JPS6315151A - Method for measuring uric acid and hypoxanthine - Google Patents

Method for measuring uric acid and hypoxanthine

Info

Publication number
JPS6315151A
JPS6315151A JP61158685A JP15868586A JPS6315151A JP S6315151 A JPS6315151 A JP S6315151A JP 61158685 A JP61158685 A JP 61158685A JP 15868586 A JP15868586 A JP 15868586A JP S6315151 A JPS6315151 A JP S6315151A
Authority
JP
Japan
Prior art keywords
uric acid
hypoxanthine
enzyme electrode
reaction tank
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158685A
Other languages
Japanese (ja)
Inventor
Kenji Harada
健治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61158685A priority Critical patent/JPS6315151A/en
Publication of JPS6315151A publication Critical patent/JPS6315151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To quantify uric acid and hypoxanthine in the same reaction tank continuously with good accuracy, by measuring uric acid and hypoxanthine using an enzyme electrode for detecting uric acid. CONSTITUTION:An enzyme electrode for detecting uric acid consisting of an immobilized uricase membrane 20 and a hydrogen peroxide electrode 21 is provided to a reaction tank 17. In measurement, a specimen solution is injected in the reaction tank 17 from an injection port 18 and a buffer solution 14 is supplied thereto by a pump 15. At first, uric acid of the specimen solution injected is detected by the enzyme electrode 10 and outputted to a display part 19 through a polarograph 12 and an operational amplifying part 13. Next, xanthine oxidase is added to the reaction tank 17 to be reacted with hypoxanthine in the specimen solution and the concn. of uric acid is changed. The operational amplifying part 13 measures the concn. of hypoxanthine in the specimen solution from the output value of the enzyme electrode 10.

Description

【発明の詳細な説明】 〔発明の詳細な説明〕 本発明は、酵素?i極を用いて尿酸とヒポキサンチンの
両者を正確かつ筒易、迅速に測定する方法に関する。
[Detailed Description of the Invention] [Detailed Description of the Invention] The present invention relates to an enzyme? The present invention relates to a method for accurately, easily and quickly measuring both uric acid and hypoxanthine using an i-electrode.

〔従来技術とその問題点〕[Prior art and its problems]

尿酸および生体内で尿酸の前駆体として知られているヒ
ポキサンチンは、臨床化学分野において重要な測定項目
となっている。
Uric acid and hypoxanthine, which is known as a precursor of uric acid in vivo, have become important measurement items in the field of clinical chemistry.

従来、試料溶液中の尿酸とヒポキサンチンの測定法とし
ては、吸光度測定法を採用した方法が知られている。こ
の方法は、尿酸の測定には酵素ウリカーゼを、そしてヒ
ポキサンチンの測定には酵素キサンチンオキシダーゼを
試薬として使用するものであるが、測定に要する時間が
長いこと、ランニングコストが高いこと、操作が煩雑で
あること(除たん白操作、分離・分画操作等)等の欠点
がある。しかして、尿僅とヒポキサンチンの両者を迅速
にかつ正確に、そして同一測定装置において簡便に測定
する方法が要望された。ところで、尿酸とヒポキサンチ
ンの両者を同一の反応槽内または測定装置内で連続して
計測する方法は知られていない。
Conventionally, a method using absorbance measurement is known as a method for measuring uric acid and hypoxanthine in a sample solution. This method uses the enzyme uricase as a reagent to measure uric acid, and the enzyme xanthine oxidase as a reagent to measure hypoxanthine, but it takes a long time to measure, has high running costs, and is complicated to operate. There are disadvantages such as (removal of protein, separation/fractionation, etc.). Therefore, there has been a need for a method for quickly and accurately measuring both urine concentration and hypoxanthine using the same measuring device. By the way, there is no known method for continuously measuring both uric acid and hypoxanthine in the same reaction tank or measuring device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来法におけるような除たん自処理や
分離・分画等の煩雑な操作を必要とせず、正確にかつ迅
速に尿酸とヒポキサンチンを安価に測定する方法を提供
することである。また、本発明の目的は酵素電極を用い
て同一反応槽内で尿酸とヒポキサンチンを連続して測定
することを可能ならしめる方法を提供することである。
The purpose of the present invention is to provide a method for accurately and quickly measuring uric acid and hypoxanthine at low cost without requiring complicated operations such as self-treatment of sputum removal, separation, and fractionation as in conventional methods. be. Another object of the present invention is to provide a method that makes it possible to continuously measure uric acid and hypoxanthine in the same reaction tank using an enzyme electrode.

〔発明の要点〕[Key points of the invention]

本発明の目的は、固定化ウリカーゼ膜と過酸化水素電極
からなる尿酸検出用酵素電極を用いて、尿酸は酵素電極
で直接検出し、ヒポキサンチンは酵素キサンチンオキシ
ダーゼで尿酸とH,O□に分解し、生成した尿酸とHt
 Otとを酵素電極で検出するように構成することによ
って達成される。
The purpose of the present invention is to use an enzyme electrode for detecting uric acid consisting of an immobilized uricase membrane and a hydrogen peroxide electrode, to directly detect uric acid with the enzyme electrode, and to decompose hypoxanthine into uric acid, H, and O□ using the enzyme xanthine oxidase. The generated uric acid and Ht
This is achieved by configuring the enzyme electrode to detect Ot.

しかして、本発明は、試料溶液中に含まれる尿酸とヒポ
キサンチンの濃度を測定するにあたり、固定化ウリカー
ゼ膜と1l15酸化水素電極からなる尿酸検出用酵素電
極を備えた反応槽内に試料溶液を導入し、まず、尿酸の
濃度を前記酵素電極で計測し、次にキサンチンオキシダ
ーゼを添加してヒポキサンチンに作用させることにより
、該ヒポキサンチンの濃度に対応して逐次生成する尿酸
のン震度変化を前記酵素電極で検出し、前記酵素電極の
出力値から試料溶液中の尿酸とヒポキサンチンの濃度を
定量することを特徴とする尿酸とヒポキサンチンの測定
法に係る。
Therefore, in order to measure the concentrations of uric acid and hypoxanthine contained in a sample solution, the present invention introduces the sample solution into a reaction tank equipped with an enzyme electrode for detecting uric acid consisting of an immobilized uricase membrane and a 1l15 hydrogen oxide electrode. First, the concentration of uric acid is measured using the enzyme electrode, and then xanthine oxidase is added and allowed to act on hypoxanthine, so that changes in the seismic intensity of uric acid that are sequentially generated in response to the concentration of hypoxanthine are detected. The present invention relates to a method for measuring uric acid and hypoxanthine, characterized in that the concentration of uric acid and hypoxanthine in a sample solution is determined by detecting with the enzyme electrode and quantifying the concentration of uric acid and hypoxanthine in a sample solution from the output value of the enzyme electrode.

本発明は、反応選択性および物質排除性に優れた固定化
酵素膜を用いることによって除たん白操作や分離・分画
操作を省けるようにするとともに、吸光度法に代えて過
酸化水素電極法を用いることによって迅速、筒便に尿酸
とヒポキサンチンを同一反応槽内で連続して定量できる
ようにしたものである。
The present invention uses an immobilized enzyme membrane with excellent reaction selectivity and material exclusion, thereby making it possible to omit protein removal operations, separation and fractionation operations, and to use the hydrogen peroxide electrode method instead of the absorbance method. By using this system, uric acid and hypoxanthine can be rapidly and continuously quantified in the same reaction tank.

本発明の測定法では、固定化ウリカーゼ膜によって尿酸
がアラントインとCO2とH2O2に変換される。生じ
たH802は過酸化水素電極表面で分解されて酸化電流
が実測され、尿酸の濃度が計測される。固定化ウリカー
ゼ膜には、例えばコード番号E、C,1,7,3,3の
ウリカーゼを固定化したものが用いられる0次に、試料
溶液にキサンチンオキシダーゼが添加される。キサンチ
ンオキシダーゼ(コード番号E、C,1,2,3,2)
によりヒポキサンチンは尿酸とH70□に変換される。
In the assay method of the present invention, uric acid is converted into allantoin, CO2, and H2O2 by the immobilized uricase membrane. The generated H802 is decomposed on the surface of the hydrogen peroxide electrode, the oxidation current is measured, and the concentration of uric acid is measured. The immobilized uricase membrane has, for example, immobilized uricase with code numbers E, C, 1, 7, 3, and 3. Next, xanthine oxidase is added to the sample solution. Xanthine oxidase (code number E, C, 1, 2, 3, 2)
Hypoxanthine is converted into uric acid and H70□.

このヒポキサンチンの濃度に対応して生成した尿酸の濃
度は上記と同様にして酵素電極で検出し、得られた出力
電流の増加量からヒポキサンチンの濃度が定量されるこ
とになる。
The concentration of uric acid produced in response to the concentration of hypoxanthine is detected using an enzyme electrode in the same manner as described above, and the concentration of hypoxanthine is determined from the amount of increase in the obtained output current.

しかして、本発明の測定法において起こる反応式は、次
のように表すことができる。
Therefore, the reaction formula that occurs in the measuring method of the present invention can be expressed as follows.

ウリカーゼ 尿酸+ Q、  −シ 7ラン)(ン+  COx  
+  HzOt  (1)HtOz  =   2H”
  +O1+2e−このように、本発明の測定法では、
ヒポキサンチンの測定の際にキサンチンオキシダーゼの
作用により生成する尿酸とH,O,の両者を尿酸検出用
酵素電極で検出するようにしたため、出力電力の倍化を
もたらすことができる。
Uricase uric acid + Q, -shi7ran) (n + COx
+ HzOt (1) HtOz = 2H”
+O1+2e- Thus, in the measurement method of the present invention,
When measuring hypoxanthine, both uric acid and H, O, produced by the action of xanthine oxidase are detected using the enzyme electrode for detecting uric acid, thereby doubling the output power.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の測定法を実施するのに用いられる尿
酸とヒポキサンチンの定It !AM−の一系統図を示
す、ここで、10は尿酸検出用酵素電極、11は温度補
償用サーミスタ、】7は反応槽である。反応槽17は、
試料溶液および試薬(キサンチンオキシダーゼ)溶液の
注入口18を備え、そこへ緩衝液14が液送リボンブ1
5により給送され、測定終了後に廃液溜16に送られる
。酵素電極10はポーラログラフ装置12に接続し、さ
らに演算増幅部13、出力表示部19に接続している。
FIG. 1 shows the concentrations of uric acid and hypoxanthine used to carry out the measurement method of the present invention. A system diagram of AM- is shown, where 10 is an enzyme electrode for detecting uric acid, 11 is a thermistor for temperature compensation, and ]7 is a reaction tank. The reaction tank 17 is
An injection port 18 for a sample solution and a reagent (xanthine oxidase) solution is provided, into which a buffer solution 14 is fed via a liquid delivery ribbon 1.
5, and after the measurement is completed, it is sent to the waste liquid reservoir 16. The enzyme electrode 10 is connected to a polarographic device 12, and further connected to an operational amplifier section 13 and an output display section 19.

第2図は、尿酸検出用酵素電極10の構成を示す横断面
図である。ここで、20は固定化ウリカーゼ膜、22は
白金陽極、24は銀陰極、26は絶縁層である。2日は
、固定化ウリカーゼ膜20を過酸化水素電極21の表面
に密着保持するための○−リングである。ここで、白金
陽極22には銀陰極24に対して+0.5V〜0.8v
の範囲の一定電圧を印加しておく。
FIG. 2 is a cross-sectional view showing the configuration of the enzyme electrode 10 for detecting uric acid. Here, 20 is an immobilized uricase membrane, 22 is a platinum anode, 24 is a silver cathode, and 26 is an insulating layer. On the second day, a circle is used to hold the immobilized uricase membrane 20 in close contact with the surface of the hydrogen peroxide electrode 21. Here, the platinum anode 22 has +0.5V to 0.8V with respect to the silver cathode 24.
A constant voltage in the range of is applied.

以下、第1図に示した定量装置を用いて本発明の測定法
の実施例を詳述する。
Examples of the measuring method of the present invention will be described in detail below using the quantitative apparatus shown in FIG.

緩衝溶液として0.1MIJン酸塩決衝溶tl(pH7
,35,30℃)、試料溶液として尿酸0.3+*M、
ヒポキサンチン0.5mMを含む溶液を用いた。キサン
チンオキシダーゼ溶液は13.8units/m lの
酵素活性になるように0.1Mリン酸塩溶液に溶解した
As a buffer solution, 0.1 MIJ phosphate solution tl (pH 7
, 35, 30°C), uric acid 0.3+*M as sample solution,
A solution containing 0.5 mM of hypoxanthine was used. The xanthine oxidase solution was dissolved in a 0.1M phosphate solution to give an enzyme activity of 13.8 units/ml.

第3図に本発明の実施例の反応経過状態を示す。FIG. 3 shows the progress of the reaction in an example of the present invention.

時点30で試料溶液の20μiを反応槽17内に注入す
る。注入してから10〜30秒後に試料溶液内に含まれ
る尿素の濃度に応じた出力(■。)が得られた。
At time point 30, 20 μi of sample solution is injected into reaction vessel 17. An output (■.) corresponding to the concentration of urea contained in the sample solution was obtained 10 to 30 seconds after injection.

時点32でキサンチンオキシダーゼ溶液の20μlを注
入すると、直ちに出力が直線的に増加した。この直線的
増加はキサンチンオキシダーゼを注入した後2〜3分間
にわたって観測された0時点32の5秒後から1分間に
わたって出力の増加量(r、)を計測した。ここで、■
、は試料中に含まれるヒポキサンチンがキサンチンオキ
シダーゼの作用により尿酸とHz Otに変換されたこ
とに基づく増加電流であり、ヒポキサンチンの濃度に対
応する量であることがわかった。
Injection of 20 μl of xanthine oxidase solution at time point 32 resulted in an immediate linear increase in output. This linear increase was observed over a period of 2 to 3 minutes after injecting xanthine oxidase.The increase in output (r,) was measured over a period of 1 minute from 5 seconds after the zero point 32. Here,■
, is an increased current based on the conversion of hypoxanthine contained in the sample into uric acid and Hz Ot by the action of xanthine oxidase, and it was found that the amount corresponds to the concentration of hypoxanthine.

このように、試料溶液とキサンチンオキシダーゼ溶液を
逐次反応槽内に添加する操作でもって試料溶液中に含ま
れる尿酸とヒポキサンチンを同一反応槽内で連続して定
量することが可能である。
In this way, by sequentially adding the sample solution and the xanthine oxidase solution into the reaction tank, it is possible to continuously quantify uric acid and hypoxanthine contained in the sample solution in the same reaction tank.

なお、時点34は反応槽内の0.1Mリン酸塩緩衝液に
よる洗浄開始時点を示す。
Note that time 34 indicates the time when washing with 0.1M phosphate buffer in the reaction tank was started.

次に、第4図に尿酸とヒポキサンチンの濃度を変えて、
各>74度と出力Tl流値との関連を調べた結果を示す
。ともに良好な検量線が得られた(40・・尿酸検量線
、42・・ヒポキサンチン検量線)。
Next, as shown in Figure 4, by changing the concentrations of uric acid and hypoxanthine,
The results of investigating the relationship between each >74 degrees and the output Tl flow value are shown. Good calibration curves were obtained for both (40: uric acid calibration curve, 42: hypoxanthine calibration curve).

このことから本発明の測定法の有効性がわかる。This shows the effectiveness of the measuring method of the present invention.

次に、比較のため、固定化ウリカーゼ膜20の代わりに
酵素が固定されていない同じ構造のセルロースアセテー
ト膜を用いて、反応槽内に生成したH2O,のみを計測
してヒポキサンチンの計測を試みた。このときの電流出
力は固定化ウリカーゼ膜20を用いたときの約5であっ
た。このことから、固定化酵素膜を用いることにより尿
酸との連続測定ができるのみならず、出力電流が増大し
ているためS/N比の向上がもたらされていることがわ
かる。
Next, for comparison, we attempted to measure hypoxanthine by using a cellulose acetate membrane with the same structure but no enzyme immobilized instead of the immobilized uricase membrane 20 and measuring only the H2O generated in the reaction tank. Ta. The current output at this time was about 5 when the immobilized uricase membrane 20 was used. This shows that the use of the immobilized enzyme membrane not only allows continuous measurement of uric acid, but also improves the S/N ratio due to the increased output current.

さらに、生血清アルブミン溶液、肉汁エキスおよび血液
のそれぞれに酵素電極を10時間浸漬(これは300回
の測定に相当する)したが、酵素電極は初期活性の70
%以上の活性を保持していた。このことから、選択的透
過機能を持つ固定化酵素膜を使用することの有効性が明
らかとなる。
Furthermore, the enzyme electrode was immersed in each of raw serum albumin solution, meat juice extract, and blood for 10 hours (this corresponds to 300 measurements), but the enzyme electrode
% or more of the activity. This reveals the effectiveness of using an immobilized enzyme membrane with a selective permeation function.

〔発明の効果〕 本発明によれば、尿素検出用酵素電極を用いて尿酸とヒ
ポキサンチンを測定するようにしたため、出力が電流信
号として得られるので簡便な操作および測定装置で尿酸
とヒポキサンチンを同一反応槽内で精度よく連続して定
量できるようになった。
[Effects of the Invention] According to the present invention, since uric acid and hypoxanthine are measured using an enzyme electrode for urea detection, the output is obtained as a current signal, so uric acid and hypoxanthine can be measured with a simple operation and measuring device. Continuous quantitative determination with high accuracy is now possible within the same reaction tank.

また、固定酵素膜の利用により除たん白操作を不要にす
ることができた。さらに、ヒポキサンチンの測定の際に
キサンチンオキシダーゼの作用により生成する尿酸とH
z O□の両者を尿酸検出用酵素電極で検出するように
した結果、Ht Ozのみの測定と比べて約2倍の電流
出力を得ることができた。
Furthermore, the use of an immobilized enzyme membrane made it possible to eliminate the need for protein removal operations. Furthermore, when measuring hypoxanthine, uric acid and H produced by the action of xanthine oxidase are
As a result of detecting both zO□ with the enzyme electrode for detecting uric acid, it was possible to obtain about twice the current output compared to the measurement of only HtOz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定法を実施するのに用いられる尿酸
とヒポキサンチンの定量装置の一系統図であり、第2図
は本発明の方法で用いられる尿酸検出用酵素電極の構造
を示す横断面図の一例であり、第3図は本発明の測定法
の反応経過状態を示す線図であり、第4図は本発明の測
定法で用いられるポーラログラフ装置の電流出力と尿酸
およびヒポキサンチン濃度の関係を示す線図である。
Figure 1 is a system diagram of the uric acid and hypoxanthine quantitative device used to carry out the measurement method of the present invention, and Figure 2 shows the structure of the enzyme electrode for detecting uric acid used in the method of the present invention. This is an example of a cross-sectional view, FIG. 3 is a diagram showing the reaction progress state of the measurement method of the present invention, and FIG. FIG. 3 is a diagram showing the relationship between concentrations.

Claims (1)

【特許請求の範囲】[Claims] 1)試料溶液中に含まれる尿酸とヒポキサンチンの濃度
を測定するにあたり、固定化ウリカーゼ膜と過酸化水素
電極からなる尿酸検出用酵素電極を備えた反応槽内に試
料溶液を導入し、まず、尿酸の濃度を前記酵素電極で計
測し、次にキサンチンオキシダーゼを添加してヒポキサ
ンチンに作用させることにより、該ヒポキサンチンの濃
度に対応して逐次生成する尿酸の濃度変化を前記酵素電
極で検出し、前記酵素電極の出力値から試料溶液中の尿
酸とヒポキサンチンの濃度を定量することを特徴とする
尿酸とヒポキサンチンの測定法。
1) To measure the concentrations of uric acid and hypoxanthine contained in a sample solution, first introduce the sample solution into a reaction tank equipped with an enzyme electrode for detecting uric acid consisting of an immobilized uricase membrane and a hydrogen peroxide electrode, and then The concentration of uric acid is measured with the enzyme electrode, and then xanthine oxidase is added to act on hypoxanthine, whereby changes in the concentration of uric acid that are sequentially generated corresponding to the concentration of hypoxanthine are detected with the enzyme electrode. . A method for measuring uric acid and hypoxanthine, which comprises quantifying the concentrations of uric acid and hypoxanthine in a sample solution from the output value of the enzyme electrode.
JP61158685A 1986-07-08 1986-07-08 Method for measuring uric acid and hypoxanthine Pending JPS6315151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158685A JPS6315151A (en) 1986-07-08 1986-07-08 Method for measuring uric acid and hypoxanthine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158685A JPS6315151A (en) 1986-07-08 1986-07-08 Method for measuring uric acid and hypoxanthine

Publications (1)

Publication Number Publication Date
JPS6315151A true JPS6315151A (en) 1988-01-22

Family

ID=15677119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158685A Pending JPS6315151A (en) 1986-07-08 1986-07-08 Method for measuring uric acid and hypoxanthine

Country Status (1)

Country Link
JP (1) JPS6315151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167025A (en) * 1988-12-20 1990-06-27 Asahi Eng Kk Freshness-keeping method of fish by freezing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167025A (en) * 1988-12-20 1990-06-27 Asahi Eng Kk Freshness-keeping method of fish by freezing

Similar Documents

Publication Publication Date Title
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
US4795707A (en) Electrochemical sensor having three layer membrane containing immobilized enzymes
US4935105A (en) Methods of operating enzyme electrode sensors
US6299578B1 (en) Methods for monitoring a physiological analyte
Higson et al. Enzyme and other biosensors: Evolution of a technology
JP2003525053A (en) Enzyme-electrochemical measurement device
Llenado et al. Ion-electrode based automatic glucose analysis system
Karimi-Maleh et al. Voltammetric determination of captopril using a novel ferrocene-based polyamide as a mediator and multi-wall carbon nanotubes as a sensor
US20070105232A1 (en) Voltammetric detection of metabolites in physiological fluids
JPS6315151A (en) Method for measuring uric acid and hypoxanthine
Owen et al. Biosensors: a revolution in clinical analysis?
Christiansen et al. The slow penetration of enzymebased biosensors into clinical chemistry analysis
JPS6328264B2 (en)
JPS62235557A (en) Enzyme electrode
Makin et al. A rapid and simple method for the specific estimation of glucose in blood
Guilbault Enzymatic glucose electrodes
JPS62240849A (en) Enzyme electrode
JP3319008B2 (en) Measuring device and measuring method
Kriz et al. SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements
JP3362509B2 (en) Mannitol measurement method
JPH10262645A (en) Enzymatic sensor for measuring activity of alpha-amylase enzyme and measurement of activity of alpha-amylase enzyme
JPS6459056A (en) Biosensor
JPH0582903B2 (en)
JPS60192249A (en) Method for measuring blood sugar value
Palleschi Immobilized dehydrogenase enzymes coupled with a NADH sensor