JPS6315133A - Method for checking vacuum leak - Google Patents

Method for checking vacuum leak

Info

Publication number
JPS6315133A
JPS6315133A JP15880186A JP15880186A JPS6315133A JP S6315133 A JPS6315133 A JP S6315133A JP 15880186 A JP15880186 A JP 15880186A JP 15880186 A JP15880186 A JP 15880186A JP S6315133 A JPS6315133 A JP S6315133A
Authority
JP
Japan
Prior art keywords
pressure
vacuum
time
exhaust
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15880186A
Other languages
Japanese (ja)
Inventor
Yoshihiro Negoro
根来 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15880186A priority Critical patent/JPS6315133A/en
Publication of JPS6315133A publication Critical patent/JPS6315133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect a vacuum leak, by a method wherein a pressure change ratio is calculated from an exhaust volume, an exhaust speed, pressure at an exhaust start point and pressure at an exhaust final point during the exhaust process of a vacuum system and the estimated pressure after an arbitrary time obtained from the pressure change ratio is compared with measured pressure obtained when the vacuum system is exhausted for the same time. CONSTITUTION:Valves 2, 6, 7 are closed to start the driving of a vacuum pump 3. When the pressure of the vacuum pump 3 measured on the suction side thereof by a vacuum gauge 5 lowers to predetermined pressure, the main valve 2 is opened. This point of time comes to the exhaust start point of time of a vacuum container 1. A pressure change ratio is calculated from the pressure of the vacuum container 1 at this time and pressure after an arbitrary time at the first time is estimated while pressure after evacuation is performed for the same time is measured. Then, the estimated pressure is compared with the measured pressure and, when the difference between both of them is larger than a threshold value, it is judged that there exists a vacuum leak so that an alarm is emitted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、真空系の全体の気密性を調べる真空リークチ
ェック方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum leak check method for checking the airtightness of the entire vacuum system.

(従来の技術) 周知のように、リークチェックは、調べようとしている
真空容器を加圧または減圧して、実際に気体が容器から
噴出または容器内に侵入するか否かを調べることであり
、従来用いられている方法には、加圧放置法、真空放置
法やプローブガス法等と呼ばれるものが多い。
(Prior Art) As is well known, a leak check is to pressurize or depressurize a vacuum container to be examined and check whether gas actually blows out from the container or enters the container. Many of the conventionally used methods are called a pressurized leaving method, a vacuum leaving method, a probe gas method, and the like.

しかして、加圧放置法は、真空容器を加圧密閉したまま
一定時間放置して、圧力低下の有無を見る方法であり、
真空放置法は、加圧放置法と原理は同じで、真空容器を
減圧密閉したまま一定時間放置して、圧力上昇の有無を
見る方法である。
However, the pressurized leaving method is a method in which a vacuum container is left sealed under pressure for a certain period of time to see if there is a drop in pressure.
The vacuum leaving method is based on the same principle as the pressurizing leaving method, and is a method in which a vacuum container is left sealed under reduced pressure for a certain period of time, and the presence or absence of pressure rise is observed.

これに対し、プローブガス法は、リーク箇所を通して噴
出ま“たは侵入する気体を発見するのに、例えばヘリウ
ムガスのような特殊な気体を用いて行うもので、この気
体がプローブガスと呼ばれている。このプローブガス法
を用いた検出器の代表的なものが、ヘリウムリークディ
テクターである。
On the other hand, the probe gas method uses a special gas, such as helium gas, to detect gas ejecting or entering through a leak point.This gas is called a probe gas. A typical detector using this probe gas method is a helium leak detector.

(発明が解決しようとする問題点) ところで、上記したリークチェック方法のうち、加圧放
置法や真空放置法は、初期圧力や一定時間放置 化幅が許容される範囲内か否かの判定を行わなければな
らない。また、プローブガス法は、高価なリークディテ
クタを被検査系でおる真空装置とは別に設け、検査作業
をやはり手作業で行わなければならない。したがって、
リークチェック作業が煩雑となり、所要時間も長くなり
、高価なJ2備を必要とする等の欠点がめった。
(Problems to be Solved by the Invention) Of the leak check methods described above, the pressurized leaving method and the vacuum leaving method do not allow for the determination of whether the initial pressure or the width of leaving for a certain period of time is within an allowable range. It must be made. Further, in the probe gas method, an expensive leak detector is provided separately from the vacuum device used in the system to be inspected, and inspection work must still be performed manually. therefore,
The leak check work became complicated, took a long time, and required expensive J2 equipment.

そこで、本発明の目的は、リークチェックのみのための
装置や時間を必要とせず、当該真空系の排気動作の過程
で、自動的に圧力変化を監視して、真空漏れの検出がで
きる真空リークチェック方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to detect vacuum leaks by automatically monitoring pressure changes during the evacuation process of the vacuum system, without requiring equipment or time solely for leak checking. The purpose is to provide a checking method.

[発明の構成] (問題点を解決するための手段および作用)本発明は、
真空容器と真空引きをする排気用機器で構成される真空
系の排気過程の間に、排気容積、排気速度、排気始点圧
力、排気終点圧力から圧力変化率を求め、この圧力変化
率から得られる任意の時間後の推定圧力と同一時間排気
した後の測定圧力とを比較し、この差から真空漏れを検
出することにより、真空漏れを検出するだけのための装
置や時間を必要とせず、かつこの検出作業も容易とした
ものである。
[Structure of the invention] (Means and effects for solving the problems) The present invention has the following features:
During the evacuation process of a vacuum system consisting of a vacuum container and evacuation equipment, the rate of pressure change is determined from the pumping volume, pumping speed, starting point pressure, and ending point pressure, and is obtained from this rate of pressure change. By comparing the estimated pressure after a given time with the measured pressure after evacuation for the same time and detecting a vacuum leak from this difference, there is no need for equipment or time just to detect vacuum leaks, and This detection work is also made easier.

(実施例) 以下、本発明の真空リークチェック方法の一実施例を図
面を参照して説明する。まず、本発明の原理について説
明する。
(Example) Hereinafter, an example of the vacuum leak check method of the present invention will be described with reference to the drawings. First, the principle of the present invention will be explained.

一般に、内容積Vを排気速度Sの真空ポンプで排気する
ときの圧力の時間的な変化は、次式で与えられる。
Generally, the temporal change in pressure when the internal volume V is evacuated by a vacuum pump with an evacuation speed S is given by the following equation.

ここで、Qo :気体の漏れおよび真空容器内でのガス
の発生量 po:真空ポンプの到達圧力 しかしながら、実際にはこの(1)式に対して次のよう
な補正を行う必要がある。
Here, Qo: Gas leakage and amount of gas generated in the vacuum container po: Ultimate pressure of the vacuum pump However, in reality, it is necessary to perform the following correction to this equation (1).

(1)導管のコンダクタンスによる排気速度Sの補正 3−p3eff ここで、5eff :実効排気速度 C:導管のコンダクタンス (2)内容積V中の気体や内表面に滞留している気体に
対する内容積■の補正 V−+KV ここで、K:補正係数 (3)容器壁からガスの放出による補正(ただし、pが
10−31orr以下の場合) Qo −)Q Q=qA ここで、Q:漏れがない場合の全ガス故出量q:単位面
積当りのガス放出量 A:容器内表面積 以上から、実際の圧力の時間的な変化は、漏れがない場
合に限定すると、次に示す(2a)式、 (2tl)式
で得られることになる。
(1) Correction of pumping speed S by conduit conductance 3-p3eff Here, 5eff: Effective pumping speed C: Conduit conductance (2) Internal volume ■ for gas in internal volume V and gas staying on the inner surface Correction of V-+KV Here, K: Correction coefficient (3) Correction by gas release from the container wall (provided that p is 10-31orr or less) Qo -)Q Q=qA Here, Q: No leakage Total gas release amount q: Gas release amount per unit area A: Container inner surface area From the above, the actual pressure change over time is limited to the case where there is no leakage, and is expressed by the following equation (2a): (2tl) can be obtained from the equation.

(1)圧力pが1O−21orr以上の場合KVdJ2
=−8eff (p−po ) −<2a>t (2)圧力pが10−3 TOrr以下の場合V並=−
3eff < o−po > 十qA・<2b)t つまり、(2a)式および(2b)式から、漏れがない
場合ノ圧力の変化率は、K、 V、 5eff 、  
po 。
(1) KVdJ2 when pressure p is 1O-21orr or more
=-8eff (p-po) -<2a>t (2) When the pressure p is 10-3 TOrr or less, it is equal to V =-
3eff <o-po>10qA・<2b)t In other words, from equations (2a) and (2b), the rate of change in pressure when there is no leakage is K, V, 5eff,
po.

(1,Aの値をもとに推定できる値であると云える。(It can be said that this is a value that can be estimated based on the value of 1, A.

したがって、圧力の測定値と推定値を比較すれば、その
差の程度によって、漏れの検出が可能となる。
Therefore, by comparing the measured pressure value and the estimated pressure value, it is possible to detect a leak depending on the degree of the difference.

次に、本発明の一実施例に関連する真空系について説明
する。第1図において、真空容器1は、主バルブ2が開
かれている状態で真空ポンプ3により排気され、真空計
4で内部圧力が計測される。
Next, a vacuum system related to an embodiment of the present invention will be explained. In FIG. 1, a vacuum container 1 is evacuated by a vacuum pump 3 with a main valve 2 open, and the internal pressure is measured by a vacuum gauge 4.

真空ポンプ3の吸込側圧力も真空計5で計測される。リ
ークバルブ6.7は、真空容器1および真空ポンプ3を
大気圧に戻す(ベントする)場合に、N2ガスを導入す
るために設けられている。
The suction side pressure of the vacuum pump 3 is also measured by the vacuum gauge 5. The leak valve 6.7 is provided to introduce N2 gas when the vacuum container 1 and the vacuum pump 3 are returned to atmospheric pressure (vented).

また、真空系の制御および真空漏れ検出のために、信号
の入出力装置8とコントローラ9が設けられる。このコ
ントローラ9には、CPUとメモリが設けられ上記した
(2a)式および(2b)式による演算を行い、入出力
装置8を介して表示器10に真空漏れの表示や警報を発
する。
Further, a signal input/output device 8 and a controller 9 are provided for controlling the vacuum system and detecting vacuum leaks. This controller 9 is provided with a CPU and a memory, performs calculations according to the above-mentioned equations (2a) and (2b), and issues a vacuum leak indication and alarm on the display 10 via the input/output device 8.

なお、真空計4(または図示しない他の検出器)から、
真空容器1の圧力信号が入出力装置8に入力される。
In addition, from the vacuum gauge 4 (or other detector not shown),
A pressure signal from the vacuum container 1 is input to the input/output device 8 .

次に、このような真空系を大気圧の状態から真空引きす
る動作について説明する。まず、バルブ2、リークバル
ブ6および7を閉じ、真空ポンプ3を起動する。真空計
5で計測される真空ポンプ3の吸込側圧力が所定の圧力
まで低下したとき、主バルブ2を開く。この時点が対象
となる真空容器1の排気開始時点となる。
Next, the operation of evacuation of such a vacuum system from the atmospheric pressure state will be explained. First, valve 2, leak valves 6 and 7 are closed, and vacuum pump 3 is started. When the suction side pressure of the vacuum pump 3 measured by the vacuum gauge 5 drops to a predetermined pressure, the main valve 2 is opened. This point is the point in time when evacuation of the target vacuum container 1 is started.

そこで、このときの真空容器1の圧力Pciを読み、上
記した(2a)式から圧力変化率dp/dtを求め、初
回の任意の時間ts後の圧力Pi  (推定圧力)を推
定する。一方、同一時間ts真空引きを行った後の圧力
P(測定圧力)を測定する。しかして、この圧力Pと圧
力PC1を比較し、差がしきい値(thresholc
l )  dPIimより小さい時には真空漏れはない
と判定し、差がしきい値dl)Iimより大きいときに
は真空漏れがおると判定して警報を発する。なお、この
場合1回の真空漏れで直ちに警報を発しないで、数回(
3〜5回)連続して真空漏れが判定されたときに、警報
を発するようにしてもよく、dplimの値は、誤差を
考慮して推定圧力Piの3倍程度とする。
Therefore, the pressure Pci of the vacuum vessel 1 at this time is read, the rate of pressure change dp/dt is determined from the above equation (2a), and the pressure Pi (estimated pressure) after the first arbitrary time ts is estimated. On the other hand, the pressure P (measured pressure) after evacuation is performed for the same time ts is measured. Then, this pressure P and pressure PC1 are compared, and the difference is a threshold value (thresholc).
l) When the difference is smaller than dPIim, it is determined that there is no vacuum leak, and when the difference is larger than the threshold value dl)Iim, it is determined that there is a vacuum leak and an alarm is issued. In this case, a single vacuum leak will not immediately cause an alarm, but will occur several times (
An alarm may be issued when a vacuum leak is determined (3 to 5 times) consecutively, and the value of dplim is set to about three times the estimated pressure Pi, taking into account errors.

真空漏れがないと判定したときには、同様の要領で圧力
推定、比較1判定を時間tsごとに行って真空漏れの検
出を排気終了まで繰返す。ここで、排気終了時の圧力が
10−3 TOrr以下の場合には、上記した(2b)
式に基いて同様の要領で真空漏れの検出を行う。
When it is determined that there is no vacuum leak, pressure estimation and comparison 1 determination are performed in the same manner at every time ts, and vacuum leak detection is repeated until the end of evacuation. Here, if the pressure at the end of exhaust is 10-3 Torr or less, the above (2b)
Vacuum leak detection is performed in the same manner based on the formula.

第2図は、上記した動作のフローチャートを示し、第3
図は、上記した排気過程における推定圧力(破線で示す
)と測定圧力(実線で示す)の時間的変化を示したもの
である。この両図において、真空漏れの警報は、真空漏
れが3回連続して判定されたときに発するようにした例
を示している。
FIG. 2 shows a flowchart of the above-mentioned operation, and the third
The figure shows temporal changes in the estimated pressure (indicated by a broken line) and the measured pressure (indicated by a solid line) during the above-mentioned exhaust process. Both figures show an example in which a vacuum leak alarm is issued when a vacuum leak is determined three times in a row.

したがって、以上のような構成によれば、特別な漏れ検
出器を必要とせず、しかも排気過程の間に真空漏れを検
出することができる。
Therefore, with the above configuration, vacuum leaks can be detected during the evacuation process without requiring a special leak detector.

なお、上記した実施例では、真空引きを真空ポンプ1段
で行うようにしたが、高真空排気用では真空ポンプの多
段構成とするのが通例である。この場合でも、各段の真
空ポンプは、圧力領域に応じて直列運転されるため、主
排気ポンプだけに着目して、上記した(2a)式または
(2b)式の定数を切換えて適用すればよい。
In the above-mentioned embodiment, evacuation was performed using one stage of the vacuum pump, but for high vacuum evacuation, it is customary to use a multi-stage configuration of vacuum pumps. Even in this case, the vacuum pumps at each stage are operated in series depending on the pressure range, so if we focus only on the main exhaust pump and apply the constants in equation (2a) or equation (2b) above, good.

[発明の効果コ 本発明は、以上のように構成されているから、次の効果
が得られる。
[Effects of the Invention] Since the present invention is configured as described above, the following effects can be obtained.

(1)特別なリークディテクタを用いることなく、漏れ
の検出ができる。
(1) Leakage can be detected without using a special leak detector.

(2)漏れを検出するのみのために、時間と労力を必要
としない。
(2) Time and effort are not required just to detect leaks.

(3)真空容器のみでなく、真空ポンプ、バルブや配管
等を含む排気系を含めて、漏れの検出ができる。
(3) Leakage can be detected not only in the vacuum container but also in the exhaust system including the vacuum pump, valves, piping, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の真空リークチェック方法の一実施例に
関連する真空系の構成図、第2図は本発明の一実施例の
動作を示すフローチャート、第3図は本発明の一実施例
の排気過程における真空漏れの有無と圧力変化の関係を
示す線図である。 1・・・真空容器 3・・・真空ポンプ 4.5・・・真空計 8・・・入出力装置 9・・・コントローラ 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 第2図
FIG. 1 is a configuration diagram of a vacuum system related to an embodiment of the vacuum leak check method of the present invention, FIG. 2 is a flowchart showing the operation of an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 3 is a diagram showing the relationship between the presence or absence of vacuum leakage and pressure change during the evacuation process. 1...Vacuum container 3...Vacuum pump 4.5...Vacuum gauge 8...Input/output device 9...Controller representative Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 真空容器と真空引きをする排気用機器で構成する真空系
の排気過程の間に、排気容積、排気速度、排気始点圧力
、排気終点圧力から圧力変化率を求め、この圧力変化率
から得られる任意の時間後の推定圧力と同一時間排気し
た後の測定圧力とを比較し、この差から真空漏れを検出
することを特徴とする真空リークチェック方法。
During the evacuation process of a vacuum system consisting of a vacuum container and evacuation equipment, the rate of pressure change is calculated from the pumping volume, pumping speed, starting point pressure, and ending point pressure. A vacuum leak check method characterized by comparing an estimated pressure after a period of time with a measured pressure after evacuation for the same period of time, and detecting a vacuum leak from this difference.
JP15880186A 1986-07-08 1986-07-08 Method for checking vacuum leak Pending JPS6315133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15880186A JPS6315133A (en) 1986-07-08 1986-07-08 Method for checking vacuum leak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15880186A JPS6315133A (en) 1986-07-08 1986-07-08 Method for checking vacuum leak

Publications (1)

Publication Number Publication Date
JPS6315133A true JPS6315133A (en) 1988-01-22

Family

ID=15679649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15880186A Pending JPS6315133A (en) 1986-07-08 1986-07-08 Method for checking vacuum leak

Country Status (1)

Country Link
JP (1) JPS6315133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668492A2 (en) * 1994-02-18 1995-08-23 The BOC Group plc Methods and apparatus for leak testing
WO1999046572A1 (en) * 1998-03-11 1999-09-16 True Technology, Inc. Method and apparatus for detection of leaks in hermetic packages
JP2001289400A (en) * 2000-04-10 2001-10-19 Ulvac Japan Ltd Hydrogen treatment device
JP2002532670A (en) * 1998-12-11 2002-10-02 ベクトン・ディキンソン・フランス・ソシエテ・アノニム Door coupling device between two chambers isolated from the external environment
JP2014066383A (en) * 2012-09-25 2014-04-17 Samson Co Ltd Vacuum cooling apparatus
JP2018527580A (en) * 2015-09-15 2018-09-20 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Leak detection when evacuating a test room or inspection object

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668492A2 (en) * 1994-02-18 1995-08-23 The BOC Group plc Methods and apparatus for leak testing
EP0668492A3 (en) * 1994-02-18 1996-05-15 Boc Group Plc Methods and apparatus for leak testing.
US5831147A (en) * 1994-02-18 1998-11-03 The Boc Group Plc Tracer gas leak detection with gross leak detection by measuring differential pressure
WO1999046572A1 (en) * 1998-03-11 1999-09-16 True Technology, Inc. Method and apparatus for detection of leaks in hermetic packages
JP2002532670A (en) * 1998-12-11 2002-10-02 ベクトン・ディキンソン・フランス・ソシエテ・アノニム Door coupling device between two chambers isolated from the external environment
JP4834221B2 (en) * 1998-12-11 2011-12-14 ベクトン・ディキンソン・フランス・エス.エー.エス. Door coupling device between two chambers isolated from external environment
JP2001289400A (en) * 2000-04-10 2001-10-19 Ulvac Japan Ltd Hydrogen treatment device
JP2014066383A (en) * 2012-09-25 2014-04-17 Samson Co Ltd Vacuum cooling apparatus
JP2018527580A (en) * 2015-09-15 2018-09-20 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Leak detection when evacuating a test room or inspection object

Similar Documents

Publication Publication Date Title
US5625141A (en) Sealed parts leak testing method and apparatus for helium spectrometer leak detection
EP0218458B1 (en) Method and apparatus for gross leak detection
KR102684152B1 (en) Pressure measurement at test gas inlet
JPH0298643A (en) Method of testing leakage of testing vessel by tracer gas
JPS6315133A (en) Method for checking vacuum leak
JP3430979B2 (en) Leak test method and leak test device
US20240264030A1 (en) Leak detectors
JP3383633B2 (en) Leak inspection device
JP2001235387A (en) Leak inspecting device
JPH11241971A (en) Leak test device
JP3349130B2 (en) Leak inspection device
JP3038321B2 (en) Leak amount measurement device
JP4605927B2 (en) Leak test equipment
JP2934415B2 (en) Leak amount measurement device
US20240319033A1 (en) Evaluation of the measurement signal from a vacuum leak detector
JPS6093936A (en) Leak detector
RU2085887C1 (en) Method of detection of loss of tightness of technological line in mix of air-tight compartment
RU2818989C1 (en) Method of testing multi-cavity products for total tightness
RU1816973C (en) Mass-spectroscopy method of hermetic state testing for working pieces
RU2728322C1 (en) Method for checking tightness of articles and device for its implementation
JPH03243842A (en) Method for measuring leaking gas of slight amount
TW201719133A (en) Method for detecting a leak in a specimen
JPH0250422A (en) Semiconductor manufacturing apparatus
JP3371924B2 (en) Helium leak detection method by reverse diffusion measurement
RU2063013C1 (en) Method of inspection of tightness in vacuum chamber