JPS6315019B2 - - Google Patents

Info

Publication number
JPS6315019B2
JPS6315019B2 JP57007652A JP765282A JPS6315019B2 JP S6315019 B2 JPS6315019 B2 JP S6315019B2 JP 57007652 A JP57007652 A JP 57007652A JP 765282 A JP765282 A JP 765282A JP S6315019 B2 JPS6315019 B2 JP S6315019B2
Authority
JP
Japan
Prior art keywords
catalyst
water
reaction
gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57007652A
Other languages
Japanese (ja)
Other versions
JPS58124543A (en
Inventor
Hisao Yamashita
Mamoru Mizumoto
Shinpei Matsuda
Kazuhiko Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57007652A priority Critical patent/JPS58124543A/en
Publication of JPS58124543A publication Critical patent/JPS58124543A/en
Publication of JPS6315019B2 publication Critical patent/JPS6315019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は気・液相反応用触媒層構造体に関し、
詳しくは、特定形態の支持体に撥水性膜状触媒を
支持させた有効な気・液相反応用触媒層構造体に
関する。
[Detailed Description of the Invention] The present invention relates to a catalyst layer structure for gas/liquid phase application.
More specifically, the present invention relates to an effective catalyst layer structure for gas/liquid phase applications in which a water-repellent membrane catalyst is supported on a specific type of support.

気・液相間の反応とは、反応物が気体と液体と
からなり、該反応物間において物質の化学変換を
行うことをいう。気・液相間の反応としては、例
えば、水・水素ガス間における水素同位体交換反
応を利用した重水製造、軽水炉、重水炉又は核燃
料再処理工場からの排水中に含まれるトリチウム
除去、あるいは又、通常の化学プラントにおいて
溶液中のイオンを酸素ガス等の酸化性若しくは水
素等の還元性ガスにより化学的に交換する反応を
いう。
A reaction between a gas and a liquid phase means that the reactants are composed of a gas and a liquid, and a substance is chemically converted between the reactants. Examples of reactions between gas and liquid phases include heavy water production using hydrogen isotope exchange reactions between water and hydrogen gas, tritium removal contained in wastewater from light water reactors, heavy water reactors, or nuclear fuel reprocessing plants, or , refers to a reaction in which ions in a solution are chemically exchanged with an oxidizing gas such as oxygen gas or a reducing gas such as hydrogen in a typical chemical plant.

気・液相間の反応では、一般的にその反応速度
が遅いため、これを速めるために触媒が使用され
る。例えば水と水素ガス間における水素同位体交
換反応は、 H2O(l)+HD(g)HDO(l)+H2(g) で示されるが、該反応は触媒が存在しないとほと
んど進行しない。しかし、該反応に白金触媒を使
用すると速やかに反応は進行することが報告され
ている。この場合触媒としては、(イ)水に溶解する
触媒(均一系の金属イオン触媒)及び(ロ)不均一系
の固体触媒がある。しかし、(イ)の触媒は反応生成
物あるいは反応原料物質との分離が困難などの欠
点があり、(b)の固体触媒の方が望ましい。すなわ
ち、固体触媒は触媒再生、取扱い性、廃液又は反
応液の処理等の点で(イ)の均一系触媒よりはるかに
有利だからである。気・液相間の固体触媒として
は、従来の触媒、例えばアルミナ、活性炭及び、
チタニア等の担体に、白金、パラジウム、ロジウ
ム、コバルト及び、ニツケル等の触媒成分を担持
したもの等があるが、これらは親水性であるた
め、水溶液中で使用するのは困難であるかあるい
は水溶液中ではその触媒活性を失つてしまうのが
通常である。この欠点をなくすため撥水性触媒が
開発された(例えば特開昭55−121840号公報参
照)。従来の親水性触媒は、水と接触するとその
表面が水で覆われてしまい反応ガスが触媒表面に
到達するのが困難になり活性を発揮できない。こ
れに対し、撥水性触媒ではその触媒表面は水と接
触するが、それは一部の表面のみであり、他の表
面はガスと接触することになり、固−気−液体の
三相界面を形成することにより活性を発揮するこ
とができる。前記した水素同位体交換反応による
重水製造では、親水性の白金−アルミナ又は、白
金−活性炭触媒を、シリコーンオイルでコーテイ
ングする方法(特公昭51−32800号公報参照)、同
じくテフロンでコーテイングする方法(特公昭51
−41195号公報及び特開昭50−155492号公報参
照)、あるいは、撥水性の有機物のポリマー担体
に白金を付着させる方法(特公昭51−41195号公
報参照)等が提案されている。又、溶液中の金属
イオンを酸素又は水素ガスで酸化又は還元する場
合に撥水性触媒が有効であることも開示されてい
る(特開昭55−121841号公報、特開昭55−121842
号公報及び特開昭55−121844号公報参照)。
In reactions between gas and liquid phases, the reaction rate is generally slow, so catalysts are used to speed up the reaction. For example, a hydrogen isotope exchange reaction between water and hydrogen gas is expressed as H 2 O (l) + HD (g) HDO (l) + H 2 (g), but this reaction hardly progresses in the absence of a catalyst. However, it has been reported that when a platinum catalyst is used in the reaction, the reaction proceeds quickly. In this case, the catalyst includes (a) a water-soluble catalyst (a homogeneous metal ion catalyst) and (b) a heterogeneous solid catalyst. However, the catalyst (a) has drawbacks such as difficulty in separating reaction products or reaction raw materials, and the solid catalyst (b) is more desirable. That is, solid catalysts are far more advantageous than homogeneous catalysts in (a) in terms of catalyst regeneration, ease of handling, treatment of waste liquids or reaction liquids, and the like. As solid catalyst between gas and liquid phase, conventional catalysts such as alumina, activated carbon and
There are supports such as titania that support catalyst components such as platinum, palladium, rhodium, cobalt, and nickel, but because these are hydrophilic, it is difficult to use them in aqueous solutions, or they are difficult to use in aqueous solutions. Normally, the catalyst loses its catalytic activity. In order to eliminate this drawback, water-repellent catalysts have been developed (see, for example, Japanese Patent Laid-Open No. 121840/1984). When a conventional hydrophilic catalyst comes into contact with water, its surface becomes covered with water, making it difficult for the reaction gas to reach the catalyst surface, making it unable to exhibit activity. On the other hand, with water-repellent catalysts, the catalyst surface comes into contact with water, but only part of the surface comes into contact with gas, and the other surfaces come into contact with gas, forming a three-phase solid-vapor-liquid interface. By doing so, the activity can be exhibited. In the production of heavy water by the above-mentioned hydrogen isotope exchange reaction, there are two methods: coating a hydrophilic platinum-alumina or platinum-activated carbon catalyst with silicone oil (see Japanese Patent Publication No. 51-32800), and coating with Teflon (see Japanese Patent Publication No. 51-32800) Tokuko Showa 51
-41195 and JP-A-50-155492), or a method of attaching platinum to a water-repellent organic polymer carrier (see Japanese Patent Publication No. 51-41195). It has also been disclosed that a water-repellent catalyst is effective when metal ions in a solution are oxidized or reduced with oxygen or hydrogen gas (Japanese Unexamined Patent Application Publication No. 1984-121841, Japanese Unexamined Patent Application Publication No. 55-121842).
(See Japanese Patent Publication No. 121844/1984).

ところで、気・液相間反応に限らず、全ての触
媒反応に対して膜状触媒を使用した従来技術はな
かつた。すなわち、触媒の形状としては、微粉
末、球、円柱及び円筒等のペレツトあるいはハニ
カム及び板状等が用いられてきた。
By the way, there is no prior art that uses a membrane catalyst for all catalytic reactions, not just reactions between gas and liquid phases. That is, as the shape of the catalyst, fine powder, pellets such as spheres, cylinders, cylinders, honeycombs, plate shapes, etc. have been used.

一般に固体触媒が開与する反応において、触媒
反応自体が速い場合には、反応物質の拡散が律速
となる。この場合、触媒粒子において反応に関与
するのは触媒の外表面近傍の活性点に限られ、粒
子内部の活性点はほとんど利用されない。したが
つて、活性成分をできるだけ表面層に担持するこ
とが望ましい。しかし、従来の触媒は、触媒粒子
の中心部近傍まで活性成分が担持されてしまうた
め、活性成分として高価な白金等の元素を有効に
使つていなかつた。これに対し、膜状触媒は、従
来の触媒の表面層だけを取出して使用することに
なり、活性成分である高価な金属を大幅に減少さ
せることができる。又、膜状であるから、従来の
触媒に比べ、触媒層の体積を小さくすることがで
き、反応器全体を小型化できる。更にペレツト状
の充填層に比べ圧力損失が小さく、反応流体中に
含まれる固形物による触媒層の目詰りを起さな
い。更に、これまでの気・液相間の反応に対して
用いられているペレツト状撥水性触媒による反応
塔の最大の欠点は、反応物である水溶液が撥水性
触媒により撥かれるため、水の分散性が悪くなる
ことである。すなわち、ペレツト状撥水性触媒を
反応塔に充填した場合、液体は反応管の壁だけを
伝わつて流れたり(ウオール効果)、局部的にし
か流れない(チヤンネリング効果)現象が起る。
特に固定床を使用する場合この現象は著しい。こ
の解決策として、撥水性触媒を親水性触媒あるい
は親水性担体と混合して触媒層を形成させる工夫
もあるが反応塔が大型化する。
In general, in reactions initiated by solid catalysts, when the catalytic reaction itself is fast, diffusion of reactants becomes rate-determining. In this case, only the active sites near the outer surface of the catalyst participate in the reaction in the catalyst particles, and the active sites inside the particles are hardly utilized. Therefore, it is desirable to support the active ingredient on the surface layer as much as possible. However, in conventional catalysts, the active component is supported up to the vicinity of the center of the catalyst particles, so that expensive elements such as platinum cannot be used effectively as the active component. On the other hand, with a membrane catalyst, only the surface layer of a conventional catalyst is extracted and used, and the amount of expensive metals as active components can be significantly reduced. Moreover, since it is in the form of a membrane, the volume of the catalyst layer can be made smaller than that of conventional catalysts, and the entire reactor can be made smaller. Furthermore, the pressure loss is smaller than that of a pellet-shaped packed bed, and the catalyst bed is not clogged with solids contained in the reaction fluid. Furthermore, the biggest drawback of reaction towers using pellet-like water-repellent catalysts, which have been used for reactions between gas and liquid phases so far, is that the aqueous solution that is the reactant is repelled by the water-repellent catalyst, so water dispersion is difficult. It means that the sex becomes worse. That is, when a pellet-shaped water-repellent catalyst is packed in a reaction column, a phenomenon occurs in which the liquid flows along only the walls of the reaction tube (wall effect) or only locally (channeling effect).
This phenomenon is particularly noticeable when a fixed bed is used. One solution to this problem is to form a catalyst layer by mixing a water-repellent catalyst with a hydrophilic catalyst or a hydrophilic carrier, but this increases the size of the reaction tower.

本発明はこのような現状に鑑みてなされたもの
であり、その目的は、従来の欠点を改良し、撥水
性膜状触媒を特定形態の支持体に支持させ、有効
に気・液相反応を行いうる触媒層構造体を提供す
ることである。
The present invention was made in view of the current situation, and its purpose is to improve the conventional drawbacks, support a water-repellent membrane catalyst on a specific type of support, and effectively carry out gas-liquid phase reactions. The object of the present invention is to provide a catalyst layer structure that can be used.

本発明につき概説すれば、本発明の気・液相反
応用触媒層構造体は、線状又は網目状支持体に撥
水性膜状触媒を支持させた触媒層からなることを
特徴とするものである。
To summarize the present invention, the gas/liquid phase applied catalyst layer structure of the present invention is characterized by comprising a catalyst layer in which a water-repellent membrane catalyst is supported on a linear or mesh support. be.

本発明における気・液相間の反応に対する膜状
触媒自体は、原理的には前記したものと同じであ
るが、その触媒形態及得触媒層構造の点で従来の
ものとは発想を全く異にしている。
The membrane catalyst itself for the reaction between gas and liquid phases in the present invention is the same in principle as the one described above, but the concept is completely different from conventional catalysts in terms of catalyst form and catalyst layer structure. I have to.

本発明によれば、撥水性膜状触媒を特定形態の
支持体に支持し、この触媒層構成単位を、膜と膜
の間を水溶液(液状反応物又は反応液)が流れる
ように反応塔に充填して気・液相反応を行わせ、
その際、触媒層の全領域にわたつて水溶液を均一
に流通させることができる。
According to the present invention, a water-repellent membrane catalyst is supported on a support of a specific form, and this catalyst layer structural unit is placed in a reaction tower such that an aqueous solution (liquid reactant or reaction liquid) flows between the membranes. Fill it to perform a gas/liquid phase reaction,
At this time, the aqueous solution can be uniformly distributed over the entire area of the catalyst layer.

本発明における気・液相間の反応に適用できる
撥水性膜状触媒は、厚さ0.1mm以下、望ましくは
0.01〜0.05mmとすることが適当であり、その表面
の少なくとも一部分が撥水性を有し、水溶液中に
おいてその全部の表面が水溶液に覆われることな
く、表面にガス相を形成させうる形態をとる。
The water-repellent membrane catalyst applicable to the reaction between gas and liquid phases in the present invention has a thickness of 0.1 mm or less, preferably
It is appropriate to have a thickness of 0.01 to 0.05 mm, and at least a portion of its surface is water repellent, and in an aqueous solution, the entire surface is not covered with the aqueous solution and has a form that allows the formation of a gas phase on the surface. .

このような撥水性膜状触媒を得るためには、親
水性の膜状触媒を撥水化処理する方法、撥水性の
膜状担体に触媒成分を担持させる方法、あるいは
親水性の物質と撥水性の物質を混合して膜状成形
前を得る方法等によることができる。
In order to obtain such a water-repellent membrane catalyst, there are two methods: a method of making a hydrophilic membrane catalyst water repellent, a method of supporting a catalyst component on a water-repellent membrane carrier, or a method of using a hydrophilic substance and a water-repellent substance. For example, a method may be used to obtain a film-formed material by mixing the following substances.

膜状担体としては、通常用いられる親水性担
体、例えばアルミナ、シリカ及び活性炭等の無機
物質、又はイオン交換膜等の有機高分子物質を膜
状に形成したものを適用することができる。
As the membrane-like carrier, commonly used hydrophilic carriers such as inorganic substances such as alumina, silica, and activated carbon, or membrane-shaped organic polymer substances such as ion exchange membranes can be used.

これらの親水性担体は、シリコーンオイル、ポ
リテトラフルオロエチレン及びポリエチレン等の
疎水性物質の溶液あるいはコロイド粒子の懸濁液
等で処理することにより撥水性を持たせることが
できる。撥水性の担体としては、本質的に撥水性
物質として知られるポリテトラフルオロエチレ
ン、ポリフツ化ビニリデン及びフツ化黒鉛等のフ
ツ素含有化合物、あるいはポリエチレン、ポリス
チレン、ポリプロピレン、ポリメチルメタクリレ
ート及びポリアルキルシリコーン等又はこれらに
類似した撥水性重合体を適用し、これらを膜状成
形体として使用することができる。
These hydrophilic carriers can be made water repellent by being treated with a solution of a hydrophobic substance such as silicone oil, polytetrafluoroethylene and polyethylene, or a suspension of colloidal particles. Examples of water-repellent carriers include fluorine-containing compounds such as polytetrafluoroethylene, polyvinylidene fluoride, and graphite fluoride, which are known as essentially water-repellent substances, or polyethylene, polystyrene, polypropylene, polymethyl methacrylate, and polyalkyl silicone. Alternatively, water-repellent polymers similar to these can be applied and used as a film-like molded product.

これらの膜状担体に活性成分としての白金、ニ
ツケル及びロジウム等の金属を含浸法等により担
持することにより、撥水性膜状触媒を得る。
A water-repellent membrane catalyst is obtained by supporting metals such as platinum, nickel, and rhodium as active ingredients on these membrane carriers by an impregnation method or the like.

上記した撥水性膜状触媒は、その厚さが薄いた
め、反応塔に充填するとき、その触媒層構造が極
めて重要なポイントとなる。
Since the water-repellent membrane catalyst described above is thin, the catalyst layer structure is an extremely important point when filling a reaction tower.

本発明においては、上記撥水性膜状触媒を特定
形態の支持体に支持して触媒層構造体を形成し、
これを反応塔に充填して、気・液相反応を効果的
に行う。支持体の材質は特に限定されず、無機系
及び有機系のいずれでも良く、その形態は線状又
は網目状とする。ここで網目状の構造とは、線状
の材料を格子状又は斜交状に配列して作製するこ
とができる。又、上記支持体は親水性のものが望
ましく、これが撥水性であると、水溶液は機械的
に網目の間にとどまる可能性もあるがその量は少
ない。これに対しこれが親水性であると、水溶液
は支持体をぬらして網目に表面張力による膜を形
成し、ホールドアツプ時間が長くなる。
In the present invention, the water-repellent membrane catalyst is supported on a support of a specific form to form a catalyst layer structure,
This is packed into a reaction tower to effectively carry out a gas/liquid phase reaction. The material of the support is not particularly limited, and may be either inorganic or organic, and its form may be linear or mesh. Here, the mesh structure can be produced by arranging linear materials in a grid or diagonal pattern. Further, the support is preferably hydrophilic; if it is water repellent, the aqueous solution may remain mechanically between the meshes, but the amount thereof is small. On the other hand, if it is hydrophilic, the aqueous solution wets the support and forms a film on the network due to surface tension, which increases the hold-up time.

本発明の触媒層構造体は、後に図面を参照して
その形態及び作用効果を詳述するように種々の形
態をとることができ、例えば網目状支持体に撥水
性膜状触媒を支持させ、これらを平行、格子状又
は斜交状に配列させた形態、これをロール状に巻
回した形態、ズルザーパツキングのように数本の
線状のものを編んだ金網を波形にした形態、網目
状円筒形の支持体に撥水性膜状触媒を支持した形
態あるいは鞍型構造をした網目状支持体に支持し
た形態等をとることができ、このような形態にす
ることにより、反応器にこのような膜状構造体を
充填したときにおける水溶液のホールドアツプ時
間を長くすることができる。なお又、上記網目状
の支持体を用いる場合、撥水性膜状触媒と網目状
支持体の中間又はそれらの少なくとも一方の外側
に吸水性物質(例えば、スポンジ及び布等)の層
を設けてホールドアツプ時間を長くし、又、この
ような吸水性物質を支持体とすることも可能であ
る。
The catalyst layer structure of the present invention can take various forms, as will be described in detail later with reference to the drawings. For example, a water-repellent membrane catalyst may be supported on a network support, Forms in which these are arranged in parallel, lattice or diagonal form, forms in which these are wound into a roll form, forms in which a wire mesh made of several wires woven into a corrugated form like Zurza Packing, The water-repellent membrane catalyst can be supported on a cylindrical mesh support, or supported on a mesh support with a saddle-shaped structure. When filling such a membrane structure, the hold-up time of the aqueous solution can be lengthened. Furthermore, when using the above-mentioned network support, a layer of water-absorbing material (for example, sponge, cloth, etc.) is provided between the water-repellent membrane catalyst and the network support, or on the outside of at least one of them. It is also possible to lengthen the up time and use such a water-absorbing substance as a support.

次に、本発明及びその作用効果を示した具体例
を図面を参照して説明する。
Next, specific examples showing the present invention and its effects will be described with reference to the drawings.

第1図のaは撥水性膜状触媒(以下膜状触媒と
略称する)を反応器内に単に配列充填した触媒層
構造体を示した透視図、bはその縦断面図であ
り、1は膜状触媒、2は支持体、3は反応器を示
す。本具体例は本発明による特定形態の支持体を
使用しない場合である。膜状触媒1の上部及び下
部を支持体2で固定し、反応器3に充填する。膜
状触媒1はその複数枚を平行に配列し、その空間
に液状及びガス状反応物を通過させることによ
り、気・液相反応を行わせる。この場合、支持体
としては膜状触媒を支えうるものであればよい。
このような膜状触媒1は、前記したように、高価
な金属触媒量を減少させ、かつ触媒層の体積を小
さくし反応器3全体を小型化し、更には圧力損失
が小さく触媒層の目詰りを起さない等の利点を有
する反面、液状反応物を反応器3の上部から落下
させたときのホールドアツプ時間が短かく、膜状
触媒と十分接触しないまま触媒層を通過してしま
う可能性がある。
In FIG. 1, a is a perspective view showing a catalyst layer structure in which water-repellent membrane catalysts (hereinafter referred to as membrane catalysts) are simply arranged and filled in a reactor, b is a longitudinal cross-sectional view thereof, and 1 is a longitudinal cross-sectional view of the structure. A membrane catalyst, 2 a support, and 3 a reactor. This specific example is a case where the specific type of support according to the present invention is not used. The upper and lower parts of the membrane catalyst 1 are fixed with supports 2, and the reactor 3 is filled. A plurality of membrane catalysts 1 are arranged in parallel, and a gas-liquid phase reaction is carried out by passing liquid and gaseous reactants through the space. In this case, the support may be any support as long as it can support the membrane catalyst.
As described above, such a membrane catalyst 1 reduces the amount of expensive metal catalyst, reduces the volume of the catalyst layer, and downsizes the entire reactor 3, and furthermore reduces pressure loss and prevents clogging of the catalyst layer. On the other hand, when the liquid reactant is dropped from the top of the reactor 3, the hold-up time is short, and there is a possibility that the liquid reactant may pass through the catalyst layer without making sufficient contact with the membrane catalyst. There is.

第2図以降の図面は第1図のものを改良した本
発明による触媒層の形状を示したものである。
The drawings from FIG. 2 onward show the shape of the catalyst layer according to the present invention, which is improved from that shown in FIG. 1.

すなわち、第2図のaは膜状触媒の片側に網目
状支持体を装着して配列した触媒層構造体を示し
た縦断面図、bは同じく膜状触媒の両側に網目状
支持体を装着して配列した触媒層構造体を示した
縦断面図であり、1は第1図におけるものと同じ
意味を有し、4は網目状支持体を示す。図示する
ように、膜状触媒1の片側あるいは両側に網目状
支持体4を装着し、その複数個を平行に並べるこ
とにより、水溶液のホールドアツプ時間を長くす
ることができる。この場合には、網目状支持体4
は、膜状触媒1を支持するだけでなく、触媒と水
溶液との接触を良くする役割をする。すなわち、
網目状支持体4の網を膜状触媒1と接触させてお
くことにより、水溶液は網の空間にとどまつてい
るため、液のホールドアツプ時間が長くなり反応
率は向上する。
That is, in FIG. 2, a is a vertical cross-sectional view showing a catalyst layer structure in which a mesh support is attached to one side of a membrane catalyst, and b is a vertical cross-sectional view showing a catalyst layer structure in which a mesh support is attached to both sides of the membrane catalyst. 1 is a longitudinal sectional view showing a catalyst layer structure arranged in such a manner that 1 has the same meaning as in FIG. 1, and 4 indicates a network support. As shown in the figure, by attaching a mesh support 4 to one or both sides of the membrane catalyst 1 and arranging a plurality of mesh supports 4 in parallel, it is possible to lengthen the hold-up time of the aqueous solution. In this case, the mesh support 4
serves not only to support the membrane catalyst 1 but also to improve contact between the catalyst and the aqueous solution. That is,
By keeping the network of the network support 4 in contact with the membrane catalyst 1, the aqueous solution remains in the space of the network, which increases the hold-up time of the liquid and improves the reaction rate.

上記の具体例は、膜状触媒を単に平行に並べた
ものであるが、本発明においてはこれらを格子状
又は斜交状に配列させることも可能である。
In the above specific example, the membrane catalysts are simply arranged in parallel, but in the present invention, it is also possible to arrange them in a lattice or diagonal pattern.

次に、第3図のaは膜状触媒を網目状支持体を
用いてロール状にした触媒層構造体を示した斜視
図、bはaにおける膜状触媒の外側に吸水性物質
を挿入してロール状にした触媒層構造体を示した
斜視図であり、1及び4は前記第1及び第2図に
おけるものと同じ意味を有し、5は吸水性物質を
示す。このように吸収性物質5を含む三層構造に
してロール状に巻回した触媒層構造体とすること
により、水溶液を吸水性物質5に保持し、ホール
ドアツプ時間を長くすることができる。
Next, in FIG. 3, a is a perspective view showing a catalyst layer structure in which a membrane catalyst is formed into a roll using a mesh support, and b is a perspective view showing a catalyst layer structure in which a water-absorbing substance is inserted outside the membrane catalyst in a. 1 is a perspective view showing a catalyst layer structure formed into a roll, 1 and 4 have the same meanings as in FIGS. 1 and 2, and 5 represents a water-absorbing substance. By forming a catalyst layer structure having a three-layer structure including the absorbent material 5 and wound into a roll in this way, the aqueous solution can be retained in the water absorbent material 5 and the hold-up time can be lengthened.

前記第1〜3図の触媒構造体は単一の形状から
なつているが、以下に複数個からなる触媒構造体
につき述べる。
Although the catalyst structure shown in FIGS. 1 to 3 has a single shape, a catalyst structure composed of a plurality of catalyst structures will be described below.

第4図は膜状触媒を円筒形網目状支持体に装着
させた触媒層構造体を示した斜視図であり、1は
第1〜3図に示したものと同じ意味を有し、6は
円筒形網目状支持体を示す。この場合、膜状触媒
1は円筒形網目状支持体6の内側又は外側の少な
くとも一方に支持させる。この膜状触媒1が支持
されている円筒状触媒層構造物を複数個反応塔に
充填して触媒層を形成させる。
FIG. 4 is a perspective view showing a catalyst layer structure in which a membrane catalyst is attached to a cylindrical mesh support, where 1 has the same meaning as shown in FIGS. 1 to 3, and 6 A cylindrical mesh support is shown. In this case, the membrane catalyst 1 is supported on at least one of the inside and outside of the cylindrical mesh support 6. A reaction tower is filled with a plurality of cylindrical catalyst layer structures in which the membrane catalyst 1 is supported to form a catalyst layer.

第5図は膜状触媒を鞍形網目状支持体に装着さ
せた触媒層構造体を示した斜視図であり、1は第
1〜4図に示したものと同じ意味を有し、7は鞍
形網目状支持体を示す。この場合にも、膜状触媒
1は鞍形網目状支持体7の内側又は外側の少なく
とも一方に支持させることが望ましい。この膜状
触媒1が支持されている鞍形触媒層構造物を複数
個反応塔に充填して触媒層を形成させる。
FIG. 5 is a perspective view showing a catalyst layer structure in which a membrane catalyst is mounted on a saddle-shaped network support, where 1 has the same meaning as shown in FIGS. 1 to 4, and 7 A saddle-shaped mesh support is shown. In this case as well, it is desirable that the membrane catalyst 1 be supported on at least one of the inside and outside of the saddle-shaped network support 7. A reaction tower is filled with a plurality of saddle-shaped catalyst layer structures in which the membrane catalyst 1 is supported to form a catalyst layer.

上記第4及び5図に示したような形状の異なる
支持体にするのは、反応塔に膜状構造体を充填し
たとき、一層水溶液のホールドアツプ時間を長く
する目的のためである。
The purpose of using supports having different shapes as shown in FIGS. 4 and 5 is to further lengthen the hold-up time of the aqueous solution when the reaction tower is filled with the membrane structure.

次に、前記各種の本発明の触媒層構造体を用い
た気・液相反応プロセスの一具体例を示す。すな
わち、第6図は本発明の膜状触媒層構造体を用い
た気・液相反応のプリセスの一具体例を示した模
式図であり、8,9,14,15,18,20及
び21はバルブ、10は送液ポンプ、11は反応
液槽、12は反応液、13は反応塔、16はガス
循環ポンプ、17は膜状触媒層構造体、19はト
ラツプを示す。前記第2〜第5図に示したいずれ
かの膜状触媒層構造体17を反応塔13に充填
し、気・液相反応を行う。まず、バルブ8及び9
を開け、送液ポンプ10により反応液槽11中の
反応液12を反応塔13の塔頂部から導入する。
一方、バルブ14を開けて所定のガスを系内に導
入した後、バルブ14を閉めバルブ15を開け
て、ガス循環ポンプ16により、反応塔13内を
塔底から塔頂を経て循環させる。このようにし
て、液状反応物(水溶液)とガス状反応物(ガ
ス)は、反応塔13内に充填された膜状触媒層構
造体17中の触媒と接触して気・液相反応が起
る。反応がワンスルーで終り、生成物が溶液側に
存在するときは、バルブ18を開けて生成物を取
出す。又、反応が遅くて液を循環させる必要があ
るときは、トラツプ19中の液をバルブ20を開
けて反応液槽11に戻す。反応後、バルブ18を
開けて生成物を取出す。一方、生成物がガス側に
存在し、反応がワンスルーで終るときは、バルブ
14から高圧ガスを導入し、バルブ20から生成
物を取出す。又、反応ガスを循環させる必要があ
るときは、ガス循環ポンプ16により循環させた
後、バルブ21から生成物を取出す。
Next, a specific example of a gas-liquid phase reaction process using the various catalyst layer structures of the present invention will be shown. That is, FIG. 6 is a schematic diagram showing a specific example of a gas-liquid phase reaction process using the membrane catalyst layer structure of the present invention. 10 is a valve, 10 is a liquid sending pump, 11 is a reaction liquid tank, 12 is a reaction liquid, 13 is a reaction tower, 16 is a gas circulation pump, 17 is a membrane catalyst layer structure, and 19 is a trap. The reaction tower 13 is filled with any one of the membrane catalyst layer structures 17 shown in FIGS. 2 to 5, and a gas/liquid phase reaction is performed. First, valves 8 and 9
is opened, and the reaction liquid 12 in the reaction liquid tank 11 is introduced from the top of the reaction tower 13 using the liquid feed pump 10.
On the other hand, after opening the valve 14 and introducing a predetermined gas into the system, the valve 14 is closed and the valve 15 is opened, and the gas is circulated through the reaction tower 13 from the bottom to the top by the gas circulation pump 16. In this way, the liquid reactant (aqueous solution) and the gaseous reactant (gas) come into contact with the catalyst in the membrane catalyst layer structure 17 filled in the reaction tower 13, and a gas-liquid phase reaction occurs. Ru. When the reaction is completed in one go and the product is present on the solution side, the valve 18 is opened and the product is taken out. When the reaction is slow and it is necessary to circulate the liquid, the liquid in the trap 19 is returned to the reaction liquid tank 11 by opening the valve 20. After the reaction, valve 18 is opened to take out the product. On the other hand, when the product is present on the gas side and the reaction is completed in one go, high pressure gas is introduced through the valve 14 and the product is taken out through the valve 20. Further, when it is necessary to circulate the reaction gas, the product is taken out from the valve 21 after being circulated by the gas circulation pump 16.

前記した方法は、反応液12を流通させる場合
であるが、反応液12を反応塔13内に閉じこめ
たままでガスだけを循環させることも可能であ
る。この場合は、バルブ8を開け送液ポンプ10
により反応塔13内に反応液12を導入した後、
バルブ8を閉じ、ガス循環ポンプ16によりガス
を循環させるか、又は、バルブ14から高圧ガス
を導入することにより行われる。又、前記の方法
は、ガスと液が向流の場合を示したが、並流にお
いても行い得る。
In the method described above, the reaction liquid 12 is circulated, but it is also possible to circulate only the gas while the reaction liquid 12 is confined in the reaction tower 13. In this case, open the valve 8 and use the liquid feed pump 10.
After introducing the reaction liquid 12 into the reaction tower 13 by
This is done by closing the valve 8 and circulating the gas by the gas circulation pump 16, or by introducing high pressure gas from the valve 14. Further, although the above method has been described in the case where the gas and liquid flow in countercurrent flow, it can also be carried out in cocurrent flow.

以上説明したように、本発明によれば、撥水性
膜状触媒を特定形態の支持体に支持した触媒層構
造体を用いることにより、水溶液のホールドアツ
プ時間を長くして気・液相反応を効果的に行うこ
とができ、又、触媒層の厚さを薄くすることによ
り触媒の使用量を大幅に減少させることができ
る。
As explained above, according to the present invention, by using a catalyst layer structure in which a water-repellent membrane catalyst is supported on a specific type of support, the hold-up time of an aqueous solution is lengthened and a gas-liquid phase reaction is carried out. This can be carried out effectively, and by reducing the thickness of the catalyst layer, the amount of catalyst used can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図のaは撥水性膜状触媒を反応塔内に単に
配列充填した本発明外の触媒層構造体を示した透
視図、bはその縦断面図、第2図のaは撥水性膜
状触媒の片側に網目状支持体を装着して配列した
本発明の触媒層構造体を示した縦断面図、bは撥
水性膜状触媒の両側に網目状支持体を装着して配
列した本発明の触媒層構造体を示した縦断面図、
第3図のaは撥水性膜状触媒を網目状支持体を用
いてロール状にした本発明の触媒層構造体を示し
た斜視図、bはaにおける撥水性膜状触媒の外側
に吸水性物質を挿入してロール状にした触媒層構
造体を示した斜視図、第4図は撥水性膜状触媒を
円筒形網目状支持体に装着させた本発明の触媒層
構造体を示した斜視図、第5図は撥水性膜状触媒
を鞍形網目状支持体に装置させた本発明の触媒層
構造体を示した斜視図、第6図は本発明の膜状触
媒層構造体を用いた気・液相反応のプロセスの一
具体例を示した模式図である。 1……撥水性膜状触媒、2……支持体、3……
反応器、4……網目状支持体、5……吸水性物
質、6……円筒形網目状支持体、7……鞍形網目
状支持体、8,9,14,15,18,20,2
1……バルブ、10……送液ポンプ、11……反
応液槽、12……反応液、13……反応塔、16
……ガス循環ポンプ、17……膜状触媒層構造
体、19……トラツプ。
FIG. 1a is a perspective view showing a catalyst layer structure other than the present invention in which water-repellent membrane catalysts are simply arranged and filled in a reaction column, b is a vertical cross-sectional view thereof, and FIG. 2 a is a water-repellent membrane. A vertical cross-sectional view showing the catalyst layer structure of the present invention in which a mesh support is attached to one side of a water-repellent membrane catalyst and arranged. A vertical cross-sectional view showing the catalyst layer structure of the invention,
FIG. 3a is a perspective view showing the catalyst layer structure of the present invention in which a water-repellent membrane catalyst is formed into a roll using a mesh support, and b is a perspective view showing a water-absorbing structure on the outside of the water-repellent membrane catalyst in a. A perspective view showing a catalyst layer structure formed into a roll by inserting a substance therein, and FIG. 4 is a perspective view showing a catalyst layer structure of the present invention in which a water-repellent membrane catalyst is attached to a cylindrical mesh support 5 is a perspective view showing the catalyst layer structure of the present invention in which a water-repellent membrane catalyst is mounted on a saddle-shaped network support, and FIG. 6 is a perspective view showing the membrane catalyst layer structure of the present invention. FIG. 2 is a schematic diagram showing a specific example of a gas/liquid phase reaction process. 1... Water-repellent membrane catalyst, 2... Support, 3...
Reactor, 4...Mesh support, 5...Water-absorbing material, 6...Cylindrical mesh support, 7...Saddle-shaped mesh support, 8, 9, 14, 15, 18, 20, 2
DESCRIPTION OF SYMBOLS 1... Valve, 10... Liquid sending pump, 11... Reaction liquid tank, 12... Reaction liquid, 13... Reaction tower, 16
... Gas circulation pump, 17 ... Membrane catalyst layer structure, 19 ... Trap.

Claims (1)

【特許請求の範囲】 1 親水性物質からなる線状又は網目状の支持体
と撥水性膜状触媒とからなる触媒層からなり、前
記撥水性膜状触媒は撥水性の厚さ0.1mm以下の膜
状担体に触媒活性成分を担持させたことを特徴と
する気・液相反応用触媒層構造体。 2 該構造体は、前記支持体と前記撥水性膜状触
媒の中間又はそれらの少なくとも一方の外側に吸
水性物質層を設け、前記三層物質をロール状に巻
回した構造であることを特徴とする特許請求の範
囲第1項記載の気・液相反応用触媒層構造体。
[Scope of Claims] 1 Consists of a catalyst layer consisting of a linear or mesh-like support made of a hydrophilic substance and a water-repellent membrane catalyst, the water-repellent membrane catalyst having a thickness of 0.1 mm or less. A gas/liquid phase applied catalyst layer structure characterized by having a catalytically active component supported on a membrane-like carrier. 2. The structure is characterized in that a water-absorbing material layer is provided between the support and the water-repellent membrane catalyst, or on the outside of at least one of them, and the three-layer material is wound into a roll. A gas/liquid phase applied catalyst layer structure according to claim 1.
JP57007652A 1982-01-22 1982-01-22 Layered catalyst structure for reaction between gaseous and liquid phase Granted JPS58124543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57007652A JPS58124543A (en) 1982-01-22 1982-01-22 Layered catalyst structure for reaction between gaseous and liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007652A JPS58124543A (en) 1982-01-22 1982-01-22 Layered catalyst structure for reaction between gaseous and liquid phase

Publications (2)

Publication Number Publication Date
JPS58124543A JPS58124543A (en) 1983-07-25
JPS6315019B2 true JPS6315019B2 (en) 1988-04-02

Family

ID=11671749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007652A Granted JPS58124543A (en) 1982-01-22 1982-01-22 Layered catalyst structure for reaction between gaseous and liquid phase

Country Status (1)

Country Link
JP (1) JPS58124543A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230554A (en) * 1985-07-31 1987-02-09 Choichi Furuya Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same
JPS6238245A (en) * 1985-08-08 1987-02-19 Choichi Furuya Water repellent microporous catalyst for gas-liquid reaction and method for gas-liquid reaction using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538389A (en) * 1976-07-12 1978-01-25 Sumitomo Electric Ind Ltd Catalysts for use in water-hydrogen exchange reaction and production thereof
JPS5691848A (en) * 1979-12-27 1981-07-25 Showa Denko Kk Packing catalyst for water-hydrogen isotope exchange reaction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538389A (en) * 1976-07-12 1978-01-25 Sumitomo Electric Ind Ltd Catalysts for use in water-hydrogen exchange reaction and production thereof
JPS5691848A (en) * 1979-12-27 1981-07-25 Showa Denko Kk Packing catalyst for water-hydrogen isotope exchange reaction

Also Published As

Publication number Publication date
JPS58124543A (en) 1983-07-25

Similar Documents

Publication Publication Date Title
JPH0334366B2 (en)
US8173015B2 (en) Photocatalytic reactor
TWI228105B (en) Method for treating waste water
CN109746005B (en) Acetylene hydrochlorination catalyst based on porous pipe wall hollow foam material and preparation method and application thereof
FI95457C (en) Process for the preparation of hydrogen peroxide and the reactor used therein
AU2006252675A1 (en) Improved preferential oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
CN101850272B (en) Method for preparing hydrophobic catalyst by freezing molding
JPS6315019B2 (en)
JPS585691B2 (en) Multistage exchange reaction tower
US4514377A (en) Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor
CN102107927B (en) Photocatalytic degradation treatment device of wastewater with organic pollutants
JPH04300640A (en) Container for granular solid substance, manufacture thereof and application method thereof particularly in catalytic action
JPH1028833A (en) Electrolytic bath for removing electrochemically convertible impurity from gas and method
KR20160108219A (en) Collector assembly for a gaseous fluid for a radial reactor
US4493735A (en) Device and method for forming a fluidized bed
JPS5919732B2 (en) Catalyst for water-hydrogen exchange reaction
JP2887304B2 (en) Bisphenol A production reactor
Varghese et al. Effectiveness and deactivation of a diluted catalyst pellet
CN109746012B (en) Acetylene hydrochlorination structured catalyst based on compact pipe wall hollow foam material, and preparation and application thereof
WO2006065127A1 (en) Multiphase reactions using solid foams
EP0174974B1 (en) A catalyst element, a process for the preparation thereof as well as a use thereof
JPH0419902B2 (en)
US20160297698A1 (en) Partial bed backwashing for packed bed reactor
GB2229173A (en) Production of hydrogen peroxide by anthraquinone process
KR0165757B1 (en) Concurrent catalytic reactor with hydrophobic catalyst and hydrophilic packing