JPS63153225A - Manufacture of agglomerate - Google Patents

Manufacture of agglomerate

Info

Publication number
JPS63153225A
JPS63153225A JP29669386A JP29669386A JPS63153225A JP S63153225 A JPS63153225 A JP S63153225A JP 29669386 A JP29669386 A JP 29669386A JP 29669386 A JP29669386 A JP 29669386A JP S63153225 A JPS63153225 A JP S63153225A
Authority
JP
Japan
Prior art keywords
pellets
calcined
ore
reduction
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29669386A
Other languages
Japanese (ja)
Other versions
JPH0425327B2 (en
Inventor
Noboru Sakamoto
登 坂本
Hidetoshi Noda
野田 英俊
Hideomi Yanaka
谷中 秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29669386A priority Critical patent/JPS63153225A/en
Priority to AU82221/87A priority patent/AU600777B2/en
Priority to IN357/BOM/87A priority patent/IN167132B/en
Priority to CA000554134A priority patent/CA1324493C/en
Priority to US07/131,660 priority patent/US4851038A/en
Priority to EP93111020A priority patent/EP0578253B1/en
Priority to DE3751747T priority patent/DE3751747T2/en
Priority to EP87118525A priority patent/EP0271863B1/en
Priority to DE3752270T priority patent/DE3752270T2/en
Priority to BR8706790A priority patent/BR8706790A/en
Priority to KR1019870014415A priority patent/KR910001325B1/en
Priority to CN87108122A priority patent/CN1016184B/en
Publication of JPS63153225A publication Critical patent/JPS63153225A/en
Publication of JPH0425327B2 publication Critical patent/JPH0425327B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture agglomerates having a high rate of reduction and a low rate of reduction powdering by reducing the SiO2 content in agglomerates to a specified range when the agglomerates for a blast furnace are manufactured by adding a flux to fine iron ore, pelletizing them, coating the surfaces of the resulting green pellets with coke breeze and firing the coated pellets. CONSTITUTION:Powder of quick lime, slaked lime, limestone, bentonite, dolomite, water granulated blast furnace slag or the like as a flux is added to fine iron ore and mixed so as to regulate the ratio of CaO to SiO2 in the mixture to 1.0-2.5. The powdery starting material mixture is kneaded with water and pelletized by means of a discoid pelletizer to form green pellets of 3-13mm diameter. The pellets and coke breeze are charged into a second discoid pelletizer and pelletized to coat the surfaces of the pellets with 2.5-4.0wt% coke breeze. The coated pellets are fired to manufacture agglomerates contg. 0.5-5.0wt% SiO2 and having a high rate of reduction and a low rate of reduction powdering in a blast furnace.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高炉用または直接還元鉄用原料として好適
な焼成塊成鉱の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing calcined agglomerates suitable as raw materials for blast furnaces or directly reduced iron.

〔従来技術とその問題点〕[Prior art and its problems]

高炉用原料または直接還元製鉄用原料として、粉鉄鉱石
をペレット化して焼成した焼成塊成鉱が知られておシ、
使用が拡大されつつある。
Calcined agglomerate, which is made by pelletizing powdered iron ore and calcining it, is known as a raw material for blast furnaces or a raw material for direct reduction iron manufacturing.
Its use is expanding.

この焼成塊成鉱は、通常、次のように製造されている。This calcined agglomerate ore is usually produced as follows.

すなわち、粒径約81IB以下の粉鉄鉱石に、生石灰、
消石灰、石灰石、ベントナイト、高炉水砕スラグおよび
ドロマイト等のうちの少なくとも1つからなる媒溶剤を
、焼成塊成鉱中のCaO/SiO2の値が1.0〜2.
5程度となるように添加し、ミキサーで混合する。そし
て、得られた混合物をディスク型の第1の造粒機に供給
し、水を加えて、第1の造粒機により混合物を造粒し、
粒径が例えば約3〜13111の生ペレットに成形する
。次いで、得られた生ペレットをディスク型の第2の造
粒機に供給し、2.5〜4.Q wt%程度の粉コーク
スを添加して、第2の造粒機によシ生Rレットを更に造
粒し、これによって表面に粉コークスを被覆した生ペレ
ットを調製する。
That is, powdered iron ore with a particle size of about 81IB or less, quicklime,
A solvent consisting of at least one of slaked lime, limestone, bentonite, granulated blast furnace slag, dolomite, etc. is used when the value of CaO/SiO2 in the calcined agglomerate is 1.0 to 2.
Add so that it is about 5% and mix with a mixer. Then, the obtained mixture is supplied to a disk-shaped first granulator, water is added, and the mixture is granulated by the first granulator,
It is formed into green pellets having a particle size of, for example, about 3 to 13,111 mm. Next, the obtained raw pellets are fed to a second disc-shaped granulator, and the steps 2.5 to 4. About Q wt % of coke powder is added and the raw R-lets are further granulated by a second granulator, thereby preparing raw pellets whose surfaces are coated with coke powder.

そして、このようにして得られた生ペレットを無端移動
グレード式焼成炉内に装入して、装入された生ペレット
の層を焼成炉のグレード上に乗って、焼成炉の乾燥帯、
点火帯および焼成帯を順次通過させる。乾燥帯において
は、生ペレットの層に上方から温度150〜350℃の
乾燥用ガスを吹込み、生ペレットを乾燥する。点火帯に
おいては、乾燥された生ペレットの層に上方から高温燃
焼ガスを吹込み、生ペレットの表面の粉コークスを点火
する。燃焼帯においては、粉コークスの燃焼によって生
じた高温燃焼ガスを生ペレット層を通って下方に吸引し
て、生ペレットを焼成温度まで加熱する。生ペレットは
、焼成帯における加熱によって、その表面に形成された
カルシウムフェライトおよびスラグの少なくとも1つに
より結合された焼成ペレットからなる、大きいブロック
状の塊りの焼成塊成鉱に焼成される。
The raw pellets obtained in this way are charged into an endless moving grade type kiln, and the layer of charged raw pellets is placed on the grade of the kiln, and then the drying zone of the kiln is placed.
Pass through the ignition zone and firing zone in sequence. In the drying zone, a drying gas at a temperature of 150 to 350° C. is blown into the layer of green pellets from above to dry the green pellets. In the ignition zone, high-temperature combustion gas is blown into the layer of dried green pellets from above to ignite the coke powder on the surface of the green pellets. In the combustion zone, the hot combustion gas produced by the combustion of coke breeze is sucked downward through the green pellet bed to heat the green pellets to the calcination temperature. The green pellets are calcined by heating in a calcining zone into large block-like masses of calcined agglomerates consisting of calcined pellets bound by at least one of calcium ferrite and slag formed on their surfaces.

そして、このようにして得られた大きいグロック状の塊
りの焼成塊成鉱を焼成炉の下流端から排出し、クラッシ
ャーによって破砕したのち、スクリーンによって篩分け
て、粒径3Wk未満の篩下げの焼成塊成鉱片を除去し、
かくして、複数個の焼成ペレットが結合した塊状の形の
最大粒径50謳程度焼成塊成鉱および単体の焼成ペレッ
トの形の粒径3〜13島程度の焼成塊成鉱が製造される
The large glock-like lumps of calcined agglomerate thus obtained are discharged from the downstream end of the calciner, crushed by a crusher, and then sieved by a screen to remove particles with a particle size of less than 3Wk. Remove calcined agglomerated ore pieces,
In this way, calcined agglomerate ore in the form of a plurality of calcined pellets combined with a maximum particle size of about 50 particles and calcined agglomerate ore in the form of a single calcined pellet with a particle size of about 3 to 13 particles are produced.

以上のようにして製造された焼成塊成鉱は、主として還
元性に優れた微細なカルシウムフェライトおよび微細な
ヘマタイトが多く形成されているので、優れた還元性を
有している。また、複数個の焼成ペレットが結合した塊
状の形の場合のみならず、単体の焼成ペレットの形の場
合にも、不規則な形状を有しているので、高炉内に装入
したときに、高炉内の中心部に偏って流れ込むことがな
く、且つ、焼成塊成鉱間に隙間が生ずるために、還元ガ
スの円滑な通過を阻害することがない。さらに、移送中
の衝撃等によって崩壊があっても、複数個の焼成ペレッ
トが結合した塊状の形の焼成塊成鉱が単体の焼成ペレッ
トに分離するだけなので、支障なく使用することができ
る。
The calcined agglomerate ore produced as described above has excellent reducibility, since it mainly contains a large amount of fine calcium ferrite and fine hematite, which have excellent reducibility. In addition, not only in the case of a lump-like shape in which multiple fired pellets are combined, but also in the case of a single fired pellet, it has an irregular shape, so when charged into a blast furnace, Since the reducing gas does not flow biasedly toward the center of the blast furnace, and gaps are formed between the fired agglomerated ores, smooth passage of the reducing gas is not obstructed. Furthermore, even if it collapses due to impact or the like during transportation, the calcined agglomerate, which is a lump of a plurality of calcined pellets combined, will simply separate into a single calcined pellet, so it can be used without any problem.

しかしながら、従来の焼成塊成鉱はs io2を5.5
〜6.Owt%程度含有していたため、還元率が60〜
70%程度と低く、また還元粉化率が35〜45%程度
と高かった。さらに、焼成塊成鉱が5i02  を5.
5〜6.0wt18度含有していることから、高炉のス
ラグ比も例えば360Kf/)ンと高く、燃料比(また
はコークス比)も例えば520Kf/)ンと高くなる難
点があった。
However, conventional calcined agglomerates have an sio2 of 5.5
~6. Since it contained about Owt%, the reduction rate was 60~
The reduction rate was low at about 70%, and the reduction powdering rate was high at about 35 to 45%. Furthermore, the calcined agglomerate has 5i02.
Since it contains 5 to 6.0 wt at 18 degrees Celsius, the slag ratio in the blast furnace is high, for example, 360 Kf/), and the fuel ratio (or coke ratio) is also high, for example, 520 Kf/).

〔発明の目的〕[Purpose of the invention]

この発明は、上述の現状に鑑み、粉鉄鉱石に媒溶剤を添
加、混合した混合物を造粒して生ペレットを成形し、得
られた生ペレットに粉コークスを被覆し、前記生ペレッ
トを無端移動グレード式焼成炉に装入して、焼成塊成鉱
を連続的に製造するに際して、焼成塊成鉱の還元率およ
び還元粉化率を向上させることを目的とするものである
In view of the above-mentioned current situation, this invention involves adding a solvent to powdered iron ore, granulating a mixed mixture to form green pellets, coating the obtained green pellets with coke powder, and making the green pellets endless. The purpose is to improve the reduction rate and reduction powdering rate of calcined agglomerate ore when the calcined agglomerate ore is charged into a moving grade kiln and continuously produced.

〔発明の概要〕[Summary of the invention]

この発明は、粉鉄鉱石に媒溶剤を添加、混合した混合物
をディスク型の造粒機で造粒して生ペレットを成形し、
得られた生ペレットに粉コークスを被覆し、前記生ベレ
ットを無端移動グレード式焼成炉に装入して連続的に焼
成し、かくして、焼成塊成鉱を連続的に製造する、焼成
塊成鉱の製造方法において、 前記粉鉄鉱石として、前記焼成塊成鉱中のSio2が帆
5〜5.Qvirt%となるように配合した粉鉄鉱石を
使用することに特徴を有するものである。
This invention involves adding a solvent to fine iron ore and granulating the mixture with a disk-type granulator to form raw pellets.
Calcined agglomerate ore, in which the obtained green pellets are coated with coke powder, and the green pellets are charged into an endless moving grade calciner and continuously calcined, thus continuously producing calcined agglomerate ore. In the manufacturing method, as the fine iron ore, Sio2 in the calcined agglomerate ore is 5 to 5. It is characterized by using powdered iron ore blended so as to have Qvirt%.

〔発明の構成〕[Structure of the invention]

以下、この発明の焼成塊成鉱の製造方法について詳述す
る。
Hereinafter, the method for producing calcined agglomerate ore of the present invention will be described in detail.

本発明者等は、粉鉄鉱石に媒溶剤を添加、混合した混合
物を造粒して生ペレットを成形し、得られた生ペレット
に粉コークスを被覆し、前記生ペレットを無端移動グレ
ード式焼成炉に装入して、焼成塊成鉱を連続的に製造す
るに際して、焼成塊成鉱の還元率および還元粉化率を向
上すべく、鋭意研究を重ねた。
The present inventors added a solvent to powdered iron ore, granulated the mixed mixture to form raw pellets, coated the obtained raw pellets with coke powder, and fired the raw pellets using an endless moving grade system. We have conducted extensive research in order to improve the reduction rate and reduction powdering rate of calcined agglomerate ore when charging it into a furnace to continuously produce calcined agglomerate ore.

従来、焼成塊成鉱中に5i02を5.0〜6.Owtチ
も含有していたのは、生ペレットの焼成時に、粉鉄鉱石
中の5i02に媒溶剤中のCaOと共にスラグを形成さ
せて、粉鉄鉱石同志を結合させ、塊状化させるためには
、焼成塊成鉱中の5io2含有率が約5.0w11以上
となるように、粉鉄鉱石中に5i02  が含有されて
いることが必要であるとされていたからである。
Conventionally, 5i02 was added to 5.0-6. The reason why Owt was also included was that when the raw pellets were fired, the 5i02 in the powdered iron ore was combined with CaO in the solvent to form slag, and in order to bond the powdered iron ore together and form agglomerates. This is because it was considered necessary that 5i02 be contained in the fine iron ore so that the 5io2 content in the calcined agglomerate ore is about 5.0w11 or more.

しかし、研究を進めたところ、粉鉄鉱石の造粒にドラム
型の造粒機を用い、しかも、粉鉄鉱石に媒溶剤のみなら
ず粉コークスをも添加して、造粒して得られた生硬レッ
ドの場合ならばともかく、粉鉄鉱石の造粒にディスク型
の造粒機を用い、しかも、粉コークスは粉鉄鉱石の造粒
後に表面に被覆するようにし、粉鉄鉱石には媒溶剤のみ
を添加して、造粒して得られた生ペレットの場合には、
造粒性が良く、球形の良好な塊まシに成形されているの
で、粉鉄鉱石中の5i02  含有量が少なくても、生
ペレットの焼成時に粉鉄鉱石中の5i02  に媒溶剤
中のCaOと共にスラグを形成させて、粉鉄鉱石同志を
結合させ、良好に塊状化適せることができることが判っ
た。従って、焼成塊成鉱の還元率および還元粉化率を向
上させることが可能となる。
However, as research progressed, it was discovered that a drum-type granulator was used to granulate powdered iron ore, and that powdered iron ore was granulated by adding not only a solvent but also coke powder. Regardless of the case of green hard red, a disk-type granulator is used to granulate the iron ore powder, coke powder is coated on the surface of the iron ore powder after granulation, and a solvent is used for the iron ore powder. In the case of raw pellets obtained by granulation with the addition of
It has good granulation properties and is formed into spherical lumps, so even if the 5i02 content in the iron ore powder is low, the 5i02 in the iron ore powder is mixed with CaO in the solvent when the raw pellets are fired. It has been found that slag can be formed together with powdered iron ore to bind together powdered iron ore, making it suitable for agglomeration. Therefore, it becomes possible to improve the reduction rate and reduction powdering rate of calcined agglomerate ore.

そこで、s i02  含有量の異なる配合の粒径約8
−以下の粉鉄鉱石の各々から調製した生ペレットを用い
、5io2  含有量を変化させて焼成塊成鉱を製造す
る実験を行なった。そして、焼成塊成鉱中の5i02 
 含有量と、還元率および還元粉化率並びに成品歩留り
および落下強度を調べた。
Therefore, the particle size of formulations with different s i02 contents is approximately 8
- Using green pellets prepared from each of the following fine iron ores, an experiment was conducted to produce calcined agglomerates by varying the 5io2 content. And 5i02 in calcined agglomerate ore
The content, reduction rate, reduction powdering rate, product yield, and falling strength were investigated.

その結果、焼成塊成鉱中の5i02  含有量を0.5
〜5 、 Owt%とすれば、焼成塊成鉱の還元率およ
び還元粉化率を大幅に向上でき、しかも、成品歩留りお
よび落下強度を低下させることがないことが判った。
As a result, the 5i02 content in the calcined agglomerate was reduced to 0.5
It was found that if the reduction rate and reduction powdering rate of the calcined agglomerate ore can be significantly improved by setting the reduction rate to 5.0% by weight, the product yield and falling strength will not be reduced.

第1図は、得られた焼成塊成鉱中の5iOz  含有量
と還元率との関係を示すグラフ、第2図は、同じく、5
tO2含有量と還元粉化率との関係を示すグラフ、第3
図は、同じく、5i02  含有量と落下強度との関係
を示すグラフ、第4図は、同じく、5io2  含有量
と成品歩留シとの関係を示すグラフである。
Fig. 1 is a graph showing the relationship between the 5iOz content and the reduction rate in the obtained calcined agglomerate, and Fig.
Graph showing the relationship between tO2 content and reduction powdering rate, 3rd
This figure is a graph showing the relationship between 5io2 content and drop strength, and FIG. 4 is a graph showing the relationship between 5io2 content and product yield.

第1図に示されるように、焼成塊成鉱の還元率は、焼成
塊成鉱中の5i02  含有量が多くなるにつれて低下
しているが、5iQz  含有量が0.5〜5.0wt
%の範囲内では80%以上と高い。そして、SiO2含
有量が5.Owt係を超えると、還元率は80%を下廻
り急激に低下する。焼成塊成鉱の還元粉化率は、第2図
に示されるように、焼成塊成鉱中のSiO2含有量が0
.5〜5.0wt%の範囲内では30チ以下になってい
るが、5io2  含有量が5.Owtチを超えると還
元粉化率は30%を土建る。
As shown in Fig. 1, the reduction rate of calcined agglomerates decreases as the 5i02 content in the calcined agglomerates increases, but when the 5iQz content increases from 0.5 to 5.0 wt.
Within the % range, it is as high as 80% or more. And the SiO2 content is 5. When the Owt limit is exceeded, the return rate drops rapidly below 80%. As shown in Figure 2, the reduction pulverization rate of calcined agglomerate ore is determined when the SiO2 content in the calcined agglomerate is 0.
.. Within the range of 5 to 5.0 wt%, it is less than 30%, but if the 5io2 content is 5. When the amount exceeds 100%, the reduction powdering rate is 30%.

一方、焼成塊成鉱の落下強度は、第3図に示されるよう
に、焼成塊成鉱中のSiO□ 含有量が多くなるにつれ
て増加しているが、SiO2含有量が0.5〜5.9w
t%の範囲内でも落下強度は約85チ以上あって、充分
に維持されている。焼成塊成鉱の成品歩留シは、第4図
に示されるように、焼成塊成鉱中の5102  含有量
が多くなるにつれて増加しているが、5i02  含有
量が0.5〜5.9wt%の範囲内でも成品歩留りは約
75%以上あって、充分に維持されてbる。
On the other hand, as shown in FIG. 3, the fall strength of calcined agglomerates increases as the SiO□ content in the calcined agglomerates increases; 9w
Even within the range of t%, the drop strength is approximately 85 inches or more, which is sufficiently maintained. As shown in Figure 4, the product yield of calcined agglomerate ore increases as the 5102 content in the calcined agglomerate increases; Even within this range, the product yield is approximately 75% or more, which is maintained satisfactorily.

なお、以上で、焼成塊成鉱中の5i02  含有量の下
限を0.5wt%までとしたのは、5i02  含有量
がQ 、 5 wt 4未満の焼成塊成鉱を得ることは
、粉鉄鉱石の品位の点から殆ど困難であり、0.5Wt
1未満は実用上意味がないからである。
In addition, in the above, the lower limit of the 5i02 content in the calcined agglomerate ore is set to 0.5 wt% because the 5i02 content is Q, and obtaining the calcined agglomerate with less than 5 wt 4 is fine iron ore. It is almost difficult in terms of quality, and 0.5Wt
This is because a value less than 1 has no practical meaning.

従って、焼成塊成鉱の成品歩留りおよび落下強度を低下
させずに、焼成塊成鉱の還元率を80%以上、還元粉化
率を30チ以下とするためには、焼成に使用する粉鉄鉱
石として、焼成塊成鉱中のSiO2含有量が0.5〜5
,0wt%となるように配合した粉鉄鉱石を用いるべき
である。
Therefore, in order to achieve a reduction rate of 80% or more and a reduction pulverization rate of 30% or less without reducing the product yield and falling strength of the calcined agglomerate, it is necessary to As a stone, the SiO2 content in the calcined agglomerate is 0.5 to 5.
, 0wt% of powdered iron ore should be used.

この発明においては、以上のように、焼成に使用する粉
鉄鉱石として、焼成塊成鉱中のs i02  含有量が
0.5〜5.Owt%となるように配合した粉鉄鉱石を
使用して、焼成塊成鉱の還元率および還元粉化率を大幅
に向上させるものである。
In this invention, as described above, as the fine iron ore used for firing, the s i02 content in the fired agglomerate ore is 0.5 to 5. By using powdered iron ore blended so as to achieve Owt%, the reduction rate and reduction powdering rate of calcined agglomerated ore are significantly improved.

この発明において、生ペレットに被覆する粉コークスの
量は、従来と同様2.5〜4.0wt%とするのが好ま
しい。これは、被覆する粉コークスの量が2.5wt%
未満では、焼成炉における生ペレットの焼成効率を高め
ることができず、生ペレットを短時間で高強度の焼成塊
成鉱に焼成できないからであシ、被覆する粉コークスの
量が4.0vrtdjを超えると、焼成時の生ペレット
の温度が高くなシ過ぎて、焼成塊成鉱の組織が緻密で気
孔の少ないものとなると同時に、被還元性の悪い溶融型
組織、すなわち、2次へマタイトや短冊型カルシウムフ
ェライトの多い組織となるためである。
In this invention, it is preferable that the amount of coke powder coated on the green pellets is 2.5 to 4.0 wt% as in the conventional method. This means that the amount of coated coke powder is 2.5wt%.
If the amount is less than 4.0vrtdj, the firing efficiency of the green pellets in the calcining furnace cannot be increased, and the raw pellets cannot be calcined into high-strength calcined agglomerates in a short time. If it exceeds the temperature, the temperature of the green pellet during firing becomes too high, and the structure of the fired agglomerate becomes dense and has few pores, and at the same time, a molten structure with poor reducibility, i.e., secondary hematite and This is because the structure has many rectangular calcium ferrites.

この発明において、使用する粉鉄鉱石の粒径は、従来と
同様約8′lIk以下とするのが好ましい。これは、粒
径8藤超の粉鉄鉱石は焼成塊成鉱化しないでもそのまま
使用でき、焼成塊成鉱化する必要があるのは粒径8g1
1以下の粉鉄鉱石であるからである。
In this invention, the particle size of the fine iron ore used is preferably about 8'lIk or less, as in the prior art. This means that powdered iron ore with a grain size of 8g or more can be used as is without being turned into agglomerated mineralized by sintering, and it is necessary to turn it into agglomerated mineralized with a grain size of 8g1.
This is because it is powdered iron ore with a particle size of 1 or less.

この発明において、生ペレットの粒径は、従来と同様的
3〜13−とするのが好ましい。その理由は、次の通シ
である。即ち、生ペレットの粒径が3w未満でおると、
焼成炉における生ペレットの焼成時に、粉コークスの燃
焼によって生じた高温溶焼ガスが、生ペレットの層を円
滑に通過するのを阻害されるため、焼成塊成鉱の生産率
が低下する問題が生ずる。のみならず、単体の焼成ペレ
ットの形の焼成塊成鉱も粒径3W未満となるために、こ
のような小さい粒径の焼成塊成鉱を高炉内に装入した場
合に、還元ガスの円清な通過を阻害する。その結果、高
炉内において棚吊りおよびヌリツゾが発生し、高炉操業
が不安定になる問題が生ずる。一方、生ベレットの粒径
が13&を超えると、衝撃に対する抵抗力が弱くなるた
め、生ベレットを焼成炉に移送する際に、生ペレットが
崩壊する問題を生ずる。のみならず、焼成塊成鉱の焼成
ペレット個々の粒径も131111を超えるため、この
ような大きい焼成ペレットの焼成塊成鉱を高炉内に装入
した場合に、焼成塊成鉱の中心部まで還元ガスが浸透す
るのに長時間を必要とする。その結果、高炉内における
焼成塊成鉱の還元性が悪くなり、且つ、未還元の芯が残
って、焼成塊成鉱の、荷重下における高温特性が悪くな
る問題を生ずる。
In this invention, it is preferable that the particle size of the raw pellets is 3 to 13, which is the same as in the conventional method. The reason is as follows. That is, if the particle size of the raw pellets is less than 3W,
During the firing of green pellets in a firing furnace, the high-temperature molten gas generated by the combustion of coke powder is prevented from passing smoothly through the layer of green pellets, resulting in a reduction in the production rate of fired agglomerate ore. arise. In addition, since the fired agglomerate ore in the form of a single fired pellet has a particle size of less than 3W, when such a small particle size of the calcined agglomerate is charged into the blast furnace, the circle of reducing gas Prevents clear passage. As a result, shelving and slippage occur in the blast furnace, resulting in the problem of unstable blast furnace operation. On the other hand, if the particle size of the green pellet exceeds 13&, the resistance to impact becomes weak, resulting in the problem of the green pellet collapsing when it is transferred to a firing furnace. Not only that, the grain size of each fired pellet of fired agglomerate exceeds 131111, so when such a large fired pellet of fired agglomerate is charged into a blast furnace, it will not reach the center of the fired agglomerate. It takes a long time for the reducing gas to penetrate. As a result, the reducibility of the calcined agglomerate in the blast furnace deteriorates, and unreduced cores remain, resulting in a problem that the high temperature characteristics of the calcined agglomerate under load deteriorate.

〔実施例〕〔Example〕

第1表に示す粒度構成を有し、第2表に示す化学成分組
成を有する5種類の銘柄の粉鉄鉱石A〜Eを、この発明
に従い、焼成塊成鉱中のS iO2含有量が0.5〜5
 、 Owt%の範囲内となるよう、第3表に示すよう
に、適宜の割合で配合した。比較のために、焼成塊成鉱
中の5tO2含有量が5.Owt%超となるよう、同じ
く、第3表に示すように、適宜の割合で配合した。
Five brands of fine iron ore A to E having the particle size structure shown in Table 1 and the chemical composition shown in Table 2 were prepared according to the present invention so that the SiO2 content in the calcined agglomerate ore was 0. .5~5
, Owt%, as shown in Table 3, were blended in appropriate proportions. For comparison, the content of 5tO2 in the calcined agglomerate is 5. Similarly, as shown in Table 3, appropriate proportions were blended so that the amount exceeded Owt%.

第2表     (wt係) 第3表 次いで、これらの配合の粉鉄鉱石に媒溶剤およびバイン
ダーとして、第4表に示す粒度構成の生石灰を1.0〜
2.7wt9j添加、混合し、また塩基度調整用として
表5に示す粒度構成の石灰石を用い、塩基度を1.8〜
2.2の範囲に調整した。ここで得られた混合物をディ
スク型の造粒機で造粒して、第6茨に示す粒径分布を有
する、水分含有量8〜9 virt %の生ペレットに
成形した。
Table 2 (wt section) Table 3 Next, as a solvent and binder, quicklime with a particle size structure shown in Table 4 was added to the powdered iron ore of these blends from 1.0 to 1.0.
2.7wt9j was added and mixed, and limestone with the particle size structure shown in Table 5 was used to adjust the basicity, and the basicity was adjusted to 1.8~
It was adjusted to a range of 2.2. The mixture obtained here was granulated using a disk-type granulator to form raw pellets having a particle size distribution shown in the sixth thorn and having a water content of 8 to 9 virt%.

第6表   (wt%) 次いで、第7表に示す粒度構成の粉コークスを生ペレッ
トに3 、5 wt %添加して造粒し、生ペレットに
粉コークスを被覆した。
Table 6 (wt%) Next, 3.5 wt% of coke powder having the particle size composition shown in Table 7 was added to the green pellets to granulate them, and the green pellets were coated with coke powder.

第7表 そして、無端移動グレード式焼成炉のグレード上に生ペ
レットを400mの厚さに装入して、生ペレットを焼成
炉の乾燥帯、点火帯および焼成帯を順次移動させ、焼成
塊成鉱に焼成した。そして、このようにして得られた大
きいブロック状の焼成塊成鉱を焼成炉の下流端から排出
し、クラッシャーによって破砕したのち、スクリーンに
よって粒径3謝未満の篩下の焼成塊成鉱片を除去し、か
くして、複数個の焼成ペレットが結合した最大粒径50
&3の塊状の形の焼成塊成鉱および単体の焼成ベレット
の形の粒径3〜50&の焼成塊成鉱が製造された。
Table 7 Then, the green pellets were charged to a thickness of 400 m on the grade of the endless moving grade type kiln, and the green pellets were sequentially moved through the drying zone, ignition zone, and firing zone of the kiln, and were baked into agglomerates. Fired into ore. The large block-shaped calcined agglomerate ore obtained in this way is discharged from the downstream end of the kiln, and after being crushed by a crusher, the calcined agglomerate pieces under the sieve with a particle size of less than 3 mm are separated by a screen. The maximum particle size of a plurality of calcined pellets combined is 50.
Calcined agglomerates in the form of blocks of &3 and calcined agglomerates in the form of single calcined pellets with grain sizes of 3 to 50& were produced.

以上のように製造された焼成塊成鉱中のSiO2含有量
および焼成塊成鉱の還元率等を第8茨に示す。
The SiO2 content in the calcined agglomerate produced as described above, the reduction rate of the calcined agglomerate, etc. are shown in the eighth thorn.

第8表 第8表に示されるように、焼成塊成鉱中の5i02含有
量がこの発明の範囲内である本発明Al〜6においては
、いずれも焼成塊成鉱の還元率および還元粉化率が良好
で、落下強度および成品歩留シを低下させることなく、
還元率および還元粉化率が向上されている。これに対し
、焼成塊成鉱中の5i02  含有量がこの発明の範囲
外である比較例A7〜8においては、いずれも、焼成塊
成鉱の落下強度および成品歩留りは良いものの、還元率
および還元粉化率が悪化している。
Table 8 As shown in Table 8, in the present invention Al to 6 in which the 5i02 content in the calcined agglomerate is within the range of this invention, the reduction rate of the calcined agglomerate ore and the reduction powder Good yield rate without reducing drop strength or product yield.
The reduction rate and reduction powdering rate are improved. On the other hand, in Comparative Examples A7 to A8, in which the 5i02 content in the calcined agglomerates is outside the range of the present invention, although the falling strength and product yield of the calcined agglomerates are good, the reduction rate and reduction The powderization rate is getting worse.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、焼成塊成鉱の還元率および還元粉化
率を容易に向上させることができる。
According to this invention, the reduction rate and reduction powdering rate of calcined agglomerated ore can be easily improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、得られた焼成塊成鉱中のSiO2含有量と還
元率との関係を示すグラフ、第2図は、同じく、5i0
2  含有量と還元粉化率との関係を示すグラフ、第3
図は、同じく、5in2  含有量と落下強度との関係
を示すグラフ、第4図は、同じく、5i02  含有量
と成品歩留りとの関係を示すグラフである。
Fig. 1 is a graph showing the relationship between the SiO2 content and the reduction rate in the obtained calcined agglomerate, and Fig.
2 Graph showing the relationship between content and reduction powdering rate, 3rd
This figure is a graph showing the relationship between the 5in2 content and the drop strength, and FIG. 4 is a graph showing the relationship between the 5i02 content and the product yield.

Claims (1)

【特許請求の範囲】[Claims] 粉鉄鉱石に媒溶剤を添加、混合した混合物をディスク型
の造粒機で造粒して生ペレットを成形し、得られた生ペ
レットに粉コークスを被覆し、前記生ペレットを無端移
動グレード式焼成炉に装入して連続的に焼成し、かくし
て、焼成塊成鉱を連続的に製造する、焼成塊成鉱の製造
方法において、前記粉鉄鉱石として、焼成塊成鉱中のS
iO_2が0.5〜5.0wt%となるように配合した
粉鉄鉱石を使用することを特徴とする、焼成塊成鉱の製
造方法。
A mixture of powdered iron ore and a solvent is added and mixed, and the mixture is granulated using a disk-type granulator to form green pellets.The obtained green pellets are coated with coke powder, and the green pellets are processed into an endless moving grade type. In a method for producing calcined agglomerate ore, in which the iron ore powder is charged into a calcining furnace and continuously fired, S in the calcined agglomerate ore is used as the fine iron ore.
A method for producing calcined agglomerate ore, characterized by using powdered iron ore blended so that iO_2 is 0.5 to 5.0 wt%.
JP29669386A 1986-12-15 1986-12-15 Manufacture of agglomerate Granted JPS63153225A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP29669386A JPS63153225A (en) 1986-12-15 1986-12-15 Manufacture of agglomerate
AU82221/87A AU600777B2 (en) 1986-12-15 1987-12-08 Method for manufacturing agglomerates of fired pellets
IN357/BOM/87A IN167132B (en) 1986-12-15 1987-12-08
CA000554134A CA1324493C (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
US07/131,660 US4851038A (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
EP93111020A EP0578253B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
DE3751747T DE3751747T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP87118525A EP0271863B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
DE3752270T DE3752270T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
BR8706790A BR8706790A (en) 1986-12-15 1987-12-14 PROCESS FOR THE PRODUCTION OF BURNED PELLETS PELLETS
KR1019870014415A KR910001325B1 (en) 1986-12-15 1987-12-15 Method for manufacturing agglomerates of fired pellets
CN87108122A CN1016184B (en) 1986-12-15 1987-12-15 Method for roasting ores into ball agglomeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29669386A JPS63153225A (en) 1986-12-15 1986-12-15 Manufacture of agglomerate

Publications (2)

Publication Number Publication Date
JPS63153225A true JPS63153225A (en) 1988-06-25
JPH0425327B2 JPH0425327B2 (en) 1992-04-30

Family

ID=17836861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29669386A Granted JPS63153225A (en) 1986-12-15 1986-12-15 Manufacture of agglomerate

Country Status (1)

Country Link
JP (1) JPS63153225A (en)

Also Published As

Publication number Publication date
JPH0425327B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JPS61106728A (en) Lump ore and its production
JPH024658B2 (en)
JP2000248309A (en) Production of calcium-ferrite for refining molten iron
JPS63149336A (en) Production of burnt agglomerated ore
JPH0430442B2 (en)
JPS63149333A (en) Coating method for powdery coke on green pellet for burnt agglomerated ore
JPS63153225A (en) Manufacture of agglomerate
JP2748782B2 (en) Method for producing calcined agglomerate
JPS63153226A (en) Manufacture of agglomerate
JPS62174333A (en) Production of lump ore
JPS63149332A (en) Production of burnt agglomerated ore
JPH0430443B2 (en)
JP2755042B2 (en) Method for producing calcined agglomerate
JPH0422961B2 (en)
JPH0430444B2 (en)
JPS63153227A (en) Method for coating green pellet for agglomerate with coke breeze
JPS62177128A (en) Manufacture of briquetted ore
JP2790025B2 (en) Method for producing calcined agglomerate
JPS62177129A (en) Manufacture of briquetted ore
JPS63153228A (en) Method for coating green pellet for agglomerate with coke breeze
JP2755036B2 (en) Method for producing calcined agglomerate
JPS62177131A (en) Manufacture of briquetted ore
JPS6210226A (en) Sintered briquetted ore having superior reducibility and strength
JP2833454B2 (en) Method for producing calcined agglomerate
JPS6017810B2 (en) Manufacturing method of iron ore sintered raw material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees