JPS63152173A - Gate turn off thyristor - Google Patents

Gate turn off thyristor

Info

Publication number
JPS63152173A
JPS63152173A JP30050886A JP30050886A JPS63152173A JP S63152173 A JPS63152173 A JP S63152173A JP 30050886 A JP30050886 A JP 30050886A JP 30050886 A JP30050886 A JP 30050886A JP S63152173 A JPS63152173 A JP S63152173A
Authority
JP
Japan
Prior art keywords
layer
gto
gate
concentration
surge absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30050886A
Other languages
Japanese (ja)
Inventor
Shinichi Yamada
真一 山田
Takayasu Kawamura
川村 貴保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP30050886A priority Critical patent/JPS63152173A/en
Publication of JPS63152173A publication Critical patent/JPS63152173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To increase intercepting capability, and making an external connection wiring for an absorber element unnecessary, by forming, on the same wafer, a surge absorber connected between the gate and the cathode of a GTO device, and growing a P<+> epitaxial layer on the surfaces of a P2 layer and P<+> layer. CONSTITUTION:A P1 layer and a P2 layer having a surface concentration of 2X10<17> are formed by diffusing impurity into an N1 substrate having an impurity concentration of 4X10<13>, and an N5 layer having a surface concentration of 10<19> is formed by diffusing phosphorus into the P2 layer. Then a buried gate of P<+> layer is formed by diffusing boron into the P2 layer, and an oxide film 14 is stuck on a part of the P2 layer surface so as to bridge the N5 layer surface and a P2N5 junction. After that, an P<->2 layer is grown on the P2 layer on which the film 14 does not exist and on the P<+> layer surface by epitaxy applying the film 14. The P<+> layer having a concentration of about 10<18> in the initial growth process is changed to the P2 layer having a surface concentration of 10<16> after the growth, and a sheet resistance necessary for turn off is constituted thereby. In this manner, a GTO is constituted of a main GTO part 1, and an amplification GTO part 2 and a surge absorber part 13 between which the GTO main part is placed. The intercepting capability of this GTO is increased.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明はゲートターンオフサイリスタに関する。[Detailed description of the invention] A. Industrial application field The present invention relates to gate turn-off thyristors.

B0発明の概要 この発明は、ゲート・カソード間み接続しているサージ
アブソーバ−素子の構成と主ゲートターンオフサイリス
タの構成に改良を加え九ゲートターンオアサイリスタ(
以下GTO素子と略称する)において GTO素子のゲート・カソード間に接続しているサージ
アブソーバ−素子を同一ウニバー上に形成するとともV
cP、層とP+層の我面にP+epi Jd f数μm
形成しtことにより、 サージアブソーバ−のプレクダウン電圧を下げることな
くしゃ断能力を向上させることができるとともに外部接
続していたサージアブソーバ−素子の配線を不要にでき
、以って配線からのサージの侵入がなくなるとともに配
線のショートや断線の発生も防止できるようにし次もの
である。
B0 Summary of the Invention This invention improves the configuration of the surge absorber element connected between the gate and cathode and the configuration of the main gate turn-off thyristor, and creates a nine-gate turn-off thyristor (
(hereinafter abbreviated as GTO element), the surge absorber element connected between the gate and cathode of the GTO element is formed on the same unit.
P+epi Jd f several μm on the side of cP layer and P+ layer
By forming a surge absorber, the interrupting ability can be improved without lowering the pre-down voltage of the surge absorber, and the wiring for the externally connected surge absorber element can be eliminated, thereby reducing surges from the wiring. This eliminates intrusion and also prevents short circuits and disconnections in the wiring.

C6従来の技術 第5図は増幅ゲートを有するGTO素子の構成説明図で
、第5図において、主GTO部1はP、N。
C6 Prior Art FIG. 5 is an explanatory diagram of the configuration of a GTO element having an amplification gate. In FIG. 5, the main GTO section 1 has P and N parts.

P、N!から構成され、増幅070部2はPrN+Pt
N5から構成される。3は主GTO部1のカソード電極
、4は主GTO部1のゲート電極、5Vi増幅GTO部
2Qカソード電極で、このカソード電極5は主GTO部
1のゲート電極4と接続体6により接続される。7は増
幅070部2のゲート電極である。図中、Gはゲート端
子%にはカソード端子である。
P-N! The amplification section 2 consists of PrN+Pt
Consists of N5. 3 is a cathode electrode of the main GTO section 1, 4 is a gate electrode of the main GTO section 1, 5 is a cathode electrode of the Vi amplification GTO section 2Q, and this cathode electrode 5 is connected to the gate electrode 4 of the main GTO section 1 by a connecting body 6. . 7 is a gate electrode of the amplification section 2; In the figure, G is a gate terminal and a cathode terminal.

8はゲート電流を主GTO部1へ直接流さない増幅07
0部2のみに流す友めQダイオード、9は増幅070部
2にバイアスを与えるツェナーダイオードで、このツェ
ナーダイオード9とダイオード8との直列体は接続体6
と増幅070部2のゲート電極7閣に接続される。10
は増幅GTO部20オン電流を王GTO部10カソード
へ流さずに確実に主GTO部1のゲートへ流すためのダ
イオード、11はゲート回路の配線などによりインダク
タンス分に蓄えられ九エネルギーを吸収するサージアブ
ソーバ−素子のツェナーダイオードである。前記ダイオ
ード10とツェナーダイオード117)直列体は接続体
6とカソード電極6との間に接続される。
8 is an amplifier 07 that does not allow the gate current to flow directly to the main GTO section 1.
9 is a Zener diode that biases the amplifier 070 section 2, and the series body of this Zener diode 9 and diode 8 is connected to the connection body 6.
and is connected to the gate electrode 7 of the amplifier 070 section 2. 10
11 is a diode that ensures that the on-current of the amplifying GTO section 20 flows to the gate of the main GTO section 1 without flowing to the cathode of the main GTO section 10, and 11 is a surge that absorbs energy stored in the inductance due to the wiring of the gate circuit. This is a Zener diode which is an absorber element. The diode 10 and the Zener diode 117) are connected in series between the connection body 6 and the cathode electrode 6.

第6図は第5図の電気回路図で、図中Aはアノード端子
である。
FIG. 6 is an electrical circuit diagram of FIG. 5, and A in the figure is an anode terminal.

上記第5図のように構成された埋込みゲート形GTO素
子ではゲートオフ電圧として60Vの電圧値を通常印加
している。ところが、GTO素子のターンオフ時にはゲ
ートG、カソードに間には60V以上の過電圧が印加さ
れてしまう場合がある。この過電圧の発生原因はゲート
回路の配N等によりインダクタンス分に蓄えられ九エネ
ルギー07tめであることが知られている。この九め、
GTO素子ではゲートG、カソードに間の耐圧は120
部程度1で充分耐えられるように設定されているけれど
も、その耐圧以上の過電圧が印加されるとゲートGとカ
ソードに間の接合が破壊されてしまう。そこで、過電圧
がゲートGとカソードに間に発生し九ときツェナーダイ
オード11が動作して、過電正分が吸収され、破壊が阻
止されるようになっている。
In the buried gate type GTO element configured as shown in FIG. 5, a voltage value of 60 V is normally applied as the gate-off voltage. However, when the GTO element is turned off, an overvoltage of 60 V or more may be applied between the gate G and the cathode. It is known that the cause of this overvoltage is 07t of energy stored in the inductance due to the wiring N of the gate circuit. This ninth,
In the GTO element, the breakdown voltage between the gate G and the cathode is 120
However, if an overvoltage exceeding the withstand voltage is applied, the junction between the gate G and the cathode will be destroyed. Therefore, when an overvoltage occurs between the gate G and the cathode, the Zener diode 11 is activated to absorb the positive portion of the overvoltage and prevent destruction.

D0発明が解決しようとする問題点 ところが、サージアブソーバ−素子であるツェナーダイ
オード11は外部接続する構底全とっているので次のよ
うな問題が発生する。
D0 Problems to be Solved by the Invention However, since the Zener diode 11, which is a surge absorber element, is entirely connected to the outside, the following problem occurs.

(1)サージアブソーバ−素子を外部接続する之めに、
配線自体からサージが生じアブソーバ−としての機能を
低下させてしまう。
(1) To connect the surge absorber element externally,
Surges occur from the wiring itself, reducing its function as an absorber.

(2)  外部接続する之め、そ■配線がケース内でシ
ョートする等のおそれがある。
(2) Due to the external connection, there is a risk that the wiring may short out inside the case.

(3)サージアブソーバ−素子を外部接続することでケ
ース構造が複雑となる。
(3) External connection of the surge absorber element complicates the case structure.

(4)  ケースを組み立てる際の工数が多くなる。(4) The number of man-hours required to assemble the case increases.

(5)  ケース内にダイオード等を収容する九めにケ
ースが大形化する。
(5) The case becomes larger as diodes and the like are housed inside the case.

(6)GTO素子自体にダイオード、ツェナーダイオー
ドを接続するため、その接続部の不良等によp歩留りが
低下する。
(6) Since a diode and a Zener diode are connected to the GTO element itself, the p yield decreases due to defects in the connection.

(7)  上記し九各問題を解決する友めに、サージア
ブソーバ素子を同一ウェハー上に形成することが考えら
れるようになって来友。この1つとしては同一ウェハー
上にツェナー電圧を得るように構成し友ものが考えられ
ている。ところが、このような構成にするとGTO素子
の遮断電流を妨げてしまう新友な問題が生じる。
(7) In order to solve the above-mentioned nine problems, it has become possible to form surge absorber elements on the same wafer. As one of these, a configuration is being considered in which a Zener voltage is obtained on the same wafer. However, if such a configuration is adopted, a new problem arises in that the cut-off current of the GTO element is hindered.

E6問題点全解決する九めの手段 この発明はP+低抵抗層が形成されるP5層表面に独立
し7’CNI層を形成し、このN3層異面の全部とP、
N、接合を一部たがってP7層異面にまで酸化膜を形成
し、この酸化膜を残して酸化膜の無いP、J−及びP+
層表面に数μmエピタキシャル成長によってp”epi
層を設け、このP”epi層の表面にエピタキシャル成
長によって21層の表面濃度よりは不純物濃度の少ない
Pt一層t″形成、前記N5層表面にPc層が形成され
ない部位上狭んで前記N!層と対向する位置のPt一層
にP、+異音形成し、このP、+層とpt一層に形成さ
れるカソードN2層とを電気的に接続し5同じウェハー
上にサージアブソーバー部を形成し友ものである。
Ninth means to solve all problems of E6 This invention forms an independent 7'CNI layer on the surface of the P5 layer where the P+ low resistance layer is formed, and combines all of the different surfaces of this N3 layer with P,
N, an oxide film is formed on the different surface of the P7 layer along a part of the junction, and this oxide film is left to form P, J- and P+ without an oxide film.
p”epi is formed on the surface of the layer by epitaxial growth of several μm.
A layer t'' of Pt with an impurity concentration lower than the surface concentration of the 21st layer is formed by epitaxial growth on the surface of the P"epi layer, and the N! A surge absorber section is formed on the same wafer by forming a P, + noise layer on a Pt layer opposite to the PT layer, electrically connecting this P, + layer and a cathode N2 layer formed on a Pt layer. It's a friend.

20作用 Pt層表面及びP+層表面に数μ扉エピタキシャル収長
のP”epi iを設けて21層の抵抗を低くし、N。
The resistance of the 21 layer is lowered by providing P"epi i with several μ door epitaxial growth on the surface of the 20-active Pt layer and the P+ layer.

層を設けてツェナー電圧を高くシ友。A layer is provided to increase the Zener voltage.

G、実施例 以下図面を参照してこの発明の一実施例を説明するに第
5図と同一部分は同一符号を付して述べる。
G. Embodiment An embodiment of the present invention will be described below with reference to the drawings. The same parts as in FIG. 5 will be described with the same reference numerals.

第1図において、まずオリジナルウェハーN1にガリウ
ム拡散を行いP+ 、Pt層を形成する。このときのウ
ェハーN1としては4 X 1013CAtoms c
m−” )厚ざ400μmのものを使用し、Pl、Pt
の表面濃度は2×10〔AtomscWi〕、深30 
Amとし次。
In FIG. 1, gallium is first diffused into the original wafer N1 to form a P+ and Pt layer. At this time, the wafer N1 is 4 x 1013 CAtoms c
m-”) with a thickness of 400 μm, Pl, Pt
The surface concentration is 2×10 [AtomscWi], the depth is 30
Am Toshi next.

次にPt層にす/拡?金行いN3層を形成する。このと
IN、層の表面濃度は10 ” (Atoms Crn
−31T、拡散深さ15μmとし友。N1層の形成後、
27層にボロン拡散全行いt層の埋込ゲートを形成する
。前記N1層表面とP、 N、接合をま志がってP7層
表面の一部には酸化膜14が形成される。この酸化膜1
4゛を利用して酸化膜の無いPt層及びP+層表面にP
2−層をエピタキシャル成長させるが、このエピタキシ
ャル成長の初期過程に濃度約10 ” (Atorns
 cm−3〕のP”epi層を数μm成長させる。この
P”epi層底長成長表面濃度1015(Atoms 
cm−33)Pt一層をエピタキシャル成長させる。こ
のP2−層の厚さは30μmである。なお、P”epi
層はターンオフに必要なシート抵抗になる。このように
構成することにより、遮断能力を向上させることができ
るとともにN5P2接合費面でツェナー電圧が決定され
る。
Next, make/expand the Pt layer? Form a metal layer N3. In this case, the surface concentration of the layer is 10” (Atoms Crn
-31T, diffusion depth 15μm. After forming the N1 layer,
Boron is diffused throughout the 27th layer to form a buried gate of the t layer. An oxide film 14 is formed on a portion of the surface of the P7 layer along the surface of the N1 layer and the P, N junction. This oxide film 1
P is applied to the surface of Pt layer and P+ layer without oxide film using 4゛.
2-layer is epitaxially grown, and a concentration of about 10'' (Atorns
cm-3] is grown to several μm. This P”epi layer has a base length growth surface concentration of 1015 (Atoms
cm-33) Epitaxially grow a single layer of Pt. The thickness of this P2-layer is 30 μm. In addition, P”epi
The layer provides the necessary sheet resistance for turn-off. With this configuration, the breaking ability can be improved and the Zener voltage can be determined based on the N5P2 junction cost.

前記P2−層にはオーミック層p+、p、+とカソード
N、、N、層を形成する。N、、N3層の表面@度は4
X10  (Atomam  ]で、深さ8μmである
。第2図は主GTO部における正味の不純物濃度分布図
である。
On the P2- layer, ohmic layers p+, p, + and cathode layers N, , N, are formed. N,,N3 layer surface @degree is 4
X10 (Atom) and the depth is 8 μm. FIG. 2 is a net impurity concentration distribution diagram in the main GTO portion.

12はサージアブソーバー部13の補助電極で。12 is an auxiliary electrode of the surge absorber section 13.

この補助電極12はカソード電甑3に接続される。This auxiliary electrode 12 is connected to the cathode electrode 3.

第3図Aはサージアブソーバー部16の要部の拡大図で
あり、第3図Bはサージアブソーバ部13の等価回路図
で、サージアブソーバー部13には高抵抗R(分流抵抗
)が並列接続されている。このようにして形成し九サー
ジアブソーバー部13のブレークダウンの動作は第4図
に示すような特性となつ几。この第4図において、微分
抵抗の高い領域は高抵抗Rに依存され、微分抵抗の低い
領域はN、P、接合がブレークダウンする。このときの
ブレークダウン電圧は前述し次ように約70Vである。
FIG. 3A is an enlarged view of the main parts of the surge absorber section 16, and FIG. 3B is an equivalent circuit diagram of the surge absorber section 13, in which a high resistance R (shunt resistance) is connected in parallel. ing. The breakdown operation of the nine surge absorber parts 13 formed in this way has the characteristics as shown in FIG. In FIG. 4, the region of high differential resistance depends on the high resistance R, and the region of low differential resistance has N, P, and junction breakdown. The breakdown voltage at this time is about 70V as described above.

つまり、N1層を形成したことにょシゲートGとカソー
ドに間は70V−ffiでしか印加されなくなシ、ター
ンオフ時に生じるサージからゲートG。
In other words, when the N1 layer is formed, only 70V-ffi is applied between the gate G and the cathode, and the gate G is damaged due to the surge generated at turn-off.

カソードに接合を保護することができる。The junction to the cathode can be protected.

上記のようにして形成され7tGTO素子ではN、P、
接合弐面でツェナー電圧が決定されるが、こQ場合、N
6層の拡散深さ金深くすることによって第3図Aに示し
九分流抵抗Rは大きくなる。しかし、GTO素子のN、
P、接合で決定されるA−に間耐圧が低下してしまうの
で、A−に間耐圧を考慮し九拡散深さとしなければなら
な”o″1ft%N、 P。
In the 7tGTO element formed as described above, N, P,
The Zener voltage is determined on the second side of the junction, but in this case, N
By increasing the diffusion depth of the six layers, the nine-way current resistance R shown in FIG. 3A increases. However, N of the GTO element,
Since the withstand voltage between A- and P, which is determined by the junction, decreases, the diffusion depth must be set to 9% by taking into account the withstand voltage between A- and P.

接合狭面■一部を高抵抗(5Ωα程度)のP2−層で覆
うのでN、 P、接合弐面は安定な保護膜となるが、残
りの一部景面には保護膜として5iot’1形戊する。
Narrow junction surface■ Part of the N, P junction surface is covered with a P2- layer of high resistance (approximately 5Ωα), so the second surface of the junction becomes a stable protective film, but the remaining part is covered with a 5iot'1 type protective film. To run away.

なお、前記実施例において、P+ap1層がないときに
はP!層上に戊長し7tP!″″層#ip、層に比較し
て高抵抗であるので、ツェナー電圧はN、 P、 接合
+2) i面濃度で決ることが知られている。こ○tめ
、ツェナー電圧を高くするには21層の抵抗を高くすれ
ば良いが、これが高いとGTO素子のターンオフ時のP
、層の横方向抵抗が高くなってしまう。この結果、GT
O素子の遮断能力を高くできなかつ友。
In the above embodiment, when there is no P+ap1 layer, P! 7tP lengthened on top of the layer! It is known that the Zener voltage is determined by the i-plane concentration of the N, P, junction +2) layer because it has a high resistance compared to the #ip layer. Here, to increase the Zener voltage, you can increase the resistance of the 21st layer, but if this is high, the P at the turn-off of the GTO element will decrease.
, the lateral resistance of the layer becomes high. As a result, GT
A friend who cannot increase the blocking ability of the O element.

しかし、この実施例ではPepi/lt=設けることに
より、シート抵抗全低くして遮断能力を高めることがで
きるとともにツェナー電圧をも高くできるようにし次。
However, in this embodiment, by providing Pepi/lt, it is possible to lower the total sheet resistance and increase the interrupting ability, and also to increase the Zener voltage.

H0発明の効果 以上述べたように、この発明によれば、サージアブソー
バー部を同一ウニバー上に形成するとともにPt層及び
P+層懺面(酸化膜で覆われる21層を一部除く)に数
Jim C) P epi層金設は九ので、GTO素子
の遮@能力を向上させることができるとともにツェナー
電圧も高くできるようになる。ま友。
Effects of H0 Invention As described above, according to this invention, the surge absorber part is formed on the same uniform bar, and several layers are formed on the surface of the Pt layer and the P+ layer (excluding a part of layer 21 covered with an oxide film). C) Since the P epi layer metallization is nine, it is possible to improve the blocking ability of the GTO element and also to increase the Zener voltage. Mayu.

上記の他にサージアブソーバー素子の外部接続配線が不
要となり、配線から侵入するサージがなくなる利点があ
る。さらに、配線が不要となるので、配線のショートや
1FrNAが生じる可能性を大幅に軽減でき、かつケー
ス構造が簡単になる。この他、外部接続部品がなくなる
tめ、素子の信頼性が向上し、かつ組み立ても簡単にな
る等の優れt効果がある。
In addition to the above, there is an advantage that external connection wiring for the surge absorber element is not required, and surges that enter through the wiring are eliminated. Furthermore, since no wiring is required, the possibility of short-circuiting or 1FrNA occurring in the wiring can be significantly reduced, and the case structure can be simplified. In addition, there are other excellent effects such as the elimination of external connecting parts, improved device reliability, and easier assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図は主
GTO部の正味の不純物濃度分布図、第3図A、Bは第
1図のサージアブソーバー部の拡大図及び等価回路図、
第4図はサージアブソーバー部のブレークダウン特性図
、第5図は従来例を 。 示す構成図、第6図は第5図の電気的な回路図である。 1・・・主GTO部、2・・・増幅GTO部、3・・・
主GTO部カソード電極、4・・・増幅GTO部ゲート
電極、5・・・増幅GTO部カツカソード電極・・・接
続体、7・・・増幅GTO部ゲート電甑、12・・・サ
ージアブソーバ−電極、16・・・サージアブソーバー
部、14・・・酸化膜、G・・・ゲート、K・・・カソ
ード、A・・・アノード、R・・・分流抵抗。 3−−−−4GTO#7ソー 1−’Wk4−−−− 
IGTO郡ゲート電1販 5−−−−416GTO#I5nン−F電!7−−−−
増暢GTO部ゲート電肩に 12−−−一捕#71g!極 14−−−一献A口硬
Figure 1 is a block diagram showing an embodiment of the present invention, Figure 2 is a net impurity concentration distribution diagram of the main GTO section, and Figures 3A and B are enlarged views and equivalent circuits of the surge absorber section of Figure 1. figure,
Figure 4 shows the breakdown characteristics of the surge absorber, and Figure 5 shows the conventional example. The configuration diagram shown in FIG. 6 is an electrical circuit diagram of FIG. 5. 1... Main GTO section, 2... Amplification GTO section, 3...
Main GTO section cathode electrode, 4... Amplifying GTO section gate electrode, 5... Amplifying GTO section cut cathode electrode... Connection body, 7... Amplifying GTO section gate electric wire, 12... Surge absorber electrode , 16... surge absorber section, 14... oxide film, G... gate, K... cathode, A... anode, R... shunt resistor. 3----4GTO#7 saw 1-'Wk4----
IGTO Gun Gate Electric 1 Sales 5---416GTO#I5n-F Electric! 7------
12---One catch #71g on Masunobu GTO club gate electric shoulder! Extreme 14---Ikken A mouth hard

Claims (1)

【特許請求の範囲】[Claims] (1)P_1N_1P_2N_2、の4層からなり、P
_2にP^+低抵抗層を埋込ことによつてP_1N_1
P_2N_2に流れる電流をオン、オフ制御させるよう
に構成された半導体素子において、 前記P^+低抵抗層が形成されるP_2層表面に独立し
たN_5層を形成し、このN_5層表面の全部とP_2
N_5接合をまたがつてP_2層表面にまで酸化膜を形
成し、この酸化膜を残して酸化膜の無いP_2層及びP
_+層表面に数μmエピタキシャル成長によつてP^+
epi層を設け、このP^+epi表面にエピタキシャ
ル成長によってP_2層の表面濃度よりは不純物濃度の
少ないP_2^−層を形成し、前記N_5層表面にP_
2^−層が形成されない部位を挾んで前記N_2層と対
向する位置のP_2^−にP_3^+層を形成し、この
P_3^+層とP_2^−層に形成されるカソードN_
2層とを電気的に接続し、同じウエハー上にサージアブ
ソーバー部を形成したことを特徴とするゲートターンオ
フサイリスタ。
(1) Consisting of 4 layers, P_1N_1P_2N_2, P
By embedding P^+ low resistance layer in _2, P_1N_1
In a semiconductor device configured to control on/off the current flowing through P_2N_2, an independent N_5 layer is formed on the surface of the P_2 layer where the P^+ low resistance layer is formed, and the entire surface of this N_5 layer and the P_2 layer are formed.
An oxide film is formed across the N_5 junction to the surface of the P_2 layer, and this oxide film is left to form the P_2 layer and P_2 layer without an oxide film.
P^+ is formed by epitaxial growth of several μm on the surface of the _+ layer.
An epi layer is provided, and a P_2^- layer with an impurity concentration lower than the surface concentration of the P_2 layer is formed by epitaxial growth on the surface of this P^+epi, and a P_2^- layer with an impurity concentration lower than the surface concentration of the P_2 layer is formed on the surface of the N_5 layer.
A P_3^+ layer is formed on P_2^- at a position facing the N_2 layer across the region where the 2^- layer is not formed, and a cathode N_ is formed on this P_3^+ layer and P_2^- layer.
A gate turn-off thyristor characterized in that two layers are electrically connected and a surge absorber portion is formed on the same wafer.
JP30050886A 1986-12-17 1986-12-17 Gate turn off thyristor Pending JPS63152173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30050886A JPS63152173A (en) 1986-12-17 1986-12-17 Gate turn off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30050886A JPS63152173A (en) 1986-12-17 1986-12-17 Gate turn off thyristor

Publications (1)

Publication Number Publication Date
JPS63152173A true JPS63152173A (en) 1988-06-24

Family

ID=17885659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30050886A Pending JPS63152173A (en) 1986-12-17 1986-12-17 Gate turn off thyristor

Country Status (1)

Country Link
JP (1) JPS63152173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531772A (en) * 2011-09-29 2014-11-27 パカル テクノロジーズ エルエルシー MCT device with base width deterministic latch and unlatched state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531772A (en) * 2011-09-29 2014-11-27 パカル テクノロジーズ エルエルシー MCT device with base width deterministic latch and unlatched state

Similar Documents

Publication Publication Date Title
US5536958A (en) Semiconductor device having high voltage protection capability
JP3393152B2 (en) Electrostatic discharge protection device and manufacturing method
AT506145A2 (en) AVALANCH PROTECTION FOR COMPONENTS WITH WIDE BAND GAP
EP0103306A2 (en) Semiconductor protective device
US5347185A (en) Protection structure against latch-up in a CMOS circuit
US4712152A (en) Semiconductor integrated circuit device
US20040070029A1 (en) Low voltage transient voltage suppressor and method of making
US6441463B2 (en) IGBT, control circuit, and protection circuit on same substrate
JP3163758B2 (en) Bidirectional overvoltage protection device
JP5943037B2 (en) Semiconductor device
JP2002208677A (en) Semiconductor device having temperature detection function
JPH0290570A (en) Gate source protective circuit to power mosfet
JPS63152173A (en) Gate turn off thyristor
JPH0536979A (en) Surge protective element
JP2992158B2 (en) Two-terminal surge protection element and multi-wire protection method
JPS5916413B2 (en) semiconductor equipment
JPS63152172A (en) Gate turn off thyristor
JPS63236361A (en) Gate turn-off thyristor
JPS62179756A (en) Semiconductor device
JPS6399569A (en) Gate turn-off thyristor
JPS60103658A (en) Semiconductor ic
JPS62165978A (en) Protective diode
JPS63146459A (en) Semiconductor integrated circuit device
JPS5988872A (en) Semiconductor integrated circuit device
JPS6386466A (en) Input protective circuit for semiconductor integrated circuit