず、2%以上では伸びすぎて製品寸法変動
や材質変化が生じるので好ましくない。この延伸量は、
温度、材質あるいは製品寸法に応して適当な値が存在し
、冷却条件とあわせて最適値を選定する必要がある。
It should be noted that if the amount of web C-direction elongation is too small, the residual stress will not be reduced and the effect will be weak, whereas if it is too large, the product dimensions will fluctuate and the material will change, which is not preferable. According to the experience of the present inventors, it is appropriate to give an elongation of 0.5 to 2.1 stone. That is, if it is less than 0.5%, the residual stress will not be reduced, and if it is more than 2%, it will elongate too much, causing product dimensional fluctuations and material changes, which is not preferable. This amount of stretching is
There are appropriate values depending on the temperature, material, or product dimensions, and it is necessary to select the optimal value in conjunction with the cooling conditions.

また、本発明方法による伸張は、1回に限定されるもの
ではなく、複数回にわたっ′ζ漸次ウェブC方向の伸張
を施してもよい。
Further, the stretching according to the method of the present invention is not limited to one time, but may be performed multiple times gradually in the web C direction.

〈実施例〉 以下に、本発明の実施例を第2図に基づいて説明する。<Example> An embodiment of the present invention will be described below based on FIG. 2.

図において、ウェブ伸張装置3は、ロール3aが上下左
右のフランジ1にそれぞれ対応して配置された4個から
構成され、図示しないロール位置調節装置および駆動装
置により、ロール位置が設定され駆動される。
In the figure, the web stretching device 3 is composed of four rolls 3a arranged corresponding to the upper, lower, left, and right flanges 1, and the roll position is set and driven by a roll position adjustment device and a drive device (not shown). .

このように構成されたウェブ伸張装置3を、仕上圧延機
の下流に配置し、第1表に示ず条件ごウェブC方向に伸
張加工を施した。その実施結果を従来技術による比較例
とともに第1表に併せて示した。
The web stretching device 3 configured as described above was placed downstream of the finishing rolling mill, and stretching was performed in the web C direction under conditions not shown in Table 1. The results are shown in Table 1 together with comparative examples based on the prior art.

なお、この実施例に用いたF(形鋼の寸法は、いずれも
ウェブ高さ500mM、フランジ幅200m5、ウェブ
厚IQms、フランジ厚16m亀で、鋼種は5S41で
ある。
The dimensions of the F shape steel used in this example were a web height of 500 mm, a flange width of 200 m, a web thickness of IQms, and a flange thickness of 16 m, and the steel type was 5S41.

第1表から、明らかなように、本発明例はいずれも、比
較例に比し、冷却後における残留応力は、大幅に減少し
ていることがわかる。
As is clear from Table 1, the residual stress after cooling in all of the invention examples is significantly reduced compared to the comparative example.

〈発明の効果〉 以上説明したように、本発明によれば、ウェブに伸張加
工を施すようにしたので、II形!:21の残留応力を
著しく軽減させることができ、特に、従来ウェブ波打ち
現象のため′!A造不能であったウェブ厚が薄く、ウェ
ブ高さの高いH形鋼の装造が可ji旨である。
<Effects of the Invention> As explained above, according to the present invention, since the web is stretched, it is possible to form a type II! :21 residual stress can be significantly reduced, especially due to the conventional web waving phenomenon'! It is now possible to use H-beam steel, which has a thinner web and a higher web height, which was impossible to manufacture in A.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、FI形鋼のフランジ中央およびウェブ中央の
温度推移および熱応力の変化を説明する線図、第2図は
、本発明の一実施例を示す側面図およびA−A矢視断面
図、第3図は、II形!+4の形状を示す断面図、第4
図は、H形鋼の残留応力分布の説明図である。 l・・・フランジ、  2・・・ウェブ、  3・・・
ウェブ伸張装置、 3a・・・ロール 特許出願人    川崎製鉄株式会社 第  1  図 第  2  図 (a) A (b) 第  3  図 第4図
FIG. 1 is a diagram illustrating the temperature transition and thermal stress change at the center of the flange and web of the FI section steel, and FIG. 2 is a side view and cross section taken along the line A-A showing an embodiment of the present invention. Figure, Figure 3 is type II! Cross-sectional view showing the shape of +4, 4th
The figure is an explanatory diagram of the residual stress distribution of H-beam steel. l...flange, 2...web, 3...
Web stretching device, 3a...Roll Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 (a) A (b) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 少なくともフランジの一部がAr_1変態点以下の温度
状態にあるとき、ウェブをH形鋼のウェブの高さ方向に
伸張加工することを特徴とするH形鋼の残留応力軽減方
法。
A method for reducing residual stress in an H-section steel, comprising stretching the web in the height direction of the H-section steel when at least a part of the flange is at a temperature below the Ar_1 transformation point.
JP29754186A 1986-12-16 1986-12-16 Reducing method for residual stress in h-shape steel Pending JPS63154202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29754186A JPS63154202A (en) 1986-12-16 1986-12-16 Reducing method for residual stress in h-shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29754186A JPS63154202A (en) 1986-12-16 1986-12-16 Reducing method for residual stress in h-shape steel

Publications (1)

Publication Number Publication Date
JPS63154202A true JPS63154202A (en) 1988-06-27

Family

ID=17847872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29754186A Pending JPS63154202A (en) 1986-12-16 1986-12-16 Reducing method for residual stress in h-shape steel

Country Status (1)

Country Link
JP (1) JPS63154202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127901A (en) * 1988-03-30 1990-05-16 Sumitomo Metal Ind Ltd Manufacture of h-shape steel having thin web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127901A (en) * 1988-03-30 1990-05-16 Sumitomo Metal Ind Ltd Manufacture of h-shape steel having thin web

Similar Documents

Publication Publication Date Title
JP4208101B2 (en) Method and rolling equipment for rolling wide hot strips with CPS equipment
JPS63154202A (en) Reducing method for residual stress in h-shape steel
JPS5834130A (en) Production of h-beam having less residual stress
JPH0255605A (en) Manufacture of very thick steel plate of excellent internal quality
JPS601926B2 (en) Method for producing steel material with uniform internal quality
JPH10506577A (en) How to make flanged structural products directly from slabs
JPS5837042B2 (en) Manufacturing method of shaped steel
KR101990987B1 (en) Rolling apparatus for controlling width and thickness of strip
US1885861A (en) Method of making rails
JPH0824926B2 (en) Rolling method for profile with flange
JPH0275404A (en) Roll for drafting web thickness of shape stock
JPS5997702A (en) Hot rolling method of channel steel and edger roll used therein
JPS59223107A (en) Shape control device for rolling mill
JPH04288903A (en) Method for rough rolling z shaped steel sheet pile
JP2001047102A (en) Manufacture of h-shape steel
JPS63140703A (en) Production of extremely thin web h section steel
JP3283139B2 (en) Flange shape control method for section steel
JP2002307101A (en) Method for bloming continuously cast steel ingot
JPH09220606A (en) Method for controlling thickness of shapes
JPS63171216A (en) Manufacture of shape steel
JPS5833300B2 (en) Manufacturing method of scalene angle shape steel and similar shape steel
JPS61115602A (en) Rolling method of flat steel
JPS63215303A (en) Method for bloom rolling ingot
JP2001079601A (en) Rolling method for preventing crack by rolling on continuously cast billet
JPH0550144A (en) Tension leveler and method for leveling